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1. Graphs & Decomposition

Exploiting underlying structures (e.g., low rank,
symmetry, and sparsity) is one key direction to im-
prove the scalability of solving convex optimization.
•An undirected graph G(V , E) is chordal if every
cycle of length greater than 3 has a chord.

•Sparse positive semidefinite matrices Sn+(E , 0).
•For chordal graphs, we have

Z ∈ Sn+(E , 0)⇔ Z =
t∑

k=1
ET
CkZkECk, Zk ∈ S|Ck|+ .

Figure: Chordal decomposition of a sparse network.

2 Sparse Semidefinite Programs

Consider a sparse SDP in the dual form
max
y, Z

〈b, y〉

subject to Z +
m∑
i=1
Ai yi = C,

Z ∈ Sn+,
where Ai, C ∈ Sn(E , 0). This can be equivalently
reformulated as

max
y,Zk,Vk

〈b, y〉

subject to
t∑

k=1
ET
CkVkECk +

m∑
i=1
Ai yi = C,

Zk − Vk = 0, k = 1, . . . , t,
Zk ∈ S|Ck|+ , k = 1, . . . , t,

which is referred to as range-space decomposition.
•Primal SDPs → domain-space decomposition.
•Suitable for operator-splitting algorithms [1].
•Cone Decomposition Conic solver (CDCS)

https://github.com/OxfordControl/CDCS

The Big Picture

•Many urban systems are currently of a size and complexity that render traditional methods both
intractable in theory and unscalable in computation.

•My work focuses on developing computationally scalable and theoretically tractable methods
for control and optimization of large-scale autonomous systems.
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Figure: Duality is inherited in the decomposition and
algorithmic development [1]

Table: Average CPU time per iteration (in seconds) for
benchmark SDPs.

rs35 rs200 rs228 rs365 rs1555 rs1907

SCS (direct) 1.19 4.85 1.17 17.25 69.59 25.24
CDCS-primal 0.94 0.26 0.22 0.72 0.83 0.83
CDCS-dual 1.06 0.26 0.23 0.77 0.79 0.92
CDCS-hsde 1.01 0.22 0.21 0.74 0.68 0.89

3 Sparse SOS Optimization

Question: how to verify p(x) ≥ 0,∀x ∈ Rn?
•Sum-of-squares (SOS) polynomials: p(x)
can be represented as a sum of finite squared
polynomials fi(x), i = 1, . . . ,m

p(x) =
m∑
i=1
f 2
i (x),

•SDP characterization (Parrilo, Lasserre etc.):
p(x) is SOS if and only if there exists Q � 0,

p(x) = vd(x)TQvd(x).
where vd(x) = [1, x1, x2, . . . , xn, x

2
1, . . . , x

d
n]T is

the standard monomial basis.
•Scalability issue: The size of the resulting
SDP is n + d

d

×
n + d

d

,
e.g. n = 10, d = 4→ 1001.

A new concept by Ahmadi and Majumdar, 2019
•SOS: p(x) = vT

dQvd : Q is PSD → SDP
•SDSOS: p(x) = vT

dQvd : Q is sdd → SOCP
•DSOS: p(x) = vT

dQvd : Q is dd → LP

We have proposed two main strategies to bridge
the gap
1 Exploit correlative sparsity in p(x) [2];
2 Introduce a new notion of block SDD matrices [3].
Consider p(x) = x2

1 + x1x2 + x2x
3
3 and we define

csp(x2
1 + x1x2 + x2x

3
3) =


1 1 0
1 1 1
0 1 1

 .
x1 x2 x3

Translate the sparsity into matrix Q
•Define a subset SSOSn,2d(E) ⊂ SOSn,2d(E) by
imposing Qβ,γ = 0 if xβ+γ violates the csp E .

Then, we can prove

p(x) ∈ SSOSn,2d(E)⇐⇒ p(x) =
t∑

k=1
pk(ECkx).

A hierarchy of inner approximations:
DSOS(E) ⊂ SDSOS(E) ⊂ SSOS(E) ⊂ SOS(E)

and
DSOS(E) −→ LP (PSD cones: 1× 1)
SDSOS(E) −→ SOCP (PSD cones: 2× 2)
SSOS(E) −→ SDP with smaller cones of k × k
SOS(E) −→ SDP with a PSD cone of N ×N

4. Tractable Distributed Control

Distributed optimal controller synthesis
min

K
‖P11 + P12K(I −GK)−1P21‖

subject to K internally stabilizes G,

K ∈ S.
Our contributions
1 A new input-output (IOP) framework and
explicit equivalence with Youla and SLS [4].y

u

 =
 (I −GK)−1 (I −GK)−1G
K(I −GK)−1 (I −KG)−1

 δy
δu

 .
Youla

SLS IOP

affi
ne

affine

affine

2 A new notion of Sparsity Invariance (SI) beyond
the well-known Quadratic Invariance (QI) [5].

Sparsity Invariance

•Change of variables: K = UY−1 ∈ S
•Design two separate subspaces T and R

∀ U ∈ T ,Y ∈ R ⇒ K = UY−1 ∈ S
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