Large-scale Autonomy: Scalable Sparse Optimization and Distributed Control

1. Graphs & Decomposition

Exploiting underlying structures (e.g., low rank, symmetry, and sparsity) is one key direction to improve the scalability of solving convex optimization. • An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is chordal if every

- cycle of length greater than 3 has a chord.
- Sparse positive semidefinite matrices $\mathbb{S}^n_+(\mathcal{E}, 0)$.
- For chordal graphs, we have

 $Z \in \mathbb{S}^n_+(\mathcal{E}, 0) \Leftrightarrow Z = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} Z_k E_{\mathcal{C}_k}, Z_k \in \mathbb{S}^{|\mathcal{C}_k|}_+.$

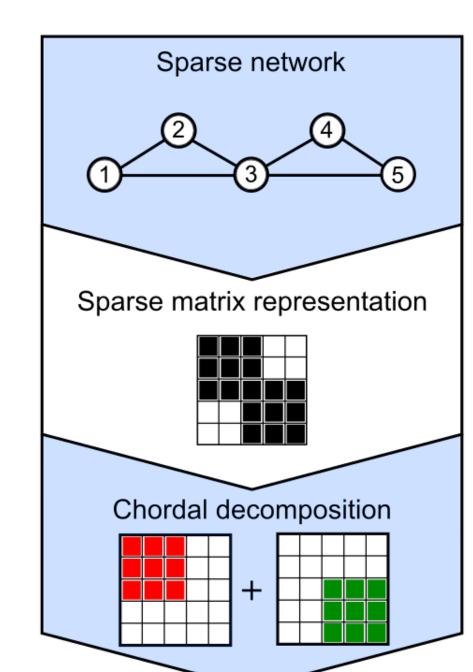


Figure: Chordal decomposition of a sparse network.

2 Sparse Semidefinite Programs

Consider a sparse SDP in the dual form $\max_{y,\,Z} \quad \langle b,y
angle$

subject to $Z + \sum_{i=1}^{m} A_i y_i = C,$ $Z \in \mathbb{S}^n_+,$

where $A_i, C \in \mathbb{S}^n(\mathcal{E}, 0)$. This can be equivalently reformulated as

$$\max_{\substack{y, Z_k, V_k \\ y \neq z_k, V_k \\ z_k = 1}} \langle b, y \rangle$$
subject to
$$\sum_{k=1}^t E_{\mathcal{C}_k}^\mathsf{T} V_k E_{\mathcal{C}_k} + \sum_{i=1}^m A_i y_i = C,$$

$$Z_k - V_k = 0, \ k = 1, \dots, t,$$

$$Z_k \in \mathbb{S}_+^{|\mathcal{C}_k|}, \quad k = 1, \dots, t,$$

which is referred to as *range-space* decomposition.

- Primal SDPs \rightarrow *domain-space* decomposition.
- Suitable for operator-splitting algorithms [1].
- Cone Decomposition Conic solver (CDCS) https://github.com/OxfordControl/CDCS

Yang Zheng ^{1,2}

¹School of Engineering and Applied Sciences, Harvard University

The Big Pi

- Many urban systems are currently of a size and complex intractable in theory and unscalable in computation.
- My work focuses on developing **computationally sca** for control and optimization of large-scale autonomous s

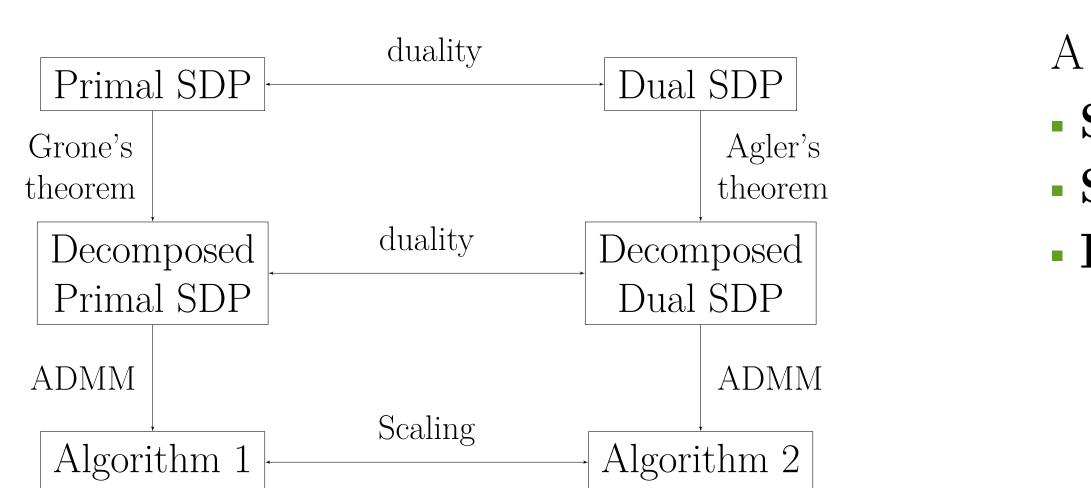


Figure: Duality is inherited in the decomposition and algorithmic development [1]

Table: Average CPU time per iteration (in seconds) for benchmark SDPs.

	rs35	rs200	rs228	rs365	rs1555	rs1907
SCS (direct)	1.19	4.85	1.17	17.25	69.59	25.24
CDCS-primal						
CDCS-dual	1.06	0.26	0.23	0.77	0.79	0.92
CDCS-hsde	1.01	0.22	0.21	0.74	0.68	0.89

3 Sparse SOS Optimization

Question: how to verify $p(x) \ge 0, \forall x \in \mathbb{R}^n$? • Sum-of-squares (SOS) polynomials: p(x)can be represented as a sum of finite squared

polynomials $f_i(x), i = 1, \ldots, m$

$$p(x) = \sum_{i=1}^{m} f_i^2(x),$$

• **SDP characterization** (Parrilo, Lasserre *etc.*): p(x) is SOS if and only if there exists $Q \succeq 0$,

$$p(x) = v_d(x)^T Q v_d(x).$$

where $v_d(x) = [1, x_1, x_2, \dots, x_n, x_1^2, \dots, x_n^d]^{\mathsf{T}}$ is the standard monomial basis.

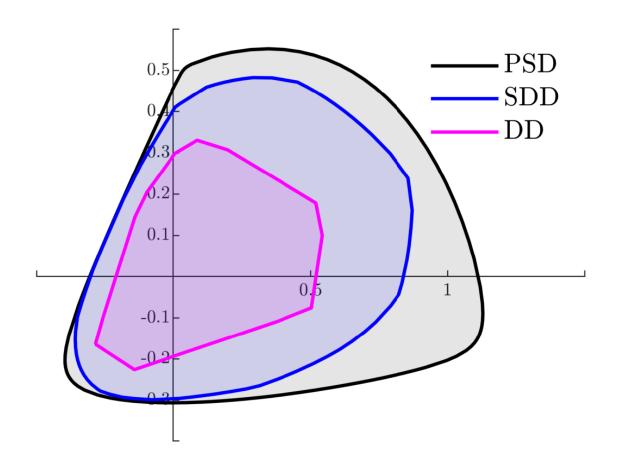
• Scalability issue: The size of the resulting SDP is

$$\binom{n+d}{d} \times \binom{n+d}{d}, \qquad \qquad SDSOS(\mathcal{E}) \longrightarrow \text{ SOCP (PSD cones: } 2 \times 2) \\ SSOS(\mathcal{E}) \longrightarrow \text{ SDP with smaller cones of } k \times k \\ SOS(\mathcal{E}) \longrightarrow \text{ SDP with a PSD cone of } N \times N$$

e.g. n = 10, d

²Harvard Center for Green Buildings and Cities, Harvard University

cture4.xity that render traditional methods bothDistributionalable and theoretically tractable methods
systems.Subsection. new concept by Ahmadi and Majumdar, 2019Our constructionSOS:
$$p(x) = v_d^T Q v_d : Q$$
 is PSD \rightarrow SDPexplanationSDSOS: $p(x) = v_d^T Q v_d : Q$ is sdd \rightarrow SOCP $\begin{bmatrix} x \\ y \\ y \\ z \end{bmatrix}$ DSOS: $p(x) = v_d^T Q v_d : Q$ is dd \rightarrow LP $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$



Ve have proposed two main strategies to bridge ne gap

Exploit correlative sparsity in p(x) [2]; Introduce a new notion of block SDD matrices [3]. Consider $p(x) = x_1^2 + x_1x_2 + x_2x_3^3$ and we define

$$csp(x_1^2 + x_1x_2 + x_2x_3^3) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}.$$

$$\overbrace{(x_1) \dots (x_2) \dots (x_3)}$$

Translate the sparsity into matrix Q

• Define a subset $SSOS_{n,2d}(\mathcal{E}) \subset SOS_{n,2d}(\mathcal{E})$ by imposing $Q_{\beta,\gamma} = 0$ if $x^{\beta+\gamma}$ violates the csp \mathcal{E} . Then, we can prove

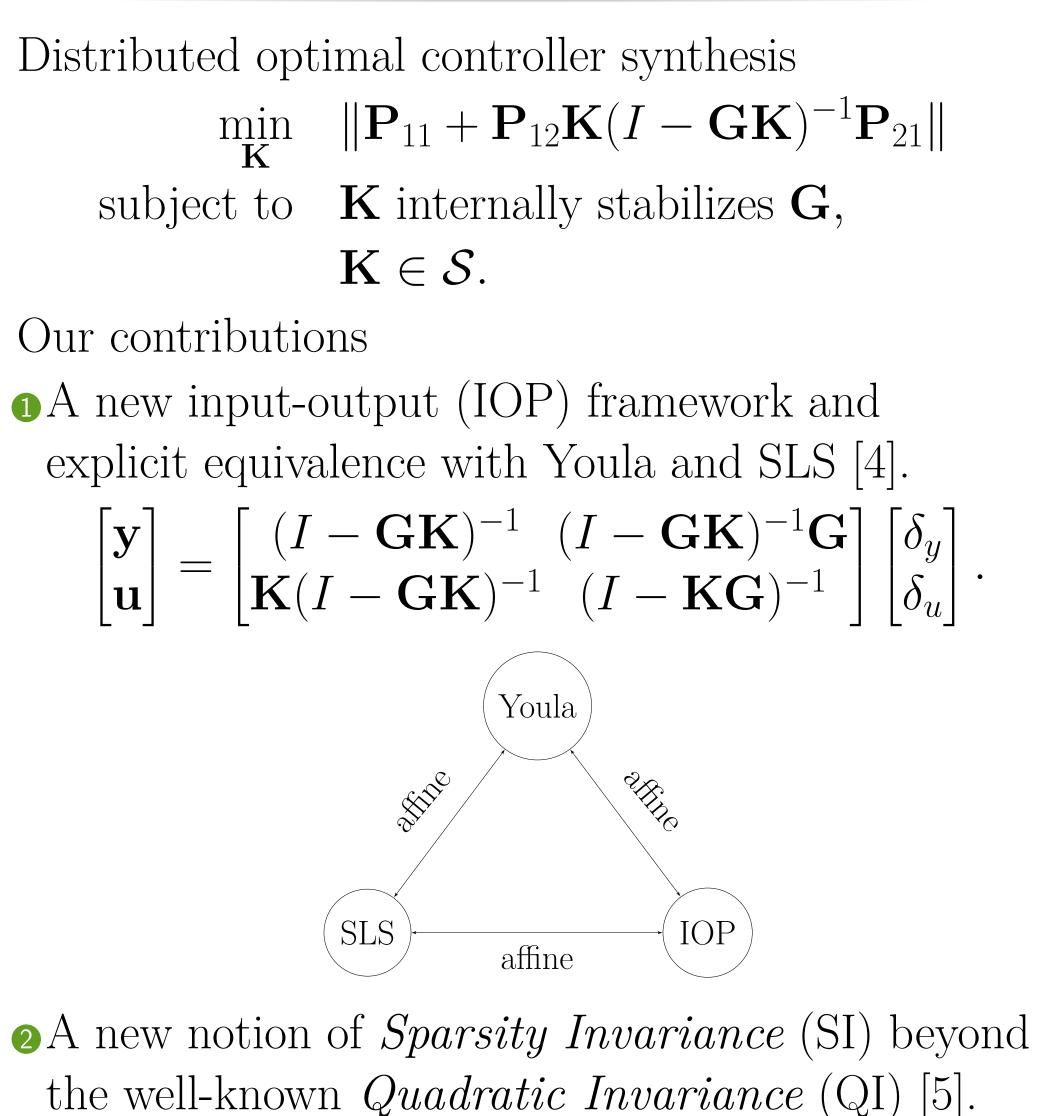
$$p(x) \in SSOS_{n,2d}(\mathcal{E}) \iff p(x) = \sum_{k=1}^{t} p_k(E_{\mathcal{C}_k}x).$$

A hierarchy of inner approximations: $DSOS(\mathcal{E}) \subset SDSOS(\mathcal{E}) \subset SSOS(\mathcal{E}) \subset SOS(\mathcal{E})$ and $DSOS(\mathcal{E})$ \longrightarrow LP (PSD cones: 1 × 1) (\mathbf{a}) $\alpha \mathbf{D} \alpha \mathbf{O} \alpha (\mathbf{a})$

[1]	Zheng,
	metho
[2]	Zheng,
	optimi
	polyno
[3]	Zheng,
	matric
[4]	Zheng,
	the Eq
	preprir
$\left[5\right]$	Furieri
	Invaria

Y. Zheng was supported by the Clarendon Scholarship and Janson Hu Scholarship at the University of Oxford. He would like to thank the co-authors: A. Papachristodoulou, P. Goulart, A. Wynn, A. Sootla, G. Fantuzzi, M. Kamgarpour, L. Furieri, J. Miller, M. Sznaier, J. Saunderson, G. Hall, A. A. Ahmadi, and N. Li.

Tractable Distributed Control



ange of variables: $\mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \in \mathcal{S}$	Sparsity Invariance
sign two separate subspaces / and K	ange of variables: $\mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \in \mathcal{S}$ sign two separate subspaces \mathcal{T} and \mathcal{R}
$\forall \ \mathbf{U} \in \mathcal{T}, \mathbf{Y} \in \mathcal{R} \Rightarrow \mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \in \mathcal{S}$	$\forall \ \mathbf{U} \in \mathcal{T}, \mathbf{Y} \in \mathcal{R} \Rightarrow \mathbf{K} = \mathbf{U}\mathbf{Y}^{-1} \in \mathcal{S}$

References

Y., Fantuzzi, G., etc. (2019). Chordal decomposition in operator-splitting ods for sparse semidefinite programs. Mathematical Programming, 1-44. Y., Fantuzzi, G., Papachristodoulou, A. (2019). Sparse sum-of-squares (SOS) ization: A bridge between DSOS/SDSOS and SOS optimization for sparse omials. In 2019 American Control Conference (ACC) (pp. 5513-5518). IEEE. Y. Sootla, A., & Papachristodoulou, A. (2019). Block factor-width-two ces and their applications in semidefinite and sum-of-squares optimization. Y., Furieri, L., Papachristodoulou, A., Li, N., & Kamgarpour, M. (2019). On uivalence of Youla, System-level and Input-output Parameterizations. arXiv nt arXiv:1907.06256. under review at IEE Transactions on Automatic Control , L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). Sparsity ance for Convex Design of Distributed Controllers. preprint arXiv:1906.06777.

Acknowledgements

Harvard John A. Paulson	SITY OF.	UNIVERSITY OF
School of Engineering		UNIVERSITY OF
and Applied Sciences		OATOND