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1. Graphs & Decomposition

Exploiting underlying structures (e.g., low rank,
symmetry, and sparsity) is one key direction to im-
prove the scalability of solving convex optimization.

- An undirected graph G(V, £) is chordal if every
cycle of length greater than 3 has a chord.

= Sparse positive semidefinite matrices S” (£, 0).
» For chordal graphs, we have
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Figure: Chordal decomposition of a sparse network.

2 Sparse Semidefinite Programs

Consider a sparse SDP in the dual form

max (b, y)
subject to Z+ > Ay, = C,
i=1
Z €S,

where A;,C € S"(&,0). This can be equivalently

reformulated as

b
max. (b,y)

t m
subject to ) ECTkaEck + > Ay, =C,
k=1 i=1
Z,— V. =0, k=1,...,1,
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which is referred to as range-space decomposition.

« Primal SDPs — domain-space decomposition.

= Suitable for operator-splitting algorithms [1].
« Cone Decomposition Conic solver (CDCS)
https://github.com/0xfordControl/CDCS
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The Big Picture

« Many urban systems are currently of a size and complexity that render traditional methods both

intractable in theory and unscalable in computation.

« My work focuses on developing computationally scalable and theoretically tractable methods
for control and optimization of large-scale autonomous systems.
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Figure: Duality is inherited in the decomposition and
algorithmic development [1]

Table: Average CPU time per iteration (in seconds) for

benchmark SDPs.

rs35 rs200 rs228 rs365 rs1555 rs1907

SCS (direct) 1.19 4.85 1.17 17.25 69.59 25.24
CDCS-primal 0.94 026 0.22 0.72 0.83  0.83
CDCS-dual 1.06 0.26 0.23 0.77 0.79  0.92
CDCS-hsde 1.01 0.22 021 0.74  0.68 0.89

3 Sparse SOS Optimization

Question: how to verify p(x) > 0,Vx € R"?

- Sum-of-squares (SOS) polynomials: p(x)
can be represented as a sum of finite squared
polynomials f;(x),i=1,...,m

p(z) = gilff(w),

- SDP characterization (Parrilo, Lasserre etc.):
p(x) is SOS if and only if there exists Q) > 0,

p(x) = vi(x)' Qua(x).
where vg(z) = [1, 21, T2, . .., Tp, 23, ..., 2" is
the standard monomial basis.

« Scalability issue: The size of the resulting

SDP is
n+d y n+d
d d |’

e.qg. n=10,d =4 — 1001.

A new concept by Ahmadi and Majumdar, 2019
- SOS: p(z) = v Qug : Q is PSD — SDP

- SDSOS: p(z) = v)Quy : Q is sdd — SOCP

- DSOS: p(z) = v)Qus: Q is dd — LP
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We have proposed two main strategies to bridge
the gap
o Exploit correlative sparsity in p(x) [2];

)

@ Introduce a new notion of block SDD matrices |3].

Consider p(x) = x% + x172 + 2273 and we define
110
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Translate the sparsity into matrix ()

« Define a subset SSOS,,24(E) C SOS,24(E) by
imposing (Jg~ = 0 if P17 violates the csp &.

Then, we can prove

p(z) € SS0S,2(E) < p(x) = ;:lpk(Eckx).

A hierarchy of inner approximations:

DSOS(E) € SDSOS(E) € SS0S(E) € SOS(€)
and
DSOS(E) — LP (PSD cones: 1 x 1)
SDSOS(E) — SOCP (PSD cones: 2 x 2)
SSOS(E) — SDP with smaller cones of k x k
SOS(E) — SDP with a PSD cone of N x N

4. Tractable Distributed Control

Distributed optimal controller synthesis

min P11+ PuK(I — GK) ™ 'Py|

subject to K internally stabilizes (3,
Kecé.

Our contributions

® A new input-output (IOP) framework and
explicit equivalence with Youla and SLS [4].
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® A new notion of Sparsity Invariance (SI) beyond
the well-known Quadratic Invariance (QI) [5].

Sparsity Invariance

- Change of variables: K=UY '€ S
= Design two separate subspaces 7 and R

VUeT, YER=K=UY 'eS
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https://github.com/OxfordControl/CDCS

