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Success of Data-driven Decision Making

1 Data-driven decision-making for complex tasks in dynamical systems, e.g., game playing,
robotic manipulation/locomotion, networked systems, ChatGPT, etc.

O Reinforcement learning (RL) has served as one backbone of the recent successes of data-
driven decision-making.

[ Policy optimization as one of the major workhorses of modern RL.
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Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; Mania et al., 2019; Fazel et al.,
2018; Recht, 2019; https://chat.openai.com/
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Policy Optimization for Control

1 Why policy optimization is so popular

Apply a control Accumulate
strategy observed data

Refine the
control strategy

Opportunities Challenges
 Easy-to-implement * Nonconvex optimization
* Scalable to high-dimensional problems * Lack of principled algorithms for optimality

Enable model-free search with rich (e.g., avoiding saddles/local minimizers)

observations (e.g. images) * Hard to obtain theoretical guarantees (e.g.,
robustness/stability, sample efficiency)



Our Focus: Optimal & Robust Control

Some Historical Background

L Ml-based convex reformulation

Policy optimization

Has became popular since 1980s due to
global guarantees and efficient interior
point solvers

Relies on re-parameterizations (does not
optimize over controller/policy directly)

@ =@
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Examples: State-feedback or full-order
output-feedback H, / H, control, etc.

Has a long history in control theory

 [Apkarian & Noll, 2006] [Saeki, 2006]
[Apkarian et al., 2008] [Gumussoy et al.,
2009] [Arzelier et al., 2011], etc.

e HIFOO, hinfstruct

Good empirical performance
* Scalability, flexibility, ..

Weak guarantees, unpopular among
control theorists




Convex LMIs vs Nonconvex Policy Optimization

L Recent progress on non-convex policy optimization

Favorable properties have been revealed for policy optimization in many benchmark control problems:
v LQR [Fazel et al., 2018] [Malik et al., 2020] [Mohammad et al., 2022] [Fatkhullin & Polyak, 2021], etc.

v LQG [Zheng, Tang & Li, 2021], [Mohammadi et al., 2021] [Zheng et al., 2022], [Ren et al., 2023]]
v’ H,, state-feedback/output-feedback, [Guo & Hu, 2022] [Hu & Zheng, 2022]
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This Talk

Benign Nonconvexity in Control via Extended
Convex Lifting (ECL)

Nonconvex L MI-based
policy convex
optimization reformulation '}
0

» Reconciles the gap between nonconvex policy optimization and LMI-based convex
reformulations.

» For non-degenerate policies, all Clarke stationary points are globally optimal and
there is no spurious local minimum in policy optimization.



Outline

d Problem Setup and Motivating Examples
1 Extended Convex Lifting (ECL)

d ECLs for Optimal and Robust Control

d Escaping Degenerate Saddle Points



Policy Optimization in Control

Disturbance

Regulated output

4 N
d(t) —» _ > z(t)
. Dynamical system
y(t)
u(t) - / ») Non-convex
Control Measured Policy Oﬁ; t;?éf:’:ilon
input Feedback «l output parametrization  S.t. KeC
policy
State
feedback u(t) = Ka(t)
System t(t) = Ax(t) + Bu(t) + Byw(t) .
dynamics  y(t) = Cx(t) + D,v(t) Output §(t) = Ax&(t) + Bry(?)
feedback  wu(t) = Ck&(t)
Performance (t) QI/Q:U(t)
- z _—
signal RY2(t) C = {K : Closed-loop system is stable}



Nonconvexity in Policy Optimization

5

min J(K) Policy optimization is

K
enerally nonconvex!
s.t. Ke(l & Y

s
=

" The basic problem of stabilization is non-convex

A simple example: A =0, B =1,
C = {K € R®*? | A+ BK is stable}

K = {_01 _21] cC, K,= [_21 _01] e C,

*" The set of dynamic stabilizing policies is

nonconvex and may even be disconnected.
[Tang, Zheng, Li, 2023]
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Nonconvexity in Policy Optimization

mKin J(K) Policy optimization is
enerally nonconvex!
s.t. Ke(l & Y

* The costs of Linear Quadratic Regulator
(LQR)/LQG costs are smooth but nonconvex

= The cost of H,, robust control are non-smooth
and nonconvex

Highly non-trivial to establish

theoretical guarantees!

A very basic question:

When is a stationary point
globally optimal?




Benign Nonconvex Landscape

Polic 1mM1n J(K) Non-convex | |
y K Optimization

parametrization st K c C problem

Question: When is a stationary point
globally optimal?

Answer: Any (non-degenerate) Clarke stationary points are
globally optimall

Structural
+ Information

o
! Extended Convex "\\"’//05

Our tool:

Global Optimality

o C
Certificate Llftmg ‘



Inspirations of Convex Reformulation

Poli 11 J(K) Non-convex
ohicy K Optimization
parametrization st. Ke(C problem

Our idea: Exploit LMI-based convex reformulations of control problems

* They reveal the hidden convexity of policy optimization landscapes

1 —1x/ T 10
win w[Q+KTRE)Y] Y =KX R T@FV)

t. 0=AX+BY h(y) 6
s.t. X = Lyap(A+ BK,W) 5 I (y)
Y x o0 Change of +XAT+Y BT+ W

variable X0

< [§S] = [« oo
T T T
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Example 1

J Nonconvex and Smooth Function

2
fi(zi,22) = (i—i — 2) + (ISEQ — 1), dom(f1) = {x € R® | £y > 0,25 > 0}.

\yl \ Y2

lts global minimizer is
6 x" = (0.5,1)
Define an invertible map hl(y)Q-

9(x) := (x2/x1, 22),
Vr, > 0,29 > 0,

hi(y) = filg W) = (w1 —2)* + (12— 1), Vy1 > 0,52 > 0.



Example 2

J Nonconvex and Non-smooth Function

fa(1,22) = ‘? - 2‘ + |z2|— 1, dom(fs) = {x € R?* | &1 > 0,25 > 0}.
1
N\
\yl Y2
Its global minimizer is
6 xt = (05, 1)

Define an invertible map

9(x) := (x2/x1, 22),
Vr,y > 0,20 > 0,

ha(y) := f2(97 " (y)) = |ly1 — 2| + |y2 — 1], Yy > 0,92 > 0,



Example 3

O Linear Quadratic Regulator (LQR)
1 — 2ky + 3k5 — 2k5 — 2kik
2+ 355 2 L2 Vki1 € R ko < —1.

J(k1, ko) = :
(F1, kz) k2 — 1
* Not easy to see whether it is convex in the current form
* This cost function comes from an LQR instance
10 o
-2 0 0
A_[O 1]7B_|:1]9Q_127R_1

* There exists an invertible mapping

ki 2ke — k2 — 2k2
k) := Vki e R,k —1.

We get a convex function in terms of the new variable y

) = I ) = T [ !




Direct Convex Reformulation

O Direct convex reformulation (the simplest ECL; no lifting)

* Consider a continuous function J(K):D =R

Denote its epigraph as  epi~(f) :=={(K,7) e Dx R |y > J(K)}.

* Suppose there exists a smooth and invertible map & between

epi> (/) and a convex set F,

CVvVX

« and we further have (¥,7) = ®(K,7), V(K,~v) € epiz(J)

Guarantee 1: Optimization over J(x) is equivalent to a convex problem

int J(K) = int .
P?El?? ( ) (yaf}/l)réfcvxfy

Guarantee 2: Any stationary point to J(x) is globally optimal; in other

words, 0 € 9J(K") implies globally optimality



Outline

1 Extended Convex Lifting (ECL)

18



Extended Convex Lifting (ECL)

A schematic illustration of ECL:

Lifted set

Diffeomorphism CTTTTTS

J(K ! I
( ) ‘let : CVx | X gaux

s | d - I

Lifting , , convex! auxiliary
J(K); l
| Global
> K Epigraph optimality
K
Two key features
Feature 1: a lifting procedure Feature 2: an auxiliary set

19



Extended Convex Lifting (ECL)

A schematic illustration of ECL:

J(K)

epi>(J)
(Ky7)

Lifting

Lifted set
Ly ’_

00

Mpigraph

Why lifting?

For many control problems, a
direct convexification is not
possible

A lifting procedure
corresponding to Lyapunov
variables is necessary.

20



Extended Convex Lifting (ECL)

A schematic illustration of ECL:

Why auxiliary set? :
Lifted set Diffeomorphism

L x
= Allows us to isolate the Lt ’ o Fevx gaux

redundancy or symmetry in g ; convex auxiliary
the original nonconvex domain
J(K);

| - 2 - N
\\Apigraph L Ift F cvx X gaux

= Related to similarity

transformations of dynamic
policies in control
K K
= Needed for output-feedback \( s é} \(% 1 CQ)J

control problems



Formal ECL Definition

Lifted set

J(K) R e R
Lifting b o i convex i auxiliary
M
: Global
K Qﬁpigraph optir?m?ity
K
ep1>(J) £lft FCVX X gaux
(K,’)/) (Kaf)/ag) (/Ya ClaCQ)

* Consider a continuous functionJ(K): D — R
where D C R4

* Denote its strict and non-strict epigraph as
epis (1) i= {(K,7) € D x R |7 > J(K)},
epi (J) :={(K,7) e DxR |y = J(K)}.

Extended Convex Lifting
(ECL)

(We say a tuple (Lift, Fevxs Gaux, P) is an ECL \
of J(K): D =R if
= A lifted set Ls satisfying
epis, (J) C mk (L) C clepis (J) |
= A diffeomorphism ® : L — Fevx X Gaux
such that
(I)(Ka Vs 5) — (’Ya Cla CZ)

22



A special ECL

Lifted set . fer e
J(K) r Diffeomorphism .
1t

E fcvx E X ga.ux
Lifting L/‘J o E_c_onv_ef_i auxiliary
vy | | o "
= e A more intuitive condition
Global
Epigraph

optimality
K

= A lifted set Lig satisfying = A lifted set Ly satisfying

epis, (J) € 7k, (Ligr) € clepis (J) K,y (Lige) = epis (f).

Does this “simpler” lifting condition work?
=  Apparently, the condition on the left is less restrictive, and works for more general situations
= The simpler condition on the right is indeed sufficient for state-feedback control problems

= However, it is too restrictive for dynamic output-feedback control problems

23



Strict vs. Non-strict Epi-graphs

- epis (J) C 7k (L) € clepis (J) |

g gy g gy iy —— 1

» “Convexifications” of LQG and Houtput-feedback control are all based on strict LMIs:

(ATP 4+ PA
> LQG . _ BTP

(ATP + PA
> H,, : BTP

i C

What could the left condition go wrong?

PB

PB] o
PB CT
—~I DT
D —~I

[P ol

c T } > 0, trace(I') <~

<0 (bounded real lemma)

N

J

Used to construct the
lifted set Lift

= Strict LMIs only characterize the strict epigraph epis (J) = {(K,v) | v > J(K)}

* They cannot directly characterize the true cost value, i.e., non-strict epigraphs

Some classical LMI formulations are not “equivalent” convex parameterizations
for original control problems, especially in dynamic output feedback cases

24



Non-degenerate points

A ‘let S fvx X Goux Extended Convex Lifting:
I) Lifting , ‘ | convex auxiliary
\J g | = Alifted set Lin satisfying
‘ optimality epis (J) € iy (L) € clepis (J)
: = A diffeomorphism @ : Lig — Fevx X Gaux
ep1>(J) Llft ]:c_:vx X gaux such that .

(Kﬂ’)/) (Kaf)/ag) (7;<17C2) (I)(K,’)/,f) — (f)/a ClaCQ)
= By construction, some points in epiZ(J) may not be covered in the lifted set

‘ Those points will be called degenerate bad behavior (e.g., saddles)

may exist
Definition. K is called non-degenerate if (K, J(K)) € mk ~(Lis) well-behaved
25



ECL Guarantees

Lifted set Diffecomorphism  ~------ .

Elft E fcvx D gaux

| Liine , ® | convexi  auxiliary Given an Extended Convex Lifting

: J(K}? 1
\_/ \\/ Global (ﬁlft’ fcvzm gatum (I))
K Epigraph optimality
K

Guarantee 1: Guarantee 2:
Convex Reformulation Global Optimality

Optimization .J(K) is

: All non-degenerate Clarke
equivalent to a convex

problem stationary points are
inf J(K) = inf : lobally optimal
KeD () (yn’)Echxﬂy & y op

» Clarke stationary points: Generalization of stationary points to nonsmooth functions,
based on the notion of Clarke subdifferential

26



Outline

d ECLs for Optimal and Robust Control

27



Global Optimality in Control

d Optimal and Robust Control

disturbance regulated output

w(t)—> Dynamical — z(t) | -Tﬁé- bl
—> System — ») '%‘?

ult y(t) .

(t) Policy min J(K) Non-convex
control measured parametrization K Optimization
input Feedback <« output problem
Policy s.t. K = C

Main Results (informal):

1. Static state feedback: Any (Clarke) stationary points in LQR or Hinf control
are globally optimal ([Fazel et al., 2018]; [Guo & Hu, 2022]);

2. Dynamic output feedback: Any non-degenerate (Clarke) stationary points in
LQG or Hinf dynamic output control are globally optimal. )8



Linear Quadratic Regulator (LQR)

D Problem Setup disturbance regulated output
. w(t) Dynamical 2(t)
Dynamics: @(t) = Ax(t) + Bu(t) + Byw(t), 0 System y(t)
Static policies: u(t) = Kz(t) ot Fecdback L"ftsﬁi"ed
Stability: C={K e R"™"" | A+ BK is stable}
1 g T T
Performance: JuQr(K) := lim E _/ z (t)Qz(l) +u' (t)Ru(t) dt
T — 00 T 0
1 Nonconvex and smooth landscape lifted
set iffeomorphism
g

convex

29



Linear Quadratic Regulator (LQR)

J Construction of ECL
Step 1: Lifting

Ligr = {(K,7,X): X >0,(A+BK)X + X(A+BK)' + W =0,7y>Tr [(Q+ K'RK)X]}.

Step 2: Convex set
Fir ={(7,Y,X): X - 0,AX +BY + XA" +Y'B' + W =0,y > tr(QX + X 'Y'RY)}

Step 3: Diffeomorphism ®(K,v, X) = (v,KX,X), V(K,v,X) € Lig

" No auxiliary set Theorem. Any stationary point of the
= Lifted set satisfies epis (J) = 7k (LLgr) LQR cost function is globally

» All policies are non-degenerate optimal.

Under mild assumptions, LQR behaves like a strongly convex problem,
- satisfying Gradient Dominance property 30



State-feedback Robust Control

d Problem setup

Dynamics:
Static policies:
Stability:

Performance:

aj(t) = Aa:(t) —+ Bu(t) + wa(t)v i ’

u(t) = Kx(t)

C={K eR™" | A+ BK is stable} %igmh

Joo(K) := sup
lw(t)]l2<1

O Building an ECL

Step 1: Lifting

Loo i = {(K,v,P):P% 0,

/miﬂKﬂQx@)+uT@ﬂﬁdﬂdt

(A+ BK)'P+ P(A+ BK) PB, CT7

B} P —~1 0
C 0 —~1

convex

31



State-feedback Robust Control

1 Building an ECL

Step 1: Lifting (A+BK)"P + P(A+ BK) PB, CT
Lo =< (K,v,P): P =0, B} P —~1 0 [ <03,
C 0 —y1
Step 2: Convex set
( AX + XAT+BY +Y'BT B, XQ2 YTRY/?] )
R T e Q2 X 0 —1 o |=Y(
\ i RY2Y 0 0 = |

Step 3: Diffeomorphism ®(K,~,P) = (v, KP~ ' P™1), Y(K,v,P) € L.

= No auxiliary set
Theorem: Any Clarke stationary

= Lifted set satisfies mx ~(Loo) = €pis (Joo)
B points are globally optimal!

m) All policies are non-degenerate

32



Linear Quadratic Gaussian (LQG)

d Problem setup
Policy: f(t) = Ax&(t) + Bky(t)

d(®) ' System

u(t) y(t) K= (AK, Bk, CK)

o — (%] W [N

2(t) = [Rl/Qu(t)] d(t) = [U(t)] disconne.cted mult_iple globally
domain optimal points
33



Linear Quadratic Gaussian (LQG)

O Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]

Theorem. 1. An ECL for LQG exists, of which G, is the set of invertible matrices.
2. A policy K is non-degenerate if and only if it is informative in the sense that
: T
lim Ef2(t)¢(t)"]
has full rank. So any informative stationary point is globally optimal.

3. Non-degenerate policies are generic in the sense that degenerate policies
form a set of measure zero.

» Part 2 extends [Umenberger et al., 2022, Theorem 1(ii)] from Kalman filtering to LQG.

We also show that minimal stationary policies are non-degenerate, generalizing our exisiting
results in [Tang, Zheng, Li, 2023].

34



H , Output-Feedback Control

d Problem setup
Policy:  &£(t) = Ak&(t) + Byy(t)
— 2(t) u(t) = Cx&(t) + Dky(t)

d(®) ' System

u(t) y(t) K= (AKaBKaCKaDK)

nonconvex

_|_
nonsmooth

35



H, Output-Feedback Control

O Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]

Theorem. 1 Ap ECL for H ,, output-feedback control exists.

2. A policy K is non-degenerate if and only if

a) There exists a non-strict certificate P = 0  b) The block P, is invertible.

of the H ., cost.

ALK)P 4+ PA4(K) PBu(K) CIHK)
BI(K)P ~J(K)I DIK) | =0
Ca(K) Da(K) —J(K)I

Pll P12

p—
PlT2 Py

So a Clarke stationary point is globally optimal if these conditions hold.

» Physical interpretation of non-degeneracy is not as clear as LQG.

= We conjecture that non-degenerate policies for H,, output-feedback control are also generic,
with some numerical evidence, but a proof is not known yet.

36



Outline

1 Escaping degenerate saddle points

37



Degenerate Saddle points

Policy Optimization for LQG 1 Local geometry
min J(K) :
¢ b W @ W
S.t. K:(AK,BK,CK) € Crul | ~— -
Minimizer Saddle Maximizer
* Minimal (aka controllable and observable) V20 >0 Amin V2@ < 0 V2o < 0
stationary policies are non-degenerate; Amax V2 > 0
Noncritical Point (Vi # 0) Critical Points (Vi = 0)

* They are globally optimal;

* There are also other degenerate points.
& P Figure taken from Zhang et al., 2020

’ U Strict saddle points: the hessian has a strict negative
eigenvalue (i.e., escaping direction)
R _ _ _ _
X O Non-strict (high-order) saddle points: no such escaping
%0-707 direction, i.e., minimum eigenvalue is zero.

0.706

O Simple perturbed gradient descent (PGD) methods can
escape strict saddle points efficiently (e.g., Jin et al., 2017)

v Zhang, Yugian, Qing Qu, and John Wright. "From symmetry to geometry: Tractable nonconvex problems." arXiv preprint arXiv:2007.06753 (2020).



Structure of stationary points

O Theorem (informal): all bad stationary points are in the same form

( 0J (K) —0. ) If it is minimal, then it is globally
0Ak ’ a stationary point / optimal
Ikee, | T8 ot T [0 G
9Bk Bk Ak] T L - . -
dJ(K) If it is not minimal, find a minimal
\ 0Ck :0’; realization
K = Lg ZK} cC,
§(t) = Ak€(t) + Bry(?), A
u(t) = Ok&(t) The following full-order controller with any
’ stable A is also a stationary point with the
2o AK 0Ol 2 BK same LQG cost
- (O B!
R . i 0, Ck 0
u(t) = [Ck 0] &(¢), K= B A 0 } cC,
00 A

where we isolate the uncontrollable and unobservable part "



Strict saddle points

( 0J(K) p .
Ak " a stationary point The same form
0 ,Ck 0
0J (K) - RS
< Kecn :0’ > — 0 CK K: ) I A (:C:u,
OBk ‘ [BK AK] € Cn 0T A
27(K) . | )
. 8C’K )

0 Theorem (informal): Under a mild condition, choosing the diagonal stable block A
randomly leads to a strict saddle point with probability 1

A Jn(K 4 tA)
Our idea: a structural perturbation
A high-order A strict saddle point
saddle with the same LQG cost
Saddle
-0.04 -0.02 0.02 0.04 t > Aminvgip <0
/\ma.xvz'kj? >0
v" Yang Zheng*, Yue Sun*, Maryam Fazel, and Na Li. "Escaping High-order Saddles in Policy Optimization for 40

Linear Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2204.00912 (2022). *Equal contribution



Perturbed Gradient Descent

O Theorem (informal): all bad stationary points are in the same form

,_ 0 ,Ck 0 LA 1)
K=1 B¢ "A¢ 0 | €Cn
(-] : [-] A 0.8335

0.8334

O Theorem (informal): Choosing the diagonal stable block A
randomly leads to a strict saddle point with probability almost 1 Saddle
Z0.04  -0.02 0.02 0.04 7 Amin V2p < 0

)‘maxvzﬁp >0

\J

Our idea: a structural perturbation + standard

PGD
A non-optimal A strict saddle point with Standard PGD algorithm
stationary point the same LQG cost (Jin et al., 2017)
Perturbation on A Perturbation on gradients

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points efficiently. In International Conference
on Machine Learning (pp. 1724-1732). PMLR. 41



Numerical simulations

Three policy gradient algorithms
1. Vanilla gradient descentK; 1 = K; — a; VJ(K;)
2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)

3. Structural perturbation + standard PGD

10°

Example: System dynamics

—0.5 0 —1 1 11
‘4:{05 -4]’32:11]’024_3 2]
Performance weights

W=Q=15, V=R=1

VI

0 500 1000 1500 2000 2500
Iterations ¢



Numerical simulations

Three policy gradient algorithms
1. Vanilla gradient descentK; 1 = K; — a; VJ(K;)
2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)

3. Structural perturbation + standard PGD 107
Example: System dynamics ; 10~ ]
S
—0.5 0 —1 1 11 |
A:{o.s —1]’3211]’0:[_3 2l T w0
Performance weights Té
_ _ _ _ 2,
W=Q=15L,V=R=1 £ o
A point that is close to a high-order saddle with zero hessian
1077 : :
0 0 5000 10000 15000
AK,O — _0-512) BK,O — [O 01] , OK,O — [O, _001} Iterations
’ Our Algorithm Standard PGD Vanilla GD




Conclusion
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Nonconvex Policy Optimization for control

U Policy optimization in control can be nonconvex and non-smooth.

 Extended Convex Lifting (ECL) reveals benign nonconvexity.

lifted 4
set

diffeomorphism

- » F x GL,

convex

B

, " \\Aigraph

A K
Structural

d Global Optimality +
*

Global Optimality
Certificate

45



Ongoing and Future work

How to design principled local search algorithms for
nonconvex and non-smooth policy optimization?

How to establish convergence conditions and speeds?

How to deal with degenerate points in local policy
search? Avoiding saddle points with guarantees?

0 500 1000 1500 2000 2500
Iterations ¢t

Control (Non)convex
Theory Optimization

0.708 { B

1(K)

0.707 {

JLQG

0.706

0.1
Reinforcement

-0.1

: o AL
Learning By Cic

46



Thank you for your attention!

Q&A
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