Benign Nonconvex Landscapes in Optimal and Robust Control

Yang Zheng

Assistant Professor, ECE Department, UC San Diego

UCSD MAE Dynamic Systems & Controls Seminar

May 23, 2025

Scalable Optimization and Control (SOC) Lab

https://zhengy09.github.io/soclab.html

Acknowledgements

Chih-Fan (Rich) Pai UC San Diego

Yuto Watanabe UC San Diego

Yujie Tang
Peking University

Supported by NSF ECCS-2154650, CMMI-2320697, CAREER-2340713

- Zheng, Yang, Chih-Fan Pai, and Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part I: Global Optimality." arXiv preprint arXiv:2312.15332 (2023): https://arxiv.org/abs/2312.15332.
- Zheng, Yang, Chih-Fan Pai, and Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part II: Extended Convex Lifting." arXiv preprint arXiv:2406.04001 (2024): https://arxiv.org/abs/2406.04001
- Watanabe, Yuto, and Yang Zheng. "Revisiting Strong Duality, Hidden Convexity, and Gradient Dominance in the Linear Quadratic Regulator." arXiv preprint arXiv:2503.10964 (2025): https://arxiv.org/abs/2503.10964

Success of Data-driven Decision Making

- □ Data-driven decision-making for complex tasks in dynamical systems, e.g., game playing, robotic manipulation/locomotion, networked systems, ChatGPT, etc.
- □ Reinforcement learning (RL) has served as one backbone of the recent successes of data-driven decision-making.
- □ Policy optimization as one of the major workhorses of modern RL.

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; Mania et al., 2019; Fazel et al., 2018; Recht, 2019; https://chat.openai.com/

Policy Optimization for Control

■ Why policy optimization is so popular

Opportunities

- Easy-to-implement
- Scalable to high-dimensional problems
- Enable model-free search with rich observations (e.g. images)

Challenges

- Nonconvex optimization
- Lack of principled algorithms for optimality (e.g., avoiding saddles/local minimizers)
- Hard to obtain theoretical guarantees (e.g., robustness/stability, sample efficiency)

Our Focus: Optimal & Robust Control

Some Historical Background

- LMI-based convex reformulation
- Has became popular since 1980s due to global guarantees and efficient interior point solvers
- Relies on re-parameterizations (does not optimize over controller/policy directly)

• Examples: State-feedback or full-order output-feedback \mathcal{H}_{∞} / \mathcal{H}_{2} control, etc.

Policy optimization

- Has a long history in control theory
 - [Apkarian & Noll, 2006] [Saeki, 2006]
 [Apkarian et al., 2008] [Gumussoy et al., 2009] [Arzelier et al., 2011], etc.
 - HIFOO, hinfstruct
- Good empirical performance
 - Scalability, flexibility, ...
- Weak guarantees, unpopular among control theorists

Convex LMIs vs Nonconvex Policy Optimization

☐ Recent progress on non-convex policy optimization

- Favorable properties have been revealed for policy optimization in many benchmark control problems:
 - ✓ LQR [Fazel et al., 2018] [Malik et al., 2020] [Mohammad et al., 2022] [Fatkhullin & Polyak, 2021], etc.
 - ✓ LQG [Zheng, Tang & Li, 2021], [Mohammadi et al., 2021] [Zheng et al., 2022], [Ren et al., 2023]]
 - ✓ \mathcal{H}_{∞} state-feedback/output-feedback, [Guo & Hu, 2022] [Hu & Zheng, 2022]

ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS Volume 6, 2023

Review Article | Open Access

Toward a Theoretical Foundat Learning Control Policies

Bin Hu¹, Kaiqing Zhang^{2,3}, Na Li⁴, Mehran Mesbahi⁵, Maryam F

Policy Optimization in Control: Geometry and Algorithmic Implications

Shahriar Talebi^a, Yang Zheng^b, Spencer Kraisler^c, Na Li^a, Mehran Mesbahi^c

^aHarvard University, School of Engineering and Applied Sciences,
150 Western Ave, Boston, 02134, MA, US
^bUniversity of California San Diego, Department of Electrical and Computer Engineering,
9500 Gilman Drive, La Jolla, 92093, CA, US
^cUniversity of Washington, Department of Aeronautics and Astronautics,
3940 Benton Ln NE, Seattle, 98195, WA, US

This Talk

Benign Nonconvexity in Control via Extended Convex Lifting (ECL)

- ➤ Reconciles the gap between nonconvex policy optimization and LMI-based convex reformulations.
- For non-degenerate policies, all Clarke stationary points are globally optimal and there is no spurious local minimum in policy optimization.

Outline

- ☐ Problem Setup and Motivating Examples
- ☐ Extended Convex Lifting (ECL)
- ☐ ECLs for Optimal and Robust Control
- ☐ Escaping Degenerate Saddle Points

Policy Optimization in Control

System dynamics

$$\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$$

$$y(t) = Cx(t) + D_v v(t)$$

Performance signal

$$z(t) = \begin{bmatrix} Q^{1/2}x(t) \\ R^{1/2}u(t) \end{bmatrix}$$

Policy

parametrization

s.t. $K \in \mathcal{C}$

 $J(\mathsf{K})$ min Non-convex **Optimization**

$$\begin{array}{ll} \text{State} & & u(t) = \textbf{\textit{K}}x(t) \end{array}$$
 feedback

Output
$$\dot{\xi}(t) = A_{\rm K} \xi(t) + B_{\rm K} y(t)$$
 feedback
$$u(t) = C_{\rm K} \xi(t)$$

$$C = \{K : Closed-loop system is stable\}$$

problem

Nonconvexity in Policy Optimization

$$\min_{\mathsf{K}} \ J(\mathsf{K})$$
s.t. $\mathsf{K} \in \mathcal{C}$

Policy optimization is generally **nonconvex**!

The basic problem of stabilization is non-convex

A simple example: A = 0, $B = I_2$ $C = \{K \in \mathbb{R}^{2 \times 2} \mid A + BK \text{ is stable} \}$

$$K_1 = \begin{bmatrix} -1 & 2 \\ 0 & -1 \end{bmatrix} \in \mathcal{C}, \quad K_2 = \begin{bmatrix} -1 & 0 \\ 2 & -1 \end{bmatrix} \in \mathcal{C}, \qquad \frac{1}{2}(K_1 + K_2) = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \notin \mathcal{C}$$

The set of dynamic stabilizing policies is nonconvex and may even be disconnected. [Tang, Zheng, Li, 2023]

Nonconvexity in Policy Optimization

$$\min_{\mathsf{K}} J(\mathsf{K})$$

Policy optimization is generally **nonconvex!**

s.t.
$$K \in C$$

 The costs of Linear Quadratic Regulator (LQR)/LQG costs are smooth but nonconvex

Highly non-trivial to establish theoretical guarantees!

A very basic question:

When is a stationary point globally optimal?

Benign Nonconvex Landscape

Policy parametrization

$$\min_{\mathsf{K}} \ J(\mathsf{K})$$

Optimization

s.t. $K \in C$

Non-convex problem

Question: When is a stationary point globally optimal?

Answer: Any (non-degenerate) Clarke stationary points are globally optimal!

Local Structural **Stationarity** Information **Global Optimality** Certificate

Our tool: **Extended Convex** Lifting

Inspirations of Convex Reformulation

$$\min_{\mathsf{K}} J(\mathsf{K})$$

s.t.
$$K \in C$$

Non-convex Optimization problem

Our idea: Exploit LMI-based convex reformulations of control problems

They reveal the hidden convexity of policy optimization landscapes

$$\min_{K,X} \operatorname{tr} \left[(Q + K^{\mathsf{T}} R K) X \right]$$
s.t.
$$X = \operatorname{Lyap}(A + B K, W)$$

$$X \succ 0$$

$$\min_{X,Y} \operatorname{tr} \left(Q + X^{-1} Y^{\mathsf{T}} R Y \right)$$
s.t. $0 = AX + BY$ $h(y)$

$$+ XA^{\mathsf{T}} + Y^{\mathsf{T}} B^{\mathsf{T}} + W$$

$$X \succ 0$$

Example 1

■ Nonconvex and Smooth Function

Its global minimizer is

$$x^* = (0.5, 1)$$

Define an invertible map

$$g(x) := (x_2/x_1, x_2),$$

$$\forall x_1 > 0, x_2 > 0,$$

$$h_1(y) := f_1(g^{-1}(y)) = (y_1 - 2)^2 + (y_2 - 1)^2, \quad \forall y_1 > 0, y_2 > 0.$$

$$\forall y_1 > 0, y_2 > 0.$$

Example 2

■ Nonconvex and Non-smooth Function

$$f_2(x_1, x_2) = \begin{vmatrix} x_2 \\ x_1 \end{vmatrix} - 2 + \begin{vmatrix} x_2 \\ x_1 \end{vmatrix} - 1, \quad \text{dom}(f_2) = \{x \in \mathbb{R}^2 \mid x_1 > 0, x_2 > 0\}.$$

Its global minimizer is

$$x^* = (0.5, 1)$$

Define an invertible map

$$g(x) := (x_2/x_1, x_2),$$

$$\forall x_1 > 0, x_2 > 0,$$

$$h_2(y) := f_2(g^{-1}(y)) = |y_1 - 2| + |y_2 - 1|,$$

$$\forall y_1 > 0, y_2 > 0,$$

Example 3

☐ Linear Quadratic Regulator (LQR)

$$J(k_1, k_2) = \frac{1 - 2k_2 + 3k_2^2 - 2k_2^3 - 2k_1^2 k_2}{k_2^2 - 1}, \quad \forall k_1 \in \mathbb{R}, k_2 < -1.$$

- Not easy to see whether it is convex in the current form
- This cost function comes from an LQR instance

$$A = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, Q = I_2, R = 1$$

There exists an invertible mapping

$$g(k) := \left(\frac{k_1}{1 - k_2}, \frac{2k_2 - k_1^2 - 2k_2^2}{k_2^2 - 1}\right) \quad \forall k_1 \in \mathbb{R}, k_2 < -1.$$

We get a convex function in terms of the new variable y

$$h(y) := J(g^{-1}(y)) = -y_2 - 1 + y^{\mathsf{T}} \begin{bmatrix} 1 & y_1 \\ y_1 & -y_2 - 2 \end{bmatrix}^{-1} y, \qquad \forall \begin{bmatrix} 1 & y_1 \\ y_1 & -y_2 - 2 \end{bmatrix} \succ 0.$$

$$\forall k_1 \in \mathbb{R}, k_2 < -1.$$

Direct Convex Reformulation

- ☐ Direct convex reformulation (the simplest ECL; no lifting)
 - Consider a continuous function $J(\mathsf{K}): \mathcal{D} \to \mathbb{R}$. Denote its epigraph as $\operatorname{epi}_{>}(f) := \{(\mathsf{K}, \gamma) \in \mathcal{D} \times \mathbb{R} \mid \gamma \geq J(\mathsf{K})\}.$
 - Suppose there exists a smooth and invertible map Φ between ${
 m epi}_>(J)$ and a convex set ${\cal F}_{\rm cvx}$
 - and we further have $(y, \gamma) = \Phi(K, \gamma), \ \forall (K, \gamma) \in epi_{>}(J)$

Guarantee 1: Optimization over J(x) is equivalent to a convex problem $\inf_{\mathsf{K}\in\mathcal{D}}J(\mathsf{K})=\inf_{(y,\gamma)\in\mathcal{F}_{\mathrm{cvx}}}\gamma.$

Guarantee 2: Any stationary point to J(x) is globally optimal; in other words, $0 \in \partial J(K^*)$ implies globally optimality

Outline

- ☐ Problem Setup and Motivating Examples
- ☐ Extended Convex Lifting (ECL)
- ☐ ECLs for Optimal and Robust Control
- ☐ Escaping degenerate saddle points

Extended Convex Lifting (ECL)

A schematic illustration of ECL:

Two key features

Feature 1: a lifting procedure

Feature 2: an auxiliary set

Extended Convex Lifting (ECL)

A schematic illustration of ECL:

Why lifting?

- For many control problems, a direct convexification is not possible
- A lifting procedure corresponding to Lyapunov variables is necessary.

Extended Convex Lifting (ECL)

A schematic illustration of ECL:

Why auxiliary set?

- Allows us to isolate the redundancy or symmetry in the original nonconvex domain
- Related to similarity transformations of dynamic policies in control
- Needed for output-feedback control problems

Formal ECL Definition

- Consider a continuous function $J(K): \mathcal{D} \to \mathbb{R}$ where $\mathcal{D} \subseteq \mathbb{R}^d$.
- Denote its strict and non-strict epigraph as $\operatorname{epi}_{>}(J) := \{ (\mathsf{K}, \textcolor{red}{\gamma}) \in \mathcal{D} \times \mathbb{R} \mid \textcolor{red}{\gamma} > J(\mathsf{K}) \}, \\ \operatorname{epi}_{>}(J) := \{ (\mathsf{K}, \textcolor{red}{\gamma}) \in \mathcal{D} \times \mathbb{R} \mid \textcolor{red}{\gamma} \geq J(\mathsf{K}) \}.$

Extended Convex Lifting (ECL)

We say a tuple $(\mathcal{L}_{\mathrm{lft}}, \mathcal{F}_{\mathrm{cvx}}, \mathcal{G}_{\mathrm{aux}}, \Phi)$ is an ECL of $J(\mathsf{K}): \mathcal{D} \to \mathbb{R}$ if

• A lifted set \mathcal{L}_{lft} satisfying

$$\operatorname{epi}_{>}(J) \subseteq \pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) \subseteq \operatorname{cl} \operatorname{epi}_{\geq}(J)$$

• A diffeomorphism $\Phi: \mathcal{L}_{\mathrm{lft}} o \mathcal{F}_{\mathrm{cvx}} imes \mathcal{G}_{\mathrm{aux}}$ such that

$$\Phi(\mathsf{K},\gamma,\xi) = (\gamma,\zeta_1,\zeta_2)$$

A special ECL

A more intuitive condition

lacksquare A lifted set $\mathcal{L}_{ ext{lft}}$ satisfying

$$\operatorname{epi}_{>}(J) \subseteq \pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) \subseteq \operatorname{cl} \operatorname{epi}_{\geq}(J)$$

• A lifted set $\mathcal{L}_{\mathrm{lft}}$ satisfying $\pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) = \mathrm{epi}_{>}(f).$

Does this "simpler" lifting condition work?

- Apparently, the condition on the left is less restrictive, and works for more general situations
- The simpler condition on the right is indeed sufficient for state-feedback control problems
- However, it is too restrictive for dynamic output-feedback control problems

Strict vs. Non-strict Epi-graphs

$$\operatorname{epi}_{>}(J) \subseteq \pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) \subseteq \operatorname{cl} \operatorname{epi}_{\geq}(J)$$

$$\pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) = \operatorname{epi}_{\geq}(f).$$

$$\pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) = \mathrm{epi}_{\geq}(f).$$

What could the left condition go wrong?

"Convexifications" of LQG and \mathcal{H}_{∞} output-feedback control are all based on strict LMIs:

- Strict LMIs only characterize the strict epigraph $epi_{>}(J) \coloneqq \{(K, \gamma) \mid \gamma > J(K)\}$
- They cannot directly characterize the true cost value, i.e., non-strict epigraphs

Some classical LMI formulations are not "equivalent" convex parameterizations for original control problems, especially in dynamic output feedback cases

Non-degenerate points

Extended Convex Lifting:

- A lifted set $\mathcal{L}_{\mathrm{lft}}$ satisfying $\operatorname{epi}_{>}(J) \subseteq \pi_{\mathsf{K},\gamma}(\mathcal{L}_{\mathrm{lft}}) \subseteq \operatorname{cl} \operatorname{epi}_{>}(J)$
- A diffeomorphism $\Phi: \mathcal{L}_{\mathrm{lft}} \to \mathcal{F}_{\mathrm{cvx}} \times \mathcal{G}_{\mathrm{aux}}$ such that

$$\Phi(\mathsf{K},\gamma,\xi) = (\gamma,\zeta_1,\zeta_2)$$

- By construction, some points in $epi_>(J)$ may not be covered in the lifted set
 - Those points will be called **degenerate**

bad behavior (e.g., saddles) may exist

Definition. K is called **non-degenerate** if $(K, J(K)) \in \pi_{K,\gamma}(\mathcal{L}_{lft})$

well-behaved

ECL Guarantees

Guarantee 1: Convex Reformulation

 $\begin{array}{c} \text{Optimization } J(\mathsf{K}) \text{ is} \\ \text{equivalent to a convex} \\ \text{problem} \end{array}$

$$\inf_{\mathsf{K}\in\mathcal{D}} J(\mathsf{K}) = \inf_{(y,\gamma)\in\mathcal{F}_{\mathrm{cvx}}} \gamma.$$

Given an Extended Convex Lifting

$$(\mathcal{L}_{
m lft}, \mathcal{F}_{
m cvx}, \mathcal{G}_{
m aux}, \Phi)$$

Guarantee 2: Global Optimality

All non-degenerate Clarke stationary points are globally optimal

➤ Clarke stationary points: Generalization of stationary points to nonsmooth functions, based on the notion of Clarke subdifferential

Outline

- □ Problem Setup and Motivating Examples
- ☐ Extended Convex Lifting (ECL)
- ☐ ECLs for Optimal and Robust Control
- ☐ Escaping degenerate saddle points

Global Optimality in Control

Optimal and Robust Control

Main Results (informal):

- 1. Static state feedback: Any (Clarke) stationary points in LQR or Hinf control are globally optimal ([Fazel et al., 2018]; [Guo & Hu, 2022]);
- 2. Dynamic output feedback: Any non-degenerate (Clarke) stationary points in LQG or Hinf dynamic output control are globally optimal.

Linear Quadratic Regulator (LQR)

Problem setup

Performance:

 $\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t),$ Dynamics:

u(t) = Kx(t)Static policies:

 $\mathcal{C} = \{ K \in \mathbb{R}^{m \times n} \mid A + BK \text{ is stable} \}$ Stability:

 $J_{\text{LQR}}(K) := \lim_{T \to \infty} \mathbb{E} \left| \frac{1}{T} \int_0^T x^{\mathsf{T}}(t) Qx(t) + u^{\mathsf{T}}(t) Ru(t) dt \right|$

Nonconvex and smooth landscape

disturbance

u(t)

w(t)

control

input

Dynamical

System

Feedback

Policy

regulated output

 $\rightarrow z(t)$

measured

y(t)

J output

Linear Quadratic Regulator (LQR)

☐ Construction of ECL

Step 1: Lifting

$$\mathcal{L}_{LQR} := \left\{ (K, \gamma, \mathbf{X}) : X \succ 0, (A + BK)\mathbf{X} + \mathbf{X}(A + BK)^{\mathsf{T}} + W = 0, \gamma \ge \text{Tr}\left[(Q + K^{\mathsf{T}}RK)\mathbf{X} \right] \right\}.$$

Step 2: Convex set

$$\mathcal{F}_{LQR} = \left\{ (\gamma, Y, X) : X \succ 0, AX + BY + XA^{\mathsf{T}} + Y^{\mathsf{T}}B^{\mathsf{T}} + W = 0, \gamma \ge \operatorname{tr}(QX + X^{-1}Y^{\mathsf{T}}RY) \right\}$$

Step 3: Diffeomorphism $\Phi(K, \gamma, X) = (\gamma, KX, X), \quad \forall (K, \gamma, X) \in \mathcal{L}_{LQR}$

- No auxiliary set
- Lifted set satisfies $\operatorname{epi}_{>}(J) = \pi_{K,\gamma}(\mathcal{L}_{\mathtt{LQR}})$
 - → All policies are non-degenerate

Theorem. Any stationary point of the LQR cost function is globally optimal.

Under mild assumptions, LQR behaves like a strongly convex problem,

→ satisfying Gradient Dominance property

State-feedback Robust Control

□ Problem setup

Dynamics: $\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t),$

Static policies: u(t) = Kx(t)

Stability: $C = \{K \in \mathbb{R}^{m \times n} \mid A + BK \text{ is stable}\}$

□ Building an ECL

Performance:

Step 1: Lifting

$$\mathcal{L}_{\infty} := \left\{ (K, \gamma, \mathbf{P}) : P \succ 0, \begin{bmatrix} (A + BK)^{\mathsf{T}} \mathbf{P} + \mathbf{P}(A + BK) & \mathbf{P}B_w & C^{\mathsf{T}} \\ B_w^{\mathsf{T}} \mathbf{P} & -\gamma I & 0 \\ C & 0 & -\gamma I \end{bmatrix} \preceq 0 \right\},\,$$

lifted

State-feedback Robust Control

Building an ECL

Step 1: Lifting

$$\mathcal{L}_{\infty} := \left\{ (K, \gamma, \mathbf{P}) : P \succ 0, \begin{bmatrix} (A + BK)^{\mathsf{T}} \mathbf{P} + \mathbf{P}(A + BK) & \mathbf{P}B_{w} & C^{\mathsf{T}} \\ B_{w}^{\mathsf{T}} \mathbf{P} & -\gamma I & 0 \\ C & 0 & -\gamma I \end{bmatrix} \preceq 0 \right\},$$

Step 2: Convex set

$$\mathcal{F}_{\infty} = \left\{ (\gamma, Y, X) \middle| \begin{matrix} X \succ 0, \\ X \succ 0, \\ Y \in \mathbb{R}^{m \times n}, \end{matrix} \middle[\begin{matrix} AX + XA^{\mathsf{T}} + BY + Y^{\mathsf{T}}B^{\mathsf{T}} & B_w & XQ^{1/2} & Y^{\mathsf{T}}R^{1/2} \\ B_w^{\mathsf{T}} & -\gamma I & 0 & 0 \\ Q^{1/2}X & 0 & -\gamma I & 0 \\ R^{1/2}Y & 0 & 0 & -\gamma I \end{matrix} \right] \preceq 0 \right\},$$

Step 3: Diffeomorphism
$$\Phi(K, \gamma, P) = (\gamma, KP^{-1}, P^{-1}), \quad \forall (K, \gamma, P) \in \mathcal{L}_{\infty}.$$

- No auxiliary set
- Lifted set satisfies $\pi_{K,\gamma}(\mathcal{L}_{\infty}) = \operatorname{epi}_{>}(J_{\infty})$

All policies are non-degenerate

Theorem: Any Clarke stationary points are globally optimal!

Linear Quadratic Gaussian (LQG)

☐ Problem setup

Dynamics: $\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$ $y(t) = Cx(t) + D_v v(t)$

Performance: $J = \|\mathbf{T}_{zd}\|_{\mathcal{H}_2}$

$$z(t) = \begin{bmatrix} Q^{1/2}x(t) \\ R^{1/2}u(t) \end{bmatrix} \ d(t) = \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$$

Policy: $\dot{\xi}(t) = A_{\rm K} \xi(t) + B_{\rm K} y(t)$ $u(t) = C_{\rm K} \xi(t)$

$$K = (A_K, B_K, C_K)$$

multiple globally optimal points

Linear Quadratic Gaussian (LQG)

□ Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]

Theorem. 1. An ECL for LQG exists, of which $\mathcal{G}_{\mathrm{aux}}$ is the set of invertible matrices.

2. A policy K is non-degenerate if and only if it is informative in the sense that

$$\lim_{t \to \infty} \mathbb{E}\left[x(t)\xi(t)^{\mathsf{T}}\right]$$

has full rank. So any informative stationary point is globally optimal.

- 3. Non-degenerate policies are **generic** in the sense that degenerate policies form a **set of measure zero**.
- Part 2 extends [Umenberger et al., 2022, Theorem 1(ii)] from Kalman filtering to LQG.
- We also show that minimal stationary policies are non-degenerate, generalizing our exisiting results in [Tang, Zheng, Li, 2023].

\mathcal{H}_{∞} Output-Feedback Control

☐ Problem setup

Dynamics:
$$\dot{x}(t) = Ax(t) + Bu(t) + B_w w(t)$$

 $y(t) = Cx(t) + D_v v(t)$

Performance: $J = \|\mathbf{T}_{zd}\|_{\mathcal{H}_{\infty}}$

$$z(t) = \begin{bmatrix} Q^{1/2}x(t) \\ R^{1/2}u(t) \end{bmatrix} d(t) = \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$$

Policy:
$$\dot{\xi}(t) = A_{\rm K} \xi(t) + B_{\rm K} y(t)$$

$$u(t) = C_{\rm K} \xi(t) + D_{\rm K} y(t)$$

$$\mathsf{K} = (A_\mathsf{K}, B_\mathsf{K}, C_\mathsf{K}, D_\mathsf{K})$$

\mathcal{H}_{∞} Output-Feedback Control

☐ Construction of the ECL: Based on the convexification proposed in [Scherer et al., 1997]

Theorem. 1. An ECL for \mathcal{H}_{∞} output-feedback control exists.

- 2. A policy K is non-degenerate if and only if
 - a) There exists a non-strict certificate $P \succeq 0$ b) The block P_{12} is invertible. of the \mathcal{H}_{∞} cost.

$$\begin{bmatrix} A_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P + PA_{\mathrm{cl}}(\mathsf{K}) & PB_{\mathrm{cl}}(\mathsf{K}) & C_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ B_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K})P & -J(\mathsf{K})I & D_{\mathrm{cl}}^{\mathsf{T}}(\mathsf{K}) \\ C_{\mathrm{cl}}(\mathsf{K}) & D_{\mathrm{cl}}(\mathsf{K}) & -J(\mathsf{K})I \end{bmatrix} \preceq 0$$

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12}^\mathsf{T} & P_{22} \end{bmatrix}$$

So a Clarke stationary point is globally optimal if these conditions hold.

- Physical interpretation of non-degeneracy is not as clear as LQG.
- We conjecture that non-degenerate policies for \mathcal{H}_{∞} output-feedback control are also generic, with some numerical evidence, but a proof is not known yet.

Outline

- □ Problem Setup and Motivating Examples
- ☐ Extended Convex Lifting (ECL)
- ☐ ECLs for Optimal and Robust Control
- ☐ Escaping degenerate saddle points

Degenerate Saddle points

Policy Optimization for LQG

$$\min_{\mathsf{K}} J(\mathsf{K})$$

s.t.
$$K = (A_K, B_K, C_K) \in \mathcal{C}_{\text{full}}$$

- Minimal (aka controllable and observable) stationary policies are non-degenerate;
- They are globally optimal;
- There are also other degenerate points.

☐ Local geometry

Figure taken from Zhang et al., 2020

- □ Strict saddle points: the hessian has a strict negative eigenvalue (i.e., escaping direction)
- □ Non-strict (high-order) saddle points: no such escaping direction, i.e., minimum eigenvalue is zero.
- □ Simple perturbed gradient descent (PGD) methods can escape strict saddle points efficiently (e.g., Jin et al., 2017)

Structure of stationary points

☐ Theorem (informal): all bad stationary points are in the same form

$$\left\{ \mathsf{K} \in \mathcal{C}_n \, \middle| \, \frac{\partial J(\mathsf{K})}{\partial A_\mathsf{K}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_\mathsf{K}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_\mathsf{K}} = 0, \right\}$$
 a stationary point
$$\mathsf{K} = \begin{bmatrix} 0 & C_\mathsf{K} \\ B_\mathsf{K} & A_\mathsf{K} \end{bmatrix} \in \mathcal{C}_n$$

$$\mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathcal{C}_n$$

If it is minimal, then it is globally optimal

$$\hat{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_{\mathsf{K}} \\ \hat{B}_{\mathsf{K}} & \hat{A}_{\mathsf{K}} \end{bmatrix} \in \mathcal{C}_q$$

The following full-order controller with any stable Λ is also a stationary point with the same LQG cost

$$\tilde{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_{\mathsf{K}} & 0 \\ -\hat{B}_{\mathsf{K}} & \hat{A}_{\mathsf{K}} & 0 \\ 0 & 0 & \Lambda \end{bmatrix} \in \mathcal{C}_n$$

$$\dot{\xi}(t) = A_{\mathsf{K}}\xi(t) + B_{\mathsf{K}}y(t),$$

$$u(t) = C_{\mathsf{K}}\xi(t),$$

$$\dot{\hat{\xi}}(t) = \begin{bmatrix} \hat{A}_{\mathsf{K}} & 0 \\ 0 & \mathbf{\Lambda} \end{bmatrix} \hat{\xi}(t) + \begin{bmatrix} \hat{B}_{\mathsf{K}} \\ 0 \end{bmatrix} y(t),$$

$$u(t) = \begin{bmatrix} \hat{C}_{\mathsf{K}} & 0 \end{bmatrix} \hat{\xi}(t),$$

where we isolate the uncontrollable and unobservable part

Strict saddle points

$$\begin{cases} \mathsf{K} \in \mathcal{C}_n \middle| \frac{\partial J(\mathsf{K})}{\partial A_\mathsf{K}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_\mathsf{K}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_\mathsf{K}} = 0, \end{cases}$$

a stationary point

$$\mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathcal{C}_{n}$$

The same form

 \Box Theorem (informal): Under a mild condition, choosing the diagonal stable block Λ randomly leads to a strict saddle point with probability 1

Our idea: a structural perturbation

A high-order saddle

A strict saddle point with the same LQG cost

✓ Yang Zheng*, Yue Sun*, Maryam Fazel, and Na Li. "Escaping High-order Saddles in Policy Optimization for Linear Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2204.00912 (2022). *Equal contribution

Perturbed Gradient Descent

☐ Theorem (informal): all bad stationary points are in the same form

$$\tilde{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_{\mathsf{K}} & 0 \\ -\tilde{B}_{\mathsf{K}} & \hat{A}_{\mathsf{K}} & 0 \\ 0 & 0 & \Lambda \end{bmatrix} \in \mathcal{C}_n$$

lacktriangledown Theorem (informal): Choosing the diagonal stable block Λ randomly leads to a strict saddle point with probability almost 1

Our idea: a structural perturbation + standard PGD

A non-optimal stationary point

A strict saddle point with the same LQG cost

Standard PGD algorithm (Jin et al., 2017)

Perturbation on A

Perturbation on gradients

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points efficiently. In *International Conference on Machine Learning* (pp. 1724-1732). PMLR.

Numerical simulations

Three policy gradient algorithms

- 1. Vanilla gradient descent $K_{i+1} = K_i \alpha_i \nabla J(K_i)$
- 2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)
- 3. Structural perturbation + standard PGD

Example: System dynamics

$$A = \begin{bmatrix} -0.5 & 0 \\ 0.5 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} -\frac{1}{6} & \frac{11}{12} \end{bmatrix},$$

Performance weights

$$W = Q = I_2, \ V = R = 1$$

Numerical simulations

Three policy gradient algorithms

- 1. Vanilla gradient descent $K_{i+1} = K_i \alpha_i \nabla J(K_i)$
- 2. Standard PGD algorithm (adding a small random perturbation on iterates; Jin et al., 2017;)
- 3. Structural perturbation + standard PGD

Example: System dynamics

$$A = \begin{bmatrix} -0.5 & 0 \\ 0.5 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} -\frac{1}{6} & \frac{11}{12} \end{bmatrix},$$

Performance weights

$$W = Q = I_2, \ V = R = 1$$

A point that is close to a high-order saddle with zero hessian

$$A_{K,0} = -0.5I_2, \ B_{K,0} = \begin{bmatrix} 0\\0.01 \end{bmatrix}, \ C_{K,0} = [0, -0.01]$$

Conclusion

Nonconvex Policy Optimization for control

- □ Policy optimization in control can be **nonconvex and non-smooth.**
- Extended Convex Lifting (ECL) reveals benign nonconvexity.

Certificate

Ongoing and Future work

- ☐ How to design principled local search algorithms for nonconvex and non-smooth policy optimization?
- How to establish convergence conditions and speeds?
- How to deal with degenerate points in local policy search? Avoiding saddle points with guarantees?

Thank you for your attention!

Q & A

- Zheng, Yang, Chih-Fan Pai, and Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part I: Global Optimality." arXiv preprint arXiv:2312.15332 (2023): https://arxiv.org/abs/2312.15332.
- Zheng, Yang, Chih-Fan Pai, and Yujie Tang. "Benign Nonconvex Landscapes in Optimal and Robust Control, Part II: Extended Convex Lifting." arXiv preprint arXiv:2406.04001 (2024): https://arxiv.org/abs/2406.04001
- Watanabe, Yuto, and Yang Zheng. "Revisiting Strong Duality, Hidden Convexity, and Gradient Dominance in the Linear Quadratic Regulator." arXiv preprint arXiv:2503.10964 (2025): https://arxiv.org/abs/2503.10964