Chordal Graphs, Semidefinite Optimization, and Sum-of-squares Matrices

Yang Zheng

Assistant Professor, ECE, UC San Diego Scalable Optimization and Control (SOC) Lab

UCSD Optimization and Data Science Seminar October 27, 2021

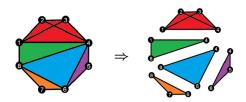
Acknowledgments

Imperial College London

Outline

- 1 Introduction: Chordal graphs and Matrix decomposition
- Part I Decomposition in sparse semidefinite optimization
- 3 Part II Decomposition in PSD polynomial matrices
- Conclusion

Introduction: Chordal graphs and Matrix decomposition



Matrix decomposition and chordal graphs

Matrix decomposition:

A simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

• This is true for any PSD matrix with such pattern, i.e., sparse cone decomposition

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0}$$

where * denotes a real scalar number (or block matrix).

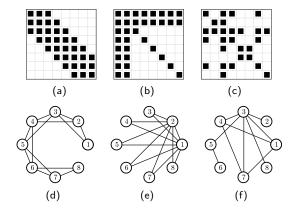
Benefits:

ullet Reduce computational complexity, and thus improve efficiency! $(3 \times 3 \rightarrow 2 \times 2)$

Matrix decomposition and chordal graphs

Matrix decomposition:

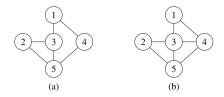
Many other patterns admit similar decompositions, e.g.



• They can be commonly characterized by chordal graphs.

Chordal graphs

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called *chordal* if every cycle of length greater than three has a chord.

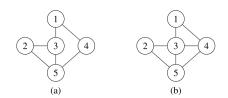


Notation: (Vandenberghe & Andersen, 2014)

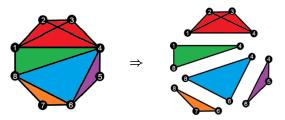
- Chordal extension: Any non-chordal graph can be chordal extended;
- Maximal clique: A clique is a set of nodes that induces a complete subgraph;
- Clique decomposition: A chordal graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ can be decomposed into a set of maximal cliques $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_t\}$.

Clique decomposition

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called *chordal* if every cycle of length greater than three has a chord.



Clique decomposition:



Sparse matrices

Sparse positive semidefinite (PSD) matrices

$$\mathbb{S}^{n}(\mathcal{E},0) = \{ X \in \mathbb{S}^{n} \mid X_{ij} = X_{ji} = 0, \forall (i,j) \notin \mathcal{E} \},$$

$$\mathbb{S}^{n}_{+}(\mathcal{E},0) = \{ X \in \mathbb{S}^{n}(\mathcal{E},0) \mid X \succeq 0 \}.$$

Positive semidefinite completable matrices

$$\mathbb{S}^{n}(\mathcal{E},?) = \{ X \in \mathbb{S}^{n} \mid X_{ij} = X_{ji}, \text{ given if } (i,j) \in \mathcal{E} \},$$

$$\mathbb{S}^{n}_{+}(\mathcal{E},?) = \{ X \in \mathbb{S}^{n}(\mathcal{E},?) \mid \exists M \succeq 0, M_{ij} = X_{ij}, \forall (i,j) \in \mathcal{E} \}.$$

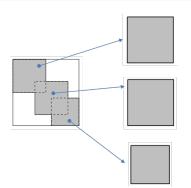
 $\mathbb{S}^n_+(\mathcal{E},0)$ and $\mathbb{S}^n_+(\mathcal{E},?)$ are dual to each other.

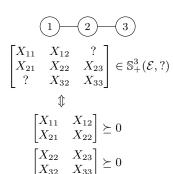
Two matrix decomposition theorems

Clique decomposition for PSD completable matrices (Grone, et al., 1984)

Let $\mathcal{G}(\mathcal{V},\mathcal{E})$ be a chordal graph with maximal cliques $\{\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_p\}$. Then,

$$X \in \mathbb{S}^n_+(\mathcal{E},?) \Leftrightarrow E_{\mathcal{C}_k} X E_{\mathcal{C}_k}^{\mathsf{T}} \in \mathbb{S}^{|\mathcal{C}_k|}_+, \qquad k = 1, \dots, p.$$





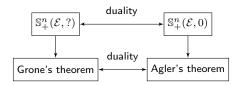
Two matrix decomposition theorems

Clique decomposition for PSD matrices (Agler, Helton, McCullough, & Rodman, 1988; Griewank and Toint, 1984)

Let $\mathcal{G}(\mathcal{V},\mathcal{E})$ be a chordal graph with maximal cliques $\{\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_p\}$. Then,

$$Z \in \mathbb{S}^n_+(\mathcal{E}, 0) \Leftrightarrow Z = \sum_{k=1}^p E_{\mathcal{C}_k}^\mathsf{T} Z_k E_{\mathcal{C}_k}, \ Z_k \in \mathbb{S}^{|\mathcal{C}_k|}_+$$

Sparse Cone Decomposition



A growing number of applications

Control, machine learning, relaxation of QCQP, fluid dynamics, and beyond

Area	Topic	References
Control	Linear system analysis	Andersen et al. (2014b); Deroo et al. (2015); Mason & Pa- pachristodoulou (2014); Pakazad et al. (2017b); Zheng et al. (2018c)
	Decentralized control	Deroo et al. (2014); Heinke et al. (2020); Zheng et al. (2020); Zheng et al. (2018d)
	Nonlinear system analysis	Schlosser & Korda (2020); Tacchi et al. (2019a); Zheng et al. (2019a); Mason (2015, Chapter 5)
	Model predictive control	Ahmadi et al. (2019); Hansson & Pakazad (2018)
Machine learning	Verification of neural networks	Batten et al. (2021); Dvijotham et al. (2020); Newton & Papachristodoulou (2021); Zhang (2020)
	Lipschitz constant estimation	Chen et al. (2020b); Latorre et al. (2020)
	Training of support vector machine Geometric perception & coarsening	Andersen & Vandenberghe (2010) Chen et al. (2020a); Liu et al. (2019); Yang & Carlone (2020)
	Covariance selection	Dahl et al. (2008); Zhang et al. (2018)
	Subspace clustering	Miller et al. (2009), Eliang et al. (2019)
Relaxation of	Sensor network locations	Jing et al. (2019); Kim et al. (2009); Nie (2009)
QCQP and POPs	Max-Cut problem	Andersen et al. (2010a); Garstka et al. (2019); Zheng et al. (2020)
	Optimal power flow (OPF)	Andersen et al. (2014a); Dall'Anese et al. (2013); Jabr (2011); Jiang (2017); Molzahn & Hiskens (2014); Molzahn et al. (2013)
	State estimation in power systems	Weng et al. (2013); Zhang et al. (2017); Zhu & Giannakis (2014)
Others	Fluid dynamics	Arslan et al. (2021); Fantuzzi et al. (2018)
	Partial differential equations	Mevissen (2010); Mevissen et al. (2008, 2011, 2009)
	Robust quadratic optimization	Andersen et al. (2010b)
	Binary signal recovery	Fosson & Abuabiah (2019)
	Solving polynomial systems	Cifuentes & Parrilo (2016, 2017); Li et al. (2021); Mou et al. (2021); Tacchi et al. (2019b)
	Other problems	Baltean-Lugojan et al. (2019); Jeyakumar et al. (2016); Madani et al. (2017b); Pakazad et al. (2017a); Yang & Deng (2020)

This talk

Two survey papers

• Part I: Decomposition in sparse semidefinite optimization

- Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. Mathematical Programming, 180(1), 489-532.
- Part II: Decomposition in polynomial matrix inequalities (PMIs)
 - Zheng, Y., & Fantuzzi, G. (2021). Sum-of-squares chordal decomposition of polynomial matrix inequalities. Mathematical Programming (accepted).

Part I: Decomposition in sparse semidefinite optimization

Semidefinite programs (SDPs)

$$\begin{array}{ll} \min & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, i = 1, \ldots, m, \\ & X \succeq 0. \end{array} \qquad \begin{array}{ll} \max_{y, \ Z} & \langle b, y \rangle \\ \text{subject to} & Z + \sum_{i=1}^m A_i \ y_i = C, \\ & Z \succeq 0. \end{array}$$

where $X \succeq 0$ means X is positive semidefinite.

- Applications: Control theory, fluid dynamics, polynomial optimization, etc.
- Interior-point solvers: SeDuMi, SDPA, SDPT3, MOSEK (suitable for small and medium-sized problems); Modelling package: YALMIP, CVX
- Large-scale cases: it is important to exploit the inherent structure
 - Low rank;
 - Algebraic symmetry;
 - Chordal sparsity
 - Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Burer 2003; Andersen et al., 2010.
 - First-order methods: Madani et al., 2015; Sun, Andersen, and Vandenberghe, 2014.

Aggregate sparsity pattern of matrices

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A_1 = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}$$

Primal SDP

Dual SDP

Apply the clique decomposition on $\mathbb{S}^3_+(\mathcal{E},?)$ and $\mathbb{S}^3_+(\mathcal{E},0)$

• Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010; Madani et al., 2015; Sun, Andersen, and Vandenberghe, 2014.

Cone decomposition of sparse SDPs

- A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;
- Our idea: consensus variables ⇒ decouple the coupling constraints;

Decomposed SDPs for operator-splitting algorithms

Primal decomposed SDP

$$\min_{X,X_k} \quad \langle C,X \rangle \qquad \qquad \max_{y,Z_k}$$
 s.t. $\langle A_i,X \rangle = b_i, \qquad i=1,\ldots,m,$
$$X_k = E_{\mathcal{C}_k} X E_{\mathcal{C}_k}^\mathsf{T}, k=1,\ldots,p,$$

$$X_k \in \mathbb{S}_+^{|\mathcal{C}_k|}, \qquad k=1,\ldots,p.$$

Dual decomposed SDP

$$\begin{aligned} \max_{y,Z_k,V_k} & \langle b,y \rangle \\ \text{s.t.} & \sum_{i=1}^m A_i \, y_i + \sum_{k=1}^p E_{\mathcal{C}_k}^\mathsf{T} V_k E_{\mathcal{C}_k} = C, \\ & Z_k - V_k = 0, \; k = 1, \dots, p, \\ & Z_k \in \mathbb{S}_+^{|\mathcal{C}_k|}, \quad k = 1, \dots, p. \end{aligned}$$

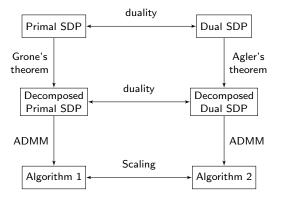
- A set of slack consensus variables has been introduced:
- The slack variables allow one to separate the conic and the affine constraints when using operator-splitting algorithms ⇒ fast iterations:

projection on affine space + parallel projections on multiple small PSD cones $\mathbb{S}_+^{|\mathcal{C}_k|}, k=1,\dots,p$

ADMM for primal and dual decomposed **SDPs**

Equivalence between the primal and dual cases

- ADMM steps in the dual form are scaled versions of those in the primal form.
- Extension to the homogeneous self-dual embedding exists.



Both algorithms only require conic projections onto small PSD cones. Complexity depends on the largest maximal cliques, instead of the original dimension!

Comparison with other first-order algorithms

Key difference: How to decouple the coupling constraints

Table 1: Comparison of first-order algorithms for solving SDPs. "Chordal Sparsity": whether the algorithm exploits chordal sparsity; "SDP Type": the types of SDP problems the algorithm considers; "Algorithm": the underlying first-order algorithm; "infeas./unbounded": whether the algorithm can detect infeasible or unbounded cases; "Solver": whether the code is open-source.

Reference	Chordal Sparsity	SDP Type	Algorithm	Infeas./ Unbounded	Solver
Wen et al. (2010)	Wen et al. (2010)		ADMM	×	Х
Zhao et al. (2010)	X	(3.2)	Augm. Lagrang.	×	SDPNAL
O'Donoghue et al. (2016)	X	(3.1)- (3.2)	ADMM	✓	SCS
Yurtsever et al. (2021)	X	$(3.1)^1$	SketchyCGAL	×	CGAL
Lu et al. (2007)	✓	(3.1)	Mirror-Prox	×	Х
Lam et al. (2012)	✓	OPF^2	Primal-dual	×	×
Dall'Anese et al. (2013)	✓	OPF^2	ADMM	×	×
Sun et al. (2014)	✓	Special ³	Gradient proj.	×	×
Sun & Vandenberghe (2015)	✓	(3.1)- (3.2)	Spingarn	×	×
Kalbat & Lavaei (2015)	✓	Special ⁴	ADMM	×	×
Madani et al. (2017a)	✓	$General^5$	ADMM	×	×
Zheng et al. (2020)	✓	(3.1)- (3.2)	ADMM	✓	CDCS
Garstka et al. (2019)	✓	Quad. SDP^6	ADMM	✓	COSMO

Note: 1. It requires an explicit trace constraint on X; 2. Special SDPs from the optimal power flow (OPF) problem; 3. Special SDPs with decoupled affine constraints; 5. General SDPs with inequality constraints; 6. A dual SDP (3.2) with a guadratic objective function.

CDCS

Cone decomposition conic solver

- An open source MATLAB solver for sparse conic programs (Julia interface);
- CDCS supports constraints on the following cones:
 - Free variables
 - non-negative orthant
 - second-order cone
 - the positive semidefinite cone.
- Input-output format: SeDuMi; Interface via YALMIP, SOSTOOLS.
- Syntax: [x,y,z,info] = cdcs(At,b,c,K,opts);

Download from https://github.com/OxfordControl/CDCS

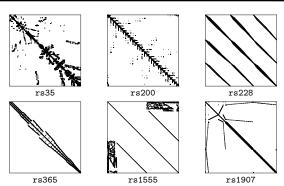
Numerical comparison

- ullet SeDuMi (interior-point solver): default parameters, and low-accuracy solution 10^{-3}
- SCS (first-order solver)
- CDCS and SCS: stopping condition 10^{-3} (max. iterations 2000)
- All simulations were run on a PC with a 2.8 GHz Intel Core i7 CPU and 8GB of RAM.

Large-scale sparse SDPs

Instances from Andersen, Dahl, Vandenberghe, 2010

	rs35	rs200	rs228	rs365	rs1555	rs1907
Original cone size, n	2003	3025	1919	4704	7479	5357
Affine constraints, m	200	200	200	200	200	200
Number of cliques, p	588	1635	783	1244	6912	611
Maximum clique size	418	102	92	322	187	285
Minimum clique size	5	4	3	6	2	7



Part I - Decomposition in sparse semidefinite optimization

Large-scale sparse SDPs: Numerical results

		rs35			rs200	
	Time (s)	# Iter.	Objective	Time (s)	# Iter.	Objective
SeDuMi (high) SeDuMi (low)	1 391 986	17 11	25.33 25.34	4 451 2 223	17 8	99.74 99.73
SCS (direct) CDCS-primal CDCS-dual CDCS-hsde	2 378 370 272 208	†2 000 379 245 198	25.08 25.27 25.53 25.64	9697 159 103 54	†2 000 577 353 214	81.87 99.61 99.72 99.77
		rs228			rs365	
	Time (s)	# Iter.	Objective	Time (s)	# Iter.	Objective
SeDuMi (high) SeDuMi (low)	1 655 809	21 10	64.71 64.80	***	*** ***	*** ***
SCS (direct) CDCS-primal CDCS-dual CDCS-hsde	2 338 94 84 38	† _{2 000} 400 341 165	62.06 64.65 64.76 65.02	34 497 321 240 151	† _{2 000} 401 265 175	44.02 63.37 63.69 63.75
		rs1555			rs1907	
	Time (s)	# Iter.	Objective	Time (s)	# Iter.	Objective
SeDuMi (high) SeDuMi (low)	***	***	***	***	***	*** ***
SCS (direct)	139 314	† ₂₀₀₀	34.20	50 047	† ₂₀₀₀	45.89
CDCS-primal CDCS-dual CDCS-hsde	1 721 317 361	† _{2 000} 317 448	61.22 69.54 66.38	330 271 190	349 252 187	62.87 63.30 63.15
*** .1 1.1	11 11		P. 1			

^{***:} the problem could not be solved due to memory limitations.

t: maximum number of iterations reached.

Large-scale sparse SDPs: Numerical results

Average CPU time per iteration

	rs35	rs200	rs228	rs365	rs1555	rs1907
SCS (direct)	1.188	4.847	1.169	17.250	69.590	25.240
CDCS-primal CDCS-dual	0.944 1.064	0.258 0.263	0.224 0.232	0.715 0.774	0.828 0.791	0.833 0.920
CDCS-hsde	1.005	0.222	0.212	0.733	0.665	0.891

- $20 \times, 21 \times, 26 \times$, and $75 \times$ faster than SCS, respectively, for problems rs200, rs365, rs1907, and rs1555.
- The computational benefit comes form the cone decomposition (projections onto small PSD cones)
- CDCS enables us to solve large, sparse conic problems with moderate accuracy that are beyond the reach of standard interior-point and/or other first-order methods

The conic projections in all Algorithms require $\mathcal{O}(\sum_{k=1}^p |\mathcal{C}_k|^3)$ flops. Complexity is dominated by the largest maximal clique!

Part II: Decomposition in PSD polynomial matrices

— sparsity-exploiting versions of the Hilbert-Artin, Reznick, Putinar, and
Putinar-Vasilescu Positivstellensätze.

Positive (semi)-definite polynomial matrices

• Recall the simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

• How about positive (semi)-definite polynomial matrices?

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & 0 \\ p_{21}(x) & p_{22}(x) & p_{23}(x) \\ 0 & p_{32}(x) & p_{33}(x) \end{bmatrix} \succeq 0, \quad \forall x \in \mathcal{K}$$

$$\mathcal{K} = \mathbb{R}^n, \text{ or } \mathcal{K} = \{x \in \mathbb{R}^n \mid q_i(x) > 0, i = 1, \dots, m\}$$

 Point-wise: the decomposition still holds, but can it be represented by polynomials or even better, by SOS matrices?

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succ 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succ 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succ 0}, \quad \forall x \in \mathcal{K}$$

Sum-of-squares (SOS) matrices

Consider a symmetric matrix-valued polynomial

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & \dots & p_{1r}(x) \\ p_{21}(x) & p_{22}(x) & \dots & p_{2r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ p_{r1}(x) & p_{r2}(x) & \dots & p_{rr}(x) \end{bmatrix} \succeq 0, \forall x \in \mathbb{R}^n.$$

- The problem of checking whether P(x) is positive semidefinite is NP-hard in general (even with r=1, d=4).
- ullet SOS representation: We call P(x) is an SOS matrix if

$$p(x,y) = y^{\mathsf{T}} P(x) y$$
 is SOS in $[x;y]$

A polynomial q(x) is SOS if it can be written as $q(x) = \sum_{i=1}^{m} f_i(x)^2$.

• SDP characterization (Parrilo et al.): P(x) is an SOS matrix if and only if there exists $Q \succeq 0$, such that

$$P(x) = (I_r \otimes v_d(x))^{\mathsf{T}} Q(I_r \otimes v_d(x)).$$

where Q is called the Gram matrix, $v_d(x)$ is the standard monomial basis.

Naive extension does not work

Negative result

There exists an n-variate $r \times r$ polynomial matrix P(x) with chordal sparsity \mathcal{G} that is strictly positive definite for all $x \in \mathbb{R}^n$, but cannot be written as the decomposition form with positive semidefinite polynomial matrices $S_k(x)$.

• Example:

$$P(x) = \begin{bmatrix} k+1+x^2 & x+x^2 & 0\\ x+x^2 & k+2x^2 & x-x^2\\ 0 & x-x^2 & k+1+x^2 \end{bmatrix} = \begin{bmatrix} x & 1\\ x & x\\ 1 & -x \end{bmatrix} \begin{bmatrix} x & x & 1\\ 1 & x & -x \end{bmatrix} + kI_3$$

It is not difficult to show that

$$P(x) = \underbrace{\begin{bmatrix} a(x) & b(x) & 0 \\ b(x) & c(x) & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\geq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & d(x) & e(x) \\ 0 & e(x) & f(x) \end{bmatrix}}_{\geq 0},$$

fails to exist when $0 \le k < 2$.

• P(x) is strictly positive definite if 0 < k < 2.

Hilbert-Artin theorem

Sparse matrix version of the Hilbert–Artin theorem

Let P(x) be an $m \times m$ positive semidefinite polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_1, \dots, \mathcal{C}_t$. There exist an SOS polynomial $\sigma(x)$ and SOS matrices $S_k(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$\sigma(x)P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

• **Example:** $\sigma(x) = 1 + k + x^2$ suffices for the previous example

$$P(x) = \begin{bmatrix} k+1+x^2 & x+x^2 & 0\\ x+x^2 & \frac{(1+x)^2x^2}{1+k+x^2} & 0\\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0\\ 0 & \frac{k^2+k+3kx^2+(1-x)^2x^2}{1+k+x^2} & x-x^2\\ 0 & x-x^2 & k+1+x^2 \end{bmatrix}$$

• PSD polynomial matrices are equivalent to SOS matrices when n=1.

Reznick's Positivstellensatz

Sparse matrix version of Reznick's Positivstellensatz

Let P(x) be an $m \times m$ homogeneous polynomial matrix whose sparsity graph is chordal and has maximal cliques $\mathcal{C}_1, \dots, \mathcal{C}_t$. If P is strictly positive definite on $\mathbb{R}^n \setminus \{0\}$, there exist an integer $\nu \geq 0$ and homogeneous SOS matrices $S_k(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$||x||^{2\nu}P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

• Corollary: If P is strictly positive definite on \mathbb{R}^n and its highest-degree homogeneous part $\sum_{|\alpha|=2d} P_{\alpha} x^{\alpha}$ is strictly positive definite on $\mathbb{R}^n \setminus \{0\}$, there exist an integer $\nu \geq 0$ and SOS matrices $S_k(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$(1 + ||x||^2)^{\nu} P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

Reznick's Positivstellensatz

• Non-trivial example: Let $q(x)=x_1^2x_2^4+x_1^4x_2^2-3x_1^2x_2^2+1$ be the Motzkin polynomial, and

$$P(x) = \begin{bmatrix} 0.01(1 + x_1^6 + x_2^6) + q(x) & -0.01x_1 & 0\\ -0.01x_1 & x_1^6 + x_2^6 + 1 & -x_2\\ 0 & -x_2 & x_1^6 + x_2^6 + 1 \end{bmatrix}.$$

- P(x) is is strictly positive definite on \mathbb{R}^2 , but is not SOS (since $\varepsilon(1+x_1^6+x_2^6)+q(x)$ is not SOS unless $\varepsilon\gtrsim 0.01006$ [Laurent 2009, Example 6.25]).
- Our theorem guarantees the following decomposition exists

$$(1 + ||x||^2)^{\nu} P(x) = E_{\mathcal{C}_1}^{\mathsf{T}} S_1(x) E_{\mathcal{C}_1} + E_{\mathcal{C}_2}^{\mathsf{T}} S_2(x) E_{\mathcal{C}_2}.$$

ullet It suffices to use u=1 and SOS matrices

$$S_1(x) = \begin{bmatrix} (1 + ||x||^2)q(x) & 0 \\ 0 & 0 \end{bmatrix} + \frac{1 + ||x||^2}{100} \begin{bmatrix} 1 + x_1^6 + x_2^6 & -x_1 \\ -x_1 & 100x_1^2 \end{bmatrix},$$

$$S_2(x) = (1 + ||x||^2) \begin{bmatrix} 1 - x_1^2 + x_1^6 + x_2^6 & -x_2 \\ -x_2 & 1 + x_1^6 + x_2^6 \end{bmatrix}.$$

Putinar's Positivstellensatz

Consider
$$P(x) \succ 0, \forall x \in \mathcal{K}$$
 with $\mathcal{K} = \{x \in \mathbb{R}^n \mid g_i(x) \geq 0, i = 1, \dots, m\}$, and

$$\sigma_0(x) + g_1(x)\sigma_1(x) + \dots + g_q(x)\sigma_q(x) = r^2 - ||x||^2.$$

Sparse matrix version of Putinar's Positivstellensatz

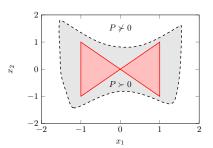
let P(x) be a polynomial matrix whose sparsity graph is chordal and has maximal cliques C_1, \ldots, C_t . If P is strictly positive definite on \mathcal{K} (satisfying the Archimedean condition), there exist SOS matrices $S_{i,k}(x)$ of size $|\mathcal{C}_k| \times |\mathcal{C}_k|$ such that

$$P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} \left(S_{0,k}(x) + \sum_{j=1}^{q} g_j(x) S_{j,k}(x) \right) E_{\mathcal{C}_k}.$$

• Example: Consider $K = \{x \in \mathbb{R}^2 : g_1(x) := 1 - x_1^2 \ge 0, g_2(x) := x_1^2 - x_2^2 \ge 0\}$, and

$$P(x) := \begin{bmatrix} 1 + 2x_1^2 - x_1^4 & x_1 + x_1x_2 - x_1^3 & 0 \\ x_1 + x_1x_2 - x_1^3 & 3 + 4x_1^2 - 3x_2^2 & 2x_1^2x_2 - x_1x_2 - 2x_2^3 \\ 0 & 2x_1^2x_2 - x_1x_2 - 2x_2^3 & 1 + x_2^2 + x_1^2x_2^2 - x_2^4 \end{bmatrix}$$

Putinar's Positivstellensatz



• It guarantees the following decomposition holds for some SOS matrices $S_{i,j}(x)$

$$P(x) = \sum_{c}^{2} E_{c_{k}}^{\mathsf{T}} \left[S_{0,k}(x) + g_{1}(x) S_{1,k}(x) + g_{2}(x) S_{2,k}(x) \right] E_{c_{k}}$$

Possible choices are

$$S_{0,1}(x) = I_2 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \end{bmatrix}$$

$$S_{1,1}(x) = \begin{bmatrix} x_1 \\ 1 \end{bmatrix} \begin{bmatrix} x_1 & 1 \end{bmatrix}$$

$$S_{0,2}(x) = I_2 + \begin{bmatrix} x_1 \\ -x_2 \end{bmatrix} \begin{bmatrix} x_1 & -x_2 \end{bmatrix}$$

$$S_{2,2}(x) = \begin{bmatrix} 2 \\ x_2 \end{bmatrix} \begin{bmatrix} 2 & x_2 \end{bmatrix}.$$

Application to robust semidefinite optimization

Consider a robust SDP program

$$\begin{split} \boldsymbol{B}^* &:= \inf_{\boldsymbol{\lambda} \in \mathbb{R}^\ell} \quad \boldsymbol{b}^\mathsf{T} \boldsymbol{\lambda} \\ \text{subject to} \quad P(\boldsymbol{x}, \boldsymbol{\lambda}) &:= P_0(\boldsymbol{x}) - \sum_{i=1}^\ell P_i(\boldsymbol{x}) \lambda_i \succeq 0 \quad \forall \boldsymbol{x} \in \mathcal{K}, \end{split}$$

$$\begin{split} B^*_{d,\nu} &:= \inf_{\lambda,\,S_{j,k}} \quad b^\mathsf{T} \lambda \\ \text{subject to} \quad & \sigma(x)^\nu P(x,\lambda) = \sum_{k=1}^t E_{\mathcal{C}_k}^\mathsf{T} \bigg(S_{0,k}(x) + \sum_{j=1}^m g_j(x) S_{j,k}(x) \bigg) E_{\mathcal{C}_k}, \\ & S_{j,k} \in \Sigma_{2d_j}^{|\mathcal{C}_k|} \quad \forall j = 0, \dots, q, \; \forall k = 1, \dots, t, \end{split}$$

Convergence guarantees

- \mathcal{K} is compact and satisfies the Archimedean condition, under some technical conditions, we fix $\sigma(x)=1$ and $B_{d,0}^*\to B^*$ from above as $d\to\infty$.
- $\mathcal{K} \equiv \mathbb{R}^n$: under some technical conditions, we fix $\sigma(x) = 1 + ||x||^2$ and $B_{d,\nu}^* \to B^*$ from above as $\nu \to \infty$ and $d = \nu + \lceil \frac{1}{2} \max\{\deg(P), \deg(g_1), \ldots, \deg(g_q)\} \rceil$.

Proof ideas: Hilbert-Artin theorem

Diagonalization with no fill-ins

If P(x) is an $m \times m$ symmetric polynomial matrix with chordal sparsity graph, there exist an $m \times m$ permutation matrix T, an invertible $m \times m$ lower-triangular polynomial matrix L(x), and polynomials b(x), $d_1(x)$, ..., $d_m(x)$ such that

$$b^{4}(x) TP(x)T^{\mathsf{T}} = L(x) \mathsf{Diag}(d_{1}(x), \ldots, d_{m}(x)) L(x)^{\mathsf{T}}.$$

Moreover, L has no fill-in in the sense that $L + L^{\mathsf{T}}$ has the same sparsity as TPT^{T} .

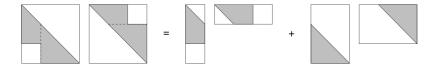


Figure: Decomposition follows by combining columns.

Figure from Prof. Lieven Vandenberghe's talk.

Proof ideas: Putinar's theorem

Scherer and Ho, 2006

Let $\mathcal K$ be a compact semialgebraic set that satisfies the Archimedean condition. If an $m\times m$ symmetric polynomial matrix P(x) is strictly positive definite on $\mathcal K$, there exist $m\times m$ SOS matrices $S_0,\,\ldots,\,S_q$ such that

$$P(x) = S_0(x) + \sum_{i=1}^{q} S_i(x)g_i(x).$$

 Weierstrass polynomial approximation theorem + the above version of Putinar's Positivstellensatz

$$\begin{split} P(x) &= \begin{bmatrix} a(x) & b(x)^{\mathsf{T}} & 0 \\ b(x) & U(x) & V(x) \\ 0 & V(x) & W(x) \end{bmatrix} \\ &= \underbrace{\begin{bmatrix} a(x) & b(x)^{\mathsf{T}} & 0 \\ b(x) & H(x) + 2\varepsilon I & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0, \forall x \in \mathcal{K}} + \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & U(x) - H(x) - 2\varepsilon I & V(x) \\ 0 & V(x)^{\mathsf{T}} & W(x) \end{bmatrix}}_{\succeq 0, \forall x \in \mathcal{K}}. \end{split}$$

Experiment 1: global PMI

Define a set

$$\mathcal{F}_{\omega} = \{ \lambda \in \mathbb{R}^2 : P_{\omega}(x, \lambda) \succeq 0 \quad \forall x \in \mathbb{R}^3 \}.$$

$$F_{\omega} = \{\lambda \in \mathbb{R}^2 : P_{\omega}(x,\lambda) \succeq 0 \quad \forall x \in \mathbb{R}^3 \}.$$

$$P_{\omega}(x,\lambda) = \begin{bmatrix} \lambda_2 x_1^4 + x_2^4 & \lambda_1 x_1^2 x_2^2 \\ \lambda_1 x_1^2 x_2^2 & \lambda_2 x_2^4 + x_3^4 & \lambda_2 x_2^2 x_3^2 \\ & \lambda_2 x_2^2 x_3^2 & \lambda_2 x_3^4 + x_1^4 & \lambda_1 x_1^2 x_3^2 \\ & & \lambda_1 x_1^2 x_3^2 & \lambda_2 x_1^4 + x_2^4 & \lambda_2 x_1^2 x_2^2 \\ & & & \lambda_2 x_1^2 x_2^2 & \lambda_2 x_2^4 + x_3^4 & \ddots \\ & & & & \ddots & \ddots & \lambda_i x_2^2 x_3^2 \\ & & & & \lambda_i x_2^2 x_3^2 & \lambda_2 x_3^4 + x_1^4 \end{bmatrix}$$

• Define two hierarchies of subsets of \mathcal{F}_{ω} , indexed by a nonnegative integer ν , as

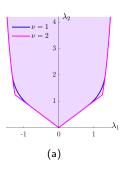
$$\mathcal{D}_{\omega,\nu} := \left\{ \lambda \in \mathbb{R}^2 : \ \|x\|^{2\nu} P_{\omega}(x,\lambda) \text{ is SOS} \right\},$$

$$\mathcal{S}_{\omega,\nu} := \left\{ \lambda \in \mathbb{R}^2 : \ \|x\|^{2\nu} P_{\omega}(x,\lambda) = \sum_{k=1}^{3\omega-1} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}, S_k(x) \text{ is SOS} \right\}.$$

We always have

$$S_{\omega,\nu} \subseteq \mathcal{D}_{\omega,\nu} \subseteq \mathcal{F}_{\omega}$$

Experiment 1: global PMI



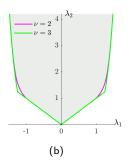


Figure: Inner approximations of the set \mathcal{F}_2 obtained with SOS optimization. (a) Sets $\mathcal{D}_{2,\nu}$ obtained using the standard SOS constraint; (b) Sets $\mathcal{S}_{2,\nu}$ obtained using the sparse SOS constraint. The numerical results suggest $\mathcal{S}_{2,3}=\mathcal{D}_{2,2}=\mathcal{F}_2$.

Experiment 1: global PMI

$$B^* := \inf_{\lambda} \quad \lambda_2 - 10\lambda_1$$
 subject to $\lambda \in \mathcal{F}_{\omega}$

Table: Upper bounds $B_{d, \nu}$ on the optimal value B^* and CPU time (seconds) by MOSEK

		Standard SOS							Sparse SOS					
	$\overline{\nu}$	$\nu = 1$		= 2	ν =	$\nu = 3$		$\overline{\nu}$	= 2	$\nu = 3$		$\nu = 4$		
ω	\overline{t}	$B_{d,\nu}$	t	$B_{d,\nu}$	t	$B_{d,\nu}$		t	$B_{d,\nu}$	\overline{t}	$B_{d,\nu}$	t	$B_{d,\nu}$	
5	12	-8.68	25	-9.36	69	-9.36		0.58	-8.97	0.72	-9.36	1.29	-9.36	
10	407	-8.33	886	-9.09	2910	-9.09		1.65	-8.72	0.82	-9.09	2.08	-9.09	
15	2090	-8.26	OOM	OOM	OOM	OOM		2.76	-8.68	1.13	-9.04	2.79	-9.04	
20	OOM	OOM	OOM	OOM	OOM	OOM		3.24	-8.66	1.54	-9.02	4.70	-9.02	
25	OOM	OOM	OOM	OOM	OOM	OOM		2.85	-8.66	1.94	-9.02	4.59	-9.02	
30	OOM	OOM	OOM	OOM	OOM	OOM		2.38	-8.65	2.40	-9.01	5.50	-9.01	
35	OOM	OOM	OOM	OOM	OOM	OOM		2.66	-8.65	3.25	-9.01	6.17	-9.01	
40	OOM	OOM	OOM	OOM	OOM	OOM		3.07	-8.65	3.14	-9.01	8.48	-9.01	

$$\begin{split} B_{m,d}^* &:= \max_{s_{2d}(x)} \quad \int_{\mathcal{K}} s_{2d}(x) \, \mathrm{d}x \\ \text{subject to} \quad P(x) - s_{2d}(x) I \succeq 0 \quad \forall x \in \mathcal{K}. \end{split}$$

- Set approximation: $\mathcal{P} = \{x \in \mathbb{R}^n \mid P(x) \succeq 0\} \subset \mathcal{K}$
- ullet the unit disk: $\mathcal{K}=\{x\in\mathbb{R}^2:1-x_1^2-x_2^2\geq 0\}$ and

$$P(x) = (1 - x_1^2 - x_2^2)I_m + (x_1 + x_1x_2 - x_1^3)A + (2x_1^2x_2 - x_1x_2 - 2x_2^3)B,$$

A,B with chordal sparsity graphs, zero diagonal elements, and other entries from the uniform distribution on (0,1).

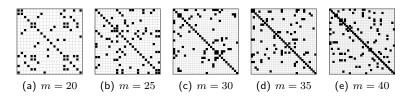


Figure: Chordal sparsity patterns for the polynomial matrix P(x).

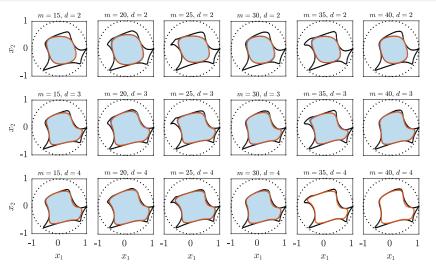


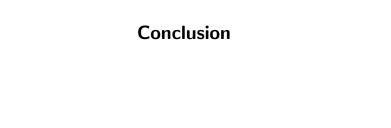
Figure: The real boundary of \mathcal{P} : a solid black line. Standard SOS: blue solid boundary and blue shading; the sparsity-exploiting SOS: red solid boundary, no shading.

Table: Lower bounds and CPU time (seconds, by Mosek) using the standard SOS and the sparsity-exploiting SOS. The asymptotic value $B^*_{m,\infty}$ was found by integrating the minimum eigenvalue function of P over the unit disk \mathcal{K} .

		Standard SOS	5				
	d=2	d=2 $d=3$		d=2	d=3	d=4	
m	$t B_{m,d}^{sos}$	$t B_{m,d}^{sos}$	$t B_{m,d}^{sos}$	$t B_{m,d}^{sos}$	$t B_{m,d}^{sos}$	$t B_{m,d}^{sos}$	$B_{m,\infty}^*$
15	3.7 -2.07	24.8 -1.50	95.1 -1.36	0.95 -2.10	0.97 -1.52	1.94 -1.37	-1.15
20	13.3 -1.51	96.5 -1.03	375 -0.92	0.69 -1.58	1.06 -1.07	2.12 -0.95	-0.75
25	38.1 -2.47	326 -1.85	1308 -1.64	0.95 -2.50	1.28 -1.87	3.04 -1.66	-1.41
30	136 -2.13	963 -1.54	4031 -1.41	0.75 -2.21	1.35 -1.58	3.14 -1.43	-1.21
35	219 -2.46	2210 -1.82	OOM OOM	0.77 -2.51	1.51 -1.84	3.01 -1.65	-1.40
40	550 -2.22	5465 -1.59	OOM OOM	1.03 -2.24	2.07 -1.59	5.62 -1.47	-1.25

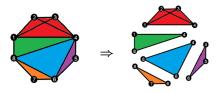
Table: Lower bounds $B_{15,d}^{80s}$ on the asymptotic value $B_{15,\infty}^* = -1.153$ for m=15, calculated using the sparsity-exploiting SOS with $\nu=0$ and the standard SOS. The CPU time (t, seconds) to compute these bounds using MOSEK is also reported.

	$\mid d$	6	8	10	12	14
Sparse SOS	$ \begin{vmatrix} B_{15,d}^{\cos} \\ t \end{vmatrix} $	-1.257 13.3	-1.219 85.1	-1.199 309.3	-1.195 818.3	-1.191 2149
Standard SOS	$ \begin{vmatrix} B_{15,d}^{\cos} \\ t \end{vmatrix} $	-1.252 1133	-1.216 8250	OOM OOM	OOM OOM	OOM OOM



Take-home message

Message 1: Chordal decomposition: leading to sparse PSD cone decompositions



Message 2: Sparse SDPs can be solved 'fast'

$$\begin{aligned} & \underset{x,x_k}{\min} & \langle c,x \rangle \\ & \text{s.t.} & Ax = b, \\ & \boxed{x_k = H_k x}, & k = 1, \dots, p, \\ & x_k \in \mathcal{S}_k, & k = 1, \dots, p, \end{aligned}$$

$$\sigma(x)P(x) = \sum_{k=1}^{t} E_{\mathcal{C}_k}^{\mathsf{T}} S_k(x) E_{\mathcal{C}_k}.$$

CDCS: an open-source first-order conic solver;

Download from https://github.com/OxfordControl/CDCS

 Message 3: Sparse robust SDPs can be solved 'fast': the Hilbert-Artin, Reznick, Putinar, and Putinar-Vasilescu Positivstellensätze.

Future work

- Decomposition and completion of polynomial matrices
- Moment interpretation of the PSD polynomial decomposition results
- Combining matrix decomposition with other structures
- Blending application-driven modeling with optimization
- Efficient software for modern computers

Thank you for your attention!

Q & A

- Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. Mathematical Programming, 1-44.
- Zheng, Y., & Fantuzzi, G. (2020). Sum-of-squares chordal decomposition of polynomial matrix inequalities. arXiv preprint arXiv:2007.11410. (Mathematical Programming, accepted)
- Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2018, December). Decomposition and completion of sum-of-squares matrices. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 4026-4031). IEEE.
- Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2019, July). Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials. In 2019 American Control Conference (ACC) (pp. 5513-5518). IEEE.

Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm solves the optimization problem (Bertsekas and Tsitsiklis, 1989; Boyd, et al., 2011)

$$\min_{x,y} \quad f(x) + g(y)$$
 subject to
$$Ax + By = c,$$

where f and g are convex functions.

Augmented Lagrangian

$$\mathcal{L}_{\rho}(x, y, z) := f(x) + g(y) + z^{\mathsf{T}} (Ax + By - c) + \frac{\rho}{2} ||Ax + By - c||^{2}$$

ADMM steps

$$x^{(n+1)} = \arg\min_{x} \ \mathcal{L}_{\rho}(x,y^{(n)},z^{(n)}), \qquad \rightarrow x\text{-minimization step}$$

$$y^{(n+1)} = \arg\min_{y} \ \mathcal{L}_{\rho}(x^{(n+1)},y,z^{(n)}), \qquad \rightarrow y\text{-minimization step}$$

$$z^{(n+1)} = z^{(n)} + \rho \left(Ax^{(n+1)} + By^{(n+1)} - c\right). \qquad \rightarrow \text{dual variable update}$$

ADMM is particularly suitable when the subproblems have closed-form expressions, or can be solved efficiently.

ADMM for primal decomposed SDPs

$$egin{array}{ll} \min_{x,x_k} & \langle c,x
angle \\ extsf{s.t.} & Ax = b, \\ \hline & x_k = H_k x \end{array}, \quad k = 1,\,\ldots,\,p, \\ & x_k \in \mathcal{S}_k, \qquad k = 1,\,\ldots,\,p, \end{array}$$

Reformulation using indicator functions

$$\min_{x,x_1,\dots,x_p} \langle c,x\rangle + \delta_0 (Ax - b) + \sum_{k=1}^p \delta_{\mathcal{S}_k}(x_k)$$

s.t.
$$x_k = H_k x$$
, $k = 1, ..., p$.

• x-minimization step: QP with linear constraints, KKT condition

$$\begin{bmatrix} D & A^\mathsf{T} \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^p H_k^\mathsf{T} \left(x_k^{(n)} + \rho^{-1} \lambda_k^{(n)} \right) - \rho^{-1} c \\ b \end{bmatrix}.$$

• y-minimization step: Parallel projections onto small PSD cones

$$\min_{x_k} \quad \left\| x_k - H_k x^{(n+1)} + \rho^{-1} \lambda_k^{(n)} \right\|^2$$
s.t. $x_k \in \mathcal{S}_k$.

Update multipliers

ADMM for dual decomposed SDPs

$$\begin{aligned} \max_{y, z_k, v_k} & \langle b, y \rangle \\ \text{s.t.} & A^\mathsf{T} y + \sum_{k=1}^p H_k^\mathsf{T} v_k = c, \\ & \boxed{z_k - v_k = 0}, k = 1, \dots, p, \\ & z_k \in \mathcal{S}_k, k = 1, \dots, p. \end{aligned}$$

Reformulation using indicator functions

$$\min \quad -\langle b, y \rangle + \delta_0 \left(c - A^\mathsf{T} y - \sum_{k=1}^p H_k^\mathsf{T} v_k \right) + \sum_{k=1}^p \delta_{\mathcal{S}_k}(z_k)$$

s.t. $z_k = v_k, \quad k = 1, \ldots, p.$

• x-minimization step: QP with linear constraints, KKT condition

$$\begin{bmatrix} D & A^\mathsf{T} \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c - \sum_{k=1}^p H_k^\mathsf{T} \left(z_k^{(n)} + \rho^{-1} \lambda_k^{(n)} \right) \\ -\rho^{-1} b \end{bmatrix},$$

• y-minimization step: Parallel projections onto small PSD cones

$$\min_{z_k} \quad \left\| z_k - v_k^{(n)} + \rho^{-1} \lambda_k^{(n)} \right\|^2$$
s.t. $z_k \in \mathcal{S}_k$.

Update multipliers

Homogeneous self-dual embedding of decomposed SDPs

$$\begin{aligned} & \min_{x,x_k} & & \langle c,x \rangle \\ & \text{s.t.} & & Ax = b, \\ & & & x_k = H_k x, \quad k = 1,\,\dots,\,p, \\ & & & x_k \in \mathcal{S}_k, \qquad k = 1,\,\dots,\,p, \end{aligned}$$

$$\max_{y, z_k, v_k} \langle b, y \rangle$$

s.t.
$$A^{\mathsf{T}}y + \sum_{k=1}^{p} H_{k}^{\mathsf{T}}v_{k} = c,$$
 $z_{k} - v_{k} = 0, k = 1, \dots, p,$ $z_{k} \in \mathcal{S}_{k}, k = 1, \dots, p.$

Notional simplicity:

$$s := \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}, \quad z := \begin{bmatrix} z_1 \\ \vdots \\ z_p \end{bmatrix}, \quad t := \begin{bmatrix} v_1 \\ \vdots \\ v_p \end{bmatrix}, \quad H := \begin{bmatrix} H_1 \\ \vdots \\ H_p \end{bmatrix}, \quad \mathcal{S} := \mathcal{S}_1 \times \dots \times \mathcal{S}_p$$

KKT conditions

Primal feasibility

$$Ax^* - r^* = b$$
, $s^* + w^* = Hx^*$, $s^* \in \mathcal{S}$, $r^* = 0$, $w^* = 0$.

Dual feasibility

$$A^{\mathsf{T}}y^* + H^{\mathsf{T}}t^* + h^* = c, \qquad z^* - t^* = 0, \qquad z^* \in \mathcal{S}, \qquad h^* = 0.$$

Zero duality gap:

$$c^{\mathsf{T}}x^* - b^{\mathsf{T}}y^* = 0.$$

Homogeneous self-dual embedding of decomposed SDPs

The homogeneous self-dual embedding (HSDE) form (Ye, Todd, Mizuno, 1994)

$$\begin{aligned} & \text{find} \quad (u,v) \\ & \text{subject to} \quad v = Qu, \\ & \quad (u,v) \in \mathcal{K} \times \mathcal{K}^*, \end{aligned}$$

where $\mathcal{K} := \mathbb{R}^{n^2} \times \mathcal{S} \times \mathbb{R}^m \times \mathbb{R}^{n_d} \times \mathbb{R}_+$ is a cone $(\mathcal{S} := \mathcal{S}_1 \times \cdots \times \mathcal{S}_p)$ and

$$u := \begin{bmatrix} x \\ s \\ y \\ t \\ \tau \end{bmatrix}, \quad v := \begin{bmatrix} h \\ z \\ r \\ w \\ \kappa \end{bmatrix}, \quad Q := \begin{bmatrix} 0 & 0 & -A^\mathsf{T} & -H^\mathsf{T} & c \\ 0 & 0 & 0 & I & 0 \\ A & 0 & 0 & 0 & -b \\ H & -I & 0 & 0 & 0 \\ -c^\mathsf{T} & 0 & b^\mathsf{T} & 0 & 0 \end{bmatrix}.$$

ADMM steps (similar to the solver SCS, O'Donoghue et al., 2016)

$$\begin{split} \hat{u}^{(n+1)} &= (I+Q)^{-1} \left(u^{(n)} + v^{(n)} \right), \quad \longrightarrow \text{Projection onto a linear subspace} \\ u^{(n+1)} &= \mathbb{P}_{\mathcal{K}} \left(\hat{u}^{(n+1)} - v^{(n)} \right), \qquad \longrightarrow \text{Projection onto small PSD cones} \\ v^{(n+1)} &= v^{(n)} - \hat{u}^{(n+1)} + u^{(n+1)}, \qquad \longrightarrow \text{Computationally trivial update} \end{split}$$

The conic projections in all Algorithms require $\mathcal{O}(\sum_{k=1}^p |\mathcal{C}_k|^3)$ flops.

Scaled-diagonally dominant SOS (SDSOS) and DSOS

A new concept of (S)DSOS by Ahmadi and Majumdar, 2017

ullet Diagonally dominant (dd) matrix: a symmetric matrix $A=[a_{ij}]$ is dd if

$$a_{ii} \ge \sum_{j \ne i} |a_{ij}|, \forall i = 1, \dots, n.$$

• Scaled-diagonally dominant (sdd) matrix: a symmetric matrix $A = [a_{ij}]$ is sdd if there exists a PSD diagonal matrix D, such that

$$DAD$$
 is dd.

- DSOS polynomials: $p(x) = v_d(x)^T Q v_d(x)$, where the Gram matrix Q is dd.
- SDSOS polynomials: $p(x) = v_d(x)^{\mathsf{T}} Q v_d(x)$, where the Gram matrix Q is sdd.

LP and SOCP-based optimization (Ahmadi and Majumdar, 2017)

- Optimization over dd matrices or DSOS polynomials is a linear program (LP).
- Optimization over sdd matrices or SDSOS polynomials is a second-order cone program (SOCP).

The gap between DSOS/SDSOS and SOS

A brief summary

- **SOS**: $p(x) = v_d(x)^\mathsf{T} Q v_d(x)$, where the Gram matrix Q is PSD \longrightarrow SDP
- **SDSOS**: $p(x) = v_d(x)^\mathsf{T} Q v_d(x)$, where the Gram matrix Q is sdd \longrightarrow SOCP
- **DSOS**: $p(x) = v_d(x)^\mathsf{T} Q v_d(x)$, where the Gram matrix Q is dd $\longrightarrow \mathsf{LP}$

Another viewpoint

- ullet SDP is an optimization problem involving PSD constraints of dimension N imes N
- ullet SOCP is an optimization problem involving PSD constraints of dimension 2×2
- ullet LP is an optimization problem involving PSD constraints of dimension 1 imes 1

What is missing? How about problems that involve PSD constraints of dimension $k \times k$, where $1 \le k \le N$

- One approach: factor-width k matrices (Boman, et al. 2005) \longrightarrow Not practical $\binom{n}{k} = \mathcal{O}(n^k)$
- Chordal decomposition, considering sparsity and equivalent to sparse factor-width k matrices \longrightarrow the main topic today.

Sparsity in SOS optimization

Sparse polynomial matrix (similar to sparse real matrix)

ullet Given a graph $\mathcal{G}(\mathcal{V},\mathcal{E})$, we define a sparse polynomial matrix P(x) where

$$p_{ij}(x) = 0$$
, if $(i,j) \notin \mathcal{E}^*$

• For example, for a line graph of three nodes

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) \\ p_{21}(x) & p_{22}(x) & p_{23}(x) \\ p_{32}(x) & p_{33}(x) \end{bmatrix}.$$

Define a set of sparse polynomial matrices

$$\mathbb{R}_{n,2d}^{r\times r}(\mathcal{E},0) = \left\{ P(x) \in \mathbb{R}[x]_{n,2d}^{r\times r} \middle| p_{ij}(x) = p_{ji}(x) = 0, \text{ if } (i,j) \notin \mathcal{E}^* \right\}.$$

ullet SOS/SDSOS/DSOS matrices with a sparsity pattern ${\mathcal E}$

$$SOS_{n,2d}^{r}(\mathcal{E},0) = SOS_{n,2d}^{r} \cap \mathbb{R}_{n,2d}^{r \times r}(\mathcal{E},0),$$

$$SDSOS_{n,2d}^{r}(\mathcal{E},0) = SDSOS_{n,2d}^{r} \cap \mathbb{R}_{n,2d}^{r \times r}(\mathcal{E},0),$$

$$DSOS_{n,2d}^{r}(\mathcal{E},0) = DSOS_{n,2d}^{r} \cap \mathbb{R}_{n,2d}^{r \times r}(\mathcal{E},0).$$

Sparsity in SOS optimization

Sparsity in P(x) does not necessarily lead to sparsity in the Gram matrix Q!!

For example

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & & \\ p_{21}(x) & p_{22}(x) & p_{23}(x) \\ & p_{32}(x) & p_{33}(x) \end{bmatrix} = \begin{bmatrix} v(x)^{\mathsf{T}}Q_{11}v(x) & v(x)^{\mathsf{T}}Q_{12}v(x) & v(x)^{\mathsf{T}}Q_{13}v(x) \\ v(x)^{\mathsf{T}}Q_{21}v(x) & v(x)^{\mathsf{T}}Q_{22}v(x) & v(x)^{\mathsf{T}}Q_{23}v(x) \\ v(x)^{\mathsf{T}}Q_{31}v(x) & v(x)^{\mathsf{T}}Q_{32}v(x) & v(x)^{\mathsf{T}}Q_{33}v(x) \end{bmatrix}$$
$$= (I_3 \otimes v(x))^{\mathsf{T}} \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{32} \end{bmatrix} (I_3 \otimes v(x))$$

• If we make a restriction that $Q_{ij}=0$, if $p_{ij}(x)=0$, then the Gram matrix Q has the same pattern with P(x). Now, chordal decomposition leads to

$$Q = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0}$$

• We have the same chordal decomposition for polynomial matrix P(x).

Sparse SOS matrix decomposition

Sparse version of SOS matrices

$$SSOS^r_{n,2d}(\mathcal{E},0) = \bigg\{ P(x) \in SOS^r_{n,2d}(\mathcal{E},0) \bigg| P(x) \text{ admits a}$$
 Gram matrix $Q \succeq 0$, with $Q_{ij} = 0$ when $p_{ij}(x) = 0 \bigg\}.$

Theorem (Sparse SOS matrix decomposition)

If \mathcal{E} is chordal with a set of maximal cliques $\mathcal{C}_1, \ldots, \mathcal{C}_t$, then

$$P(x) \in SSOS_{n,2d}^r(\mathcal{E}, 0) \Leftrightarrow P(x) = \sum_{k=1}^{\mathsf{T}} E_k^{\mathsf{T}} P_k(x) E_k,$$

where $P_k(x)$ is an SOS matrix of dimension $|\mathcal{C}_k| \times |\mathcal{C}_k|$.

Proof: apply the **Agler's theorem** to the sparse block matrix Q.

$$P(x) = (I_r \otimes v_d(x))^{\mathsf{T}} Q (I_r \otimes v_d(x)) = (I_r \otimes v_d(x))^{\mathsf{T}} \left(\sum_{k=1}^{\mathsf{T}} E_{\tilde{\mathcal{C}}_k}^{\mathsf{T}} Q_k E_{\tilde{\mathcal{C}}_k} \right) (I_r \otimes v_d(x))$$
$$= \sum_{k=1}^{\mathsf{T}} \left[(I_r \otimes v_d(x))^{\mathsf{T}} E_{\tilde{\mathcal{C}}_k}^{\mathsf{T}} Q_k E_{\tilde{\mathcal{C}}_k} (I_r \otimes v_d(x)) \right] = \sum_{k=1}^{\mathsf{T}} E_{\mathcal{C}_k}^{\mathsf{T}} P_k(x) E_{\mathcal{C}_k},$$

LP/SOCP/SDP

We have the following inclusion relationship

$$DSOS^{r}_{n,2d}(\mathcal{E},0)\subseteq SDSOS^{r}_{n,2d}(\mathcal{E},0)\subseteq \underbrace{SSOS^{r}_{n,2d}(\mathcal{E},0)}\subseteq SOS^{r}_{n,2d}(\mathcal{E},0)\subseteq \mathcal{P}^{r}_{n,2d}(\mathcal{E},0)$$

Key idea: if a matrix Q is (scaled) diagonally dominant, then it is still (scaled) diagonally dominant when replacing any off-diagonal elements with zeros.

A brief summary (scalability):

$$\begin{array}{lll} \mathcal{P}^r_{n,2d}(\mathcal{E},0) & \longrightarrow & \text{NP-hard} \\ DSOS^r_{n,2d}(\mathcal{E},0) & \longrightarrow & \text{LP (PSD cones: } 1\times 1) \\ SDSOS^r_{n,2d}(\mathcal{E},0) & \longrightarrow & \text{SOCP (PSD cones: } 2\times 2) \\ SSOS^r_{n,2d}(\mathcal{E},0) & \longrightarrow & \text{SDP with smaller PSD cones of } k\times k \\ SOS^r_{n,2d}(\mathcal{E},0) & \longrightarrow & \text{SDP with a PSD cone of } N\times N \end{array}$$

Solution quality: \mathcal{P}_{dsos} , \mathcal{P}_{sdsos} and \mathcal{P}_{ssos} are a sequence of inner approximations with increasing accuracy to the SOS problem \mathcal{P}_{sos} , meaning that

$$f_{\mathsf{dsos}}^* \geq f_{\mathsf{sdsos}}^* \geq f_{\mathsf{ssos}}^* \geq f_{\mathsf{sos}}^*$$

• Similar results can be shown for scalar sparse SOS optimization, which rely on the notion of *correlative sparsity pattern* (Waki *et al.*, 2006).

Implementations and numerical comparison

Packages

- SOS optimization: SOSTOOLS, YALMIP
- DSOS/SDSOS optimization: SPOTLESS
- Chordal decomposition: YALMIP (we adapted the option of correlative sparsity technique)
- SDP solver: Mosek

Numerical examples and applications

- Polynomial optimization problems
- Copositive optimization
- Control application: finding Lyapunov functions

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

$$\label{eq:constraints} \begin{aligned} & & \min_{\gamma} & \gamma \\ \text{subject to} & & P(x) + \gamma I \succeq 0, \end{aligned}$$

where n=2,2d=2, the polynomial is randomly generated. P(x) has an arrow pattern.

Table: CPU time (in seconds) required by Mosek

Dimension r	10	20	30	40	50	60	70	80
SOS	0.30	1.33	6.64	27.3	108.1	308.7	541.3	1018.6
SSOS	0.34	0.34	0.35	0.35	0.33	0.32	0.32	0.33
SDSOS	0.47	0.63	1.09	1.29	2.67	3.70	4.40	6.02
DSOS	**	**	**	**	**	**	**	**

^{**:} The program is infeasible.

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

$$\label{eq:constraints} \min_{\gamma} \quad \gamma$$
 subject to
$$P(x) + \gamma I \succeq 0,$$

where n=2,2d=2, the polynomial is randomly generated. P(x) has an arrow pattern.

Table: Optimal value γ

$\overline{\text{Dimension } r}$	10	20	30	40	50	60	70	80
SOS	1.447	4.813	5.917	4.154	21.61	10.09	7.364	10.19
SSOS	1.454	4.878	5.917	4.498	21.64	12.71	7.558	11.39
SDSOS	40.1	279.3	1 254.4	145.5	762.8	1521.1	1217.3	598.0
DSOS	**	**	**	**	**	**	**	**

^{**:} The program is infeasible.

Example 2: Copositive optimization

Consider the following copositive program

$$\label{eq:continuous_problem} \min_{\gamma} \quad \gamma$$
 subject to
$$\ Q + \gamma I \in \mathcal{C}^n,$$

where \boldsymbol{Q} is a random symmetric matrix with a block-arrow sparsity pattern.

Numerical results

In the simulation, the block size is d=3; arrow head is h=2; we vary the number of blocks l

Table: CPU time (in seconds) required by Mosek

l	2	4	6	8	10	
SOS	0.45	7.34	248.9	*	*	
SSOS	0.39	0.41	0.38	0.49	0.40	
SDSOS	0.54	1.22	4.99	11.07	32.18	
DSOS	0.59	0.76	2.19	5.72	17.11	

^{*:} Out of memory.

Example 2: Copositive optimization

Consider the following copositive program

$$\min_{\gamma} \quad \gamma$$
 subject to
$$Q + \gamma I \in \mathcal{C}^n,$$

where ${\cal Q}$ is a random symmetric matrix with a block-arrow sparsity pattern.

Numerical results

In the simulation, the block size is d=3; arrow head is h=2; we vary the number of blocks l

Table: Optimal value γ

l	2	4	6	8	10	
SOS	1.137	4.197	2.836	*	*	
SSOS	1.137	4.197	2.836	4.043	4.718	
SDSOS	1.184	4.500	3.282	4.562	5.146	
DSOS	2.551	7.775	6.452	12.057	15.203	

^{*:} Out of memory.

Example 3: Finding Lyapunov functions

Control application: finding Lyapunov functions

Consider a dynamical system with a banded pattern

$$\dot{x}_1 = f_1(x_1, x_2), \qquad g_1(x) = \gamma - x_1^2 \ge 0
\dot{x}_2 = f_2(x_1, x_2, x_3), \qquad g_2(x) = \gamma - x_2^2 \ge 0
\vdots
\dot{x}_n = f_n(x_{n-1}, x_n), \qquad g_2(x) = \gamma - x_n^2 > 0$$

- Generate locally stable systems of degree three;
- Consider a polynomial Lyapunov function of degree two with a banded pattern

$$V(x) = V_1(x_1, x_2) + V_2(x_1, x_2, x_3) + \ldots + V_n(x_{n-1}, x_n)$$

• Then, we consider the following SOS program

Find
$$V(x), r_i(x)$$
 subject to $V(x) - \epsilon(x^\mathsf{T} x)$ is SOS
$$- \langle \nabla V(x), f(x) \rangle - \sum_{i=1}^n r_i(x) g_i(x) \text{ is SOS}$$
 $r_i(x)$ is SOS, $i=1,\dots,n$.

Example 3: Finding Lyapunov functions

Control application: finding Lyapunov functions

Table: CPU time (in seconds) required by Mosek

n	10	15	20	30	40	50	_
SOS	1.29	18.44	247.84	*	*	*	
SSOS	0.55	0.68	0.71	0.83	1.04	1.17	
SDSOS	0.71	1.76	4.47	32.21	85.99	257.20	
DSOS	0.70	1.42	3.58	35.12	73.64	324.32	

^{*:} Out of memory.