Non-convex Optimization for Linear Quadratic Gaussian (LQG) Control

Yang Zheng

Assistant Professor, ECE Department, UC San Diego

TILOS Seminar Series, UCSD Sep 21, 2022

Scalable Optimization and Control (SOC) Lab

https://zhengy09.github.io/soclab.html

Acknowledgements

Yujie Tang Peking University

Na Li Harvard University

Yue Sun
University of Washington

Maryam Fazel
University of Washington

- Yang Zheng*, Yujie Tang*, and Na Li. "Analysis of the optimization landscape of linear quadratic gaussian (LQG) control." arXiv preprint arXiv:2102.04393 (2021) *Equal contribution
- Yang Zheng*, Yue Sun*, Maryam Fazel, and Na Li. "Escaping High-order Saddles in Policy
 Optimization for Linear Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2204.00912 (2022).
 *Equal contribution

Motivation

■ Model-free methods and data-driven control

- Use direct policy updates
- Become very popular in both academia and practice, from game playing, robotics, and drones, etc.

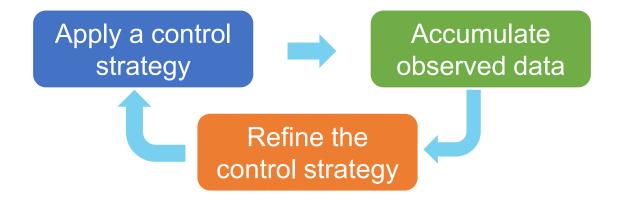


OpenAl

Applications

Motivation

Model-free methods and data-driven control



Opportunities

- Directly search over a given policy class
- Directly optimize performance on the true system, bypassing the model estimation (not on an approximated model)

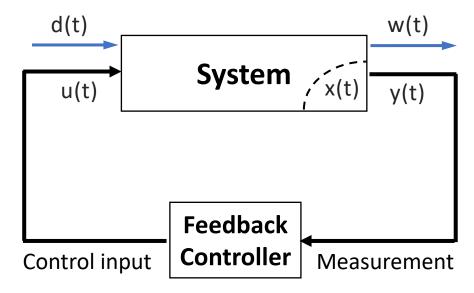
Challenges

- Lack of non-asymptotic performance guarantees
 - Convergence
 - Suboptimality
 - Sample complexity, etc.
- Highly nontrivial even for linear dynamical systems

Today's talk

Optimal Control

Feedback Paradigm



Control theory: the principled use of feedback loops and algorithms to drive a dynamical system to its desired goal

Linear Quadratic Optimal control

$$\min_{u_1, u_2, \dots, t} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} \left(x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t \right) \right]$$
subject to
$$x_{t+1} = A x_t + B u_t + w_t$$

$$y_t = C x_t + v_t$$

- Many practical applications
- Linear Quadratic Regulator (LQR) when the state x_t is directly observable
- Linear Quadratic Gaussian (LQG) control when only partial output y_t is observed
- Extensive classical results (Dynamic programming, Separation principle, Riccati equations, etc.)

Major challenge: how to perform optimal control when the system is unknown?

Model-free: Direct policy iteration

☐ Controller parameterization

- Give a parameterization of control policies; say
 neural networks?
- Control theory already tells us many structural properties
- Linear feedback is sufficient for LQR $u_t = K x_t$

$$\lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \left(x_t^\mathsf{T} Q x_t + u_t^\mathsf{T} R u_t\right)\right] := J(K)$$

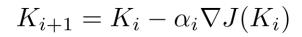
- Set of stabilizing controllers $K \in \mathcal{K}$
- A fast-growing list of references

LQR as an Optimization problem

$$\min_{K} J(K)$$

s.t. $K \in \mathcal{K}$

Direct policy iteration



- ✓ Good optimization landscape properties (Fazel et al., 2018)
 - Connected feasible region
 - Unique stationary point
 - Gradient dominance
- ✓ Fast global convergence (linear)
- Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others

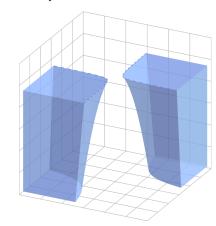
Challenges for partially observed LQG

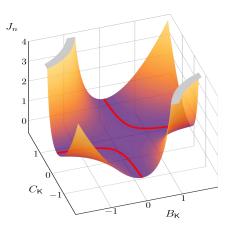
☐ Results on model-free LQG control are much fewer

- LQG is more complicated than LQR
- Requires dynamical controllers
- Its non-convex landscape properties are much richer and more complicated than LQR

Our focus: non-convex optimization of LQG

- Q1: Properties of the domain (set of stabilizing controllers)
 - convexity, connectivity, open/closed?
- Q2: Properties of the accumulated cost
 - convexity, differentiability, coercivity?
 - set of stationary points/local minima/global minima?
- Q3: Escape saddle points via Perturbed Gradient Descent (PGD)

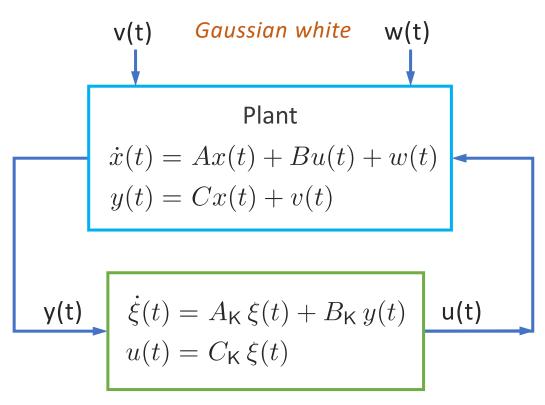




Outline

- ☐ LQG problem Setup
- ☐ Connectivity of the Set of Stabilizing Controllers
- ☐ Structure of Stationary Points of the LQG cost
- ☐ Escaping saddle points via PGD

LQG Problem Setup



dynamical controller

$$\mathsf{K} = (A_\mathsf{K}, B_\mathsf{K}, C_\mathsf{K})$$

Standard $(A,B),\,(A,W^{1/2})$ Controllable Assumption $(C,A),\,(Q^{1/2},A)$ Observable

Objective: The LQG cost

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_0^T (x^\top Q x + u^\top R u) dt$$

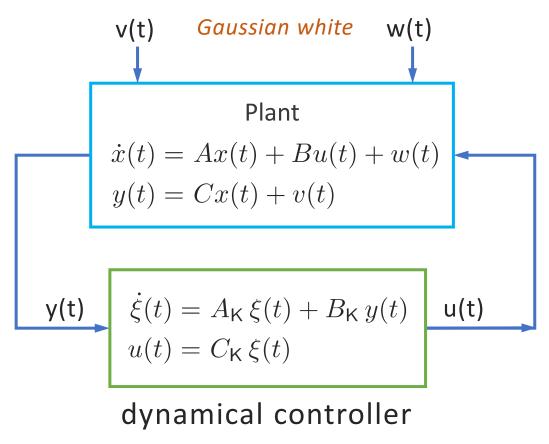
- $\triangleright \xi(t)$ internal state of the controller
- \triangleright dim $\xi(t)$ order of the controller
- $ightharpoonup \dim \xi(t) = \dim x(t)$ full-order
- $ightharpoonup \dim \xi(t) < \dim x(t)$ reduced-order

Minimal controller

The input-output behavior cannot be replicated by a lower order controller.

* $(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}})$ controllable and observable

Separation principle



$$K = (A_K, B_K, C_K)$$

Explicit dependence on the dynamics

Objective: The LQG cost

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_0^T (x^\top Q x + u^\top R u) dt$$

Solution: Kalman filter for state estimation
+ LQR based on the estimated state

$$\dot{\xi} = (A - BK)\xi + L(y - C\xi),$$

$$u = -K\xi.$$

Two Riccati equations

ightharpoonup Kalman gain $\underline{L} = PC^{\mathsf{T}}V^{-1}$

$$AP + PA^{\mathsf{T}} - PC^{\mathsf{T}}V^{-1}CP + W = 0,$$

Feedback gain $K = R^{-1}B^{\mathsf{T}}S$ $A^{\mathsf{T}}S + SA - SBR^{-1}B^{\mathsf{T}}S + Q = 0$

Model-free Optimization formulation

☐ Closed-loop dynamics

$$\frac{d}{dt} \begin{bmatrix} x \\ \xi \end{bmatrix} = \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} + \begin{bmatrix} I & 0 \\ 0 & B_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix},$$
$$\begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & C_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} + \begin{bmatrix} v \\ 0 \end{bmatrix}.$$

☐ Feasible region of the controller parameters

$$C_{\text{full}} = \left\{ \mathsf{K} \mid \mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \text{ is full order} \right.$$

$$\left[\begin{matrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{matrix} \right] \text{ is Hurwitz stable} \right\}$$

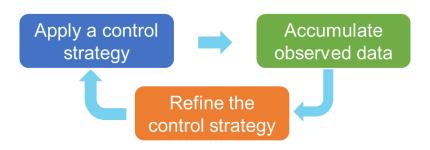
 \square Cost function $\lim_{T\to+\infty}\frac{1}{T}\mathbb{E}\int_0^T(x^\top Qx+u^\top Ru)\,dt$

$$J(\mathsf{K}) = \operatorname{tr}\left(\begin{bmatrix} Q & 0 \\ 0 & C_{\mathsf{K}}^{\mathsf{T}} R C_{\mathsf{K}} \end{bmatrix} X_{\mathsf{K}}\right) = \operatorname{tr}\left(\begin{bmatrix} W & 0 \\ 0 & B_{\mathsf{K}} V B_{\mathsf{K}}^{\mathsf{T}} \end{bmatrix} Y_{\mathsf{K}}\right)$$

LQG as a non-convex optimization problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\mathrm{full}}$

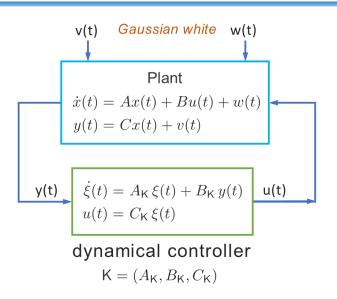
Direct policy iteration $K_{i+1} = K_i - \alpha_i \nabla J(K_i)$



- ✓ Does it converge at all?
- ✓ Converge to which point?
- ✓ Convergence speed?

Optimization
Landscape
Analysis

Model-free Optimization formulation



LQG as a Non-convex Optimization Problem

$$\min_{\mathsf{K}} \ J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\mathrm{full}}$

- ullet Q1: Connectivity of the feasible region $\mathcal{C}_{\mathrm{full}}$
 - Is it connected?
 - If not, how many connected components can it have?
- Q2: Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal, saddle) stationary points?
 - How to check if a stationary point is globally optimal?
- Q3: How to escape high-order saddle points via PGD?

Outline

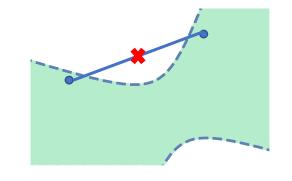
- ☐ LQG problem Setup
- **☐** Connectivity of the Set of Stabilizing Controllers
- ☐ Structure of Stationary Points of the LQG cost
- ☐ Escaping saddle points via PGD

☐ Simple observation: non-convex and unbounded

Lemma 1: the set $\mathcal{C}_{\mathrm{full}}$ is non-empty, unbounded, and can be non-convex.

Example

$$\dot{x}(t) = x(t) + u(t) + w(t)$$
$$y(t) = x(t) + v(t)$$



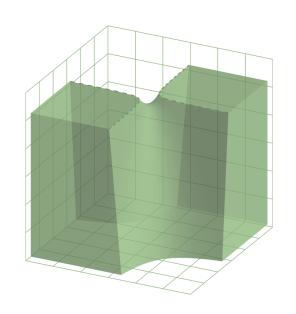
$$C_{\text{full}} = \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| \begin{bmatrix} 1 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \text{ is stable} \right\}.$$

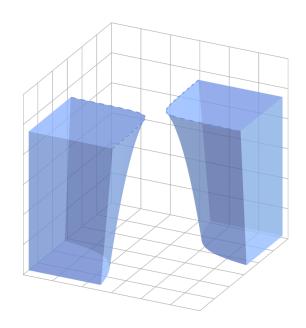
$$\mathsf{K}^{(1)} = egin{bmatrix} 0 & 2 \ -2 & -2 \end{bmatrix}, \qquad \mathsf{K}^{(2)} = egin{bmatrix} 0 & -2 \ 2 & -2 \end{bmatrix}$$
 Stabilize the plant, and thus belong to $\mathcal{C}_{\mathrm{full}}$

$$\hat{\mathsf{K}} = rac{1}{2} \left(\mathsf{K}^{(1)} + \mathsf{K}^{(2)}
ight) = egin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}$$
 Fails to stabilize the plant, and thus outside $\mathcal{C}_{\mathrm{full}}$

☐ Main Result 1: dis-connectivity

Theorem 1: The set $\mathcal{C}_{\mathrm{full}}$ can be disconnected but has at most 2 connected components.

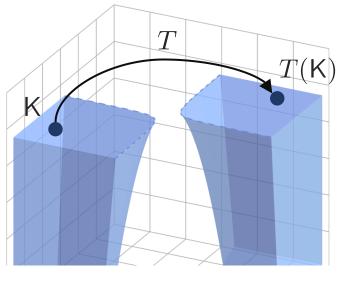




- ✓ Different from the connectivity of static stabilizing state-feedback controllers, which is always connected!
- \checkmark Is this a negative result for gradient-based algorithms? \rightarrow No

☐ Main Result 2: dis-connectivity

Theorem 2: If C_{full} has 2 connected components, then there is a smooth bijection T between the 2 connected components that has the same cost function value.



$$J(\mathsf{K}) = J(T(\mathsf{K}))$$

✓ In fact, the bijection T is defined by a similarity transformation (change of controller state coordinates)

$$\mathscr{T}_T(\mathsf{K}) := \begin{bmatrix} D_\mathsf{K} & C_\mathsf{K} T^{-1} \\ T B_\mathsf{K} & T A_\mathsf{K} T^{-1} \end{bmatrix}.$$

Positive news: For gradient-based local search methods, it makes no difference to search over either connected component.

☐ Main Result 3: conditions for connectivity

- **Theorem 3:** 1) C_{full} is connected if there exists a reduced-order stabilizing controller.
 - 2) The sufficient condition above becomes necessary if the plant is single-input or single-output.

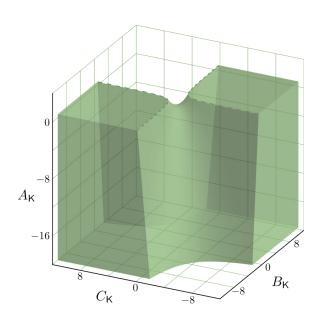
Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers $\mathcal{C}_{\mathrm{full}}$ is connected.

Example: Open-loop stable system

$$\dot{x}(t) = -x(t) + u(t) + w(t)$$
$$y(t) = x(t) + v(t)$$

Routh--Hurwitz stability criterion

$$\mathcal{C}_{\text{full}} = \left\{ \left. \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right| A_{\mathsf{K}} < 1, B_{\mathsf{K}} C_{\mathsf{K}} < -A_{\mathsf{K}} \right\}.$$



☐ Main Result 3: conditions for connectivity

Example: Open-loop unstable system (SISO)

$$\dot{x}(t) = x(t) + u(t) + w(t)$$
$$y(t) = x(t) + v(t)$$

Routh--Hurwitz stability criterion

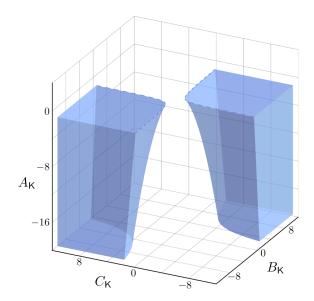
$$\mathcal{C}_{\text{full}} = \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \text{ is stable} \right\}$$
$$= \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| A_{\mathsf{K}} < -1, \ B_{\mathsf{K}}C_{\mathsf{K}} < A_{\mathsf{K}} \right\}.$$

Two path-connected components

$$\mathcal{C}_{1}^{+} := \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| A_{\mathsf{K}} < -1, B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, B_{\mathsf{K}} > 0 \right\},$$

$$\mathcal{C}_{1}^{-} := \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| A_{\mathsf{K}} < -1, B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, B_{\mathsf{K}} < 0 \right\}.$$

Disconnected feasible region



Proof idea: Lifting via Change of Variables

☐ Change of variables in state-space domain: Lyapunov theory

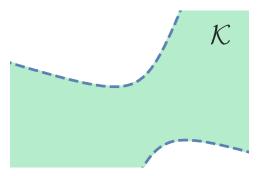
• Connectivity of the static stabilizing state feedback gains

$$\{K \in \mathbb{R}^{m \times n} \mid A - BK \text{ is stable}\}$$

$$\iff \{K \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, P(A - BK)^{\mathsf{T}} + (A - BK)P \prec 0\}$$

$$\iff \{K \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, PA^{\mathsf{T}} - L^{\mathsf{T}}B^{\mathsf{T}} + AP - BL \prec 0, L = KP\}$$

$$\iff \{K = LP^{-1} \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, PA^{\mathsf{T}} - L^{\mathsf{T}}B^{\mathsf{T}} + AP - BL \prec 0\}.$$



Open, connected, possibly nonconvex

How about the set of stabilizing dynamical controllers

$$\begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \text{ is stable}$$

$$\iff \exists P \succ 0, \ P \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} P \prec 0,$$

Change of variables for output feedback control is highly non-trivial

[Gahinet and Apkarian, 1994] [Scherer et al., IEEE TAC 1997]

Proof idea: Lifting via Change of Variables

☐ Change of variables in state-space domain: Lyapunov theory

$$\Phi(\mathsf{Z}) = \begin{bmatrix} \Phi_D(\mathsf{Z}) & \Phi_C(\mathsf{Z}) \\ \Phi_B(\mathsf{Z}) & \Phi_A(\mathsf{Z}) \end{bmatrix} := \begin{bmatrix} I & 0 \\ YB & \Xi \end{bmatrix}^{-1} \begin{bmatrix} G & H \\ F & M-YAX \end{bmatrix} \begin{bmatrix} I & CX \\ 0 & \Pi \end{bmatrix}^{-1}. \qquad \text{[Scherer et al., IEEE TAC 1997]}$$

 $egin{array}{ccccc} \mathcal{F} & imes & \mathrm{GL} & rac{\Phi}{\mathsf{surjective}} & \mathcal{C}_{\mathrm{full}} & \end{array}$ at most 2 connected components

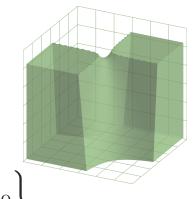
Convex thus connected

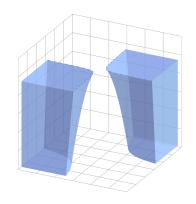
General linear group: the set of invertible matrices (similarity transformation)

Two connected components

$$GL_n^+ = \{ \Pi \in \mathbb{R}^{n \times n} \mid \det \Pi > 0 \},$$

$$GL_n^- = \{ \Pi \in \mathbb{R}^{n \times n} \mid \det \Pi < 0 \}.$$

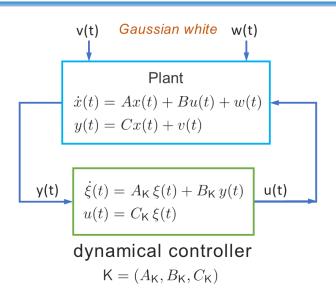




$$\mathcal{F} = \left\{ (X, Y, M, H, F) | X, Y \in \mathbb{S}^n, M \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times p}, F \in \mathbb{R}^{m \times n}, \right.$$

$$\begin{bmatrix} X & I \\ I & Y \end{bmatrix} \succ 0, \begin{bmatrix} AX + BF & A \\ M & YA + HC \end{bmatrix} + \begin{bmatrix} AX + BF & A \\ M & YA + HC \end{bmatrix}^{\top} \prec 0$$

Model-free Optimization formulation



LQG as a Non-convex Optimization Problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\mathrm{full}}$

- ullet Q1: Connectivity of the feasible region $\mathcal{C}_{\mathrm{full}}$
 - Is it connected? No
 - If not, how many connected components can it have? Two
- Q2: Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal, saddle) stationary points?
 - How to check if a stationary point is globally optimal?
- Q3: How to escape high-order saddle points via PGD?

Outline

- ☐ LQG problem Setup
- ☐ Connectivity of the Set of Stabilizing Controllers
- ☐ Structure of Stationary Points of the LQG cost
- ☐ Escaping saddle points via PGD

☐ Simple observations

- 1) J(K) is a real analytic function over its domain (smooth, infinitely differentiable)
- 2) J(K) has **non-unique** and **non-isolated** global optima

$$\dot{\xi}(t) = A_{K} \xi(t) + B_{K} y(t)$$
$$u(t) = C_{K} \xi(t)$$

Similarity transformation

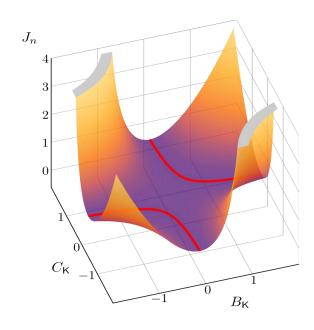
$$(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \mapsto (TA_{\mathsf{K}}T^{-1}, TB_{\mathsf{K}}, C_{\mathsf{K}}T^{-1})$$

- \triangleright $J(\mathsf{K})$ is invariant under similarity transformations.
- ➤ It has many stationary points, unlike the LQR with a unique stationary point

LQG as an Optimization problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$

s.t.
$$K = (A_K, B_K, C_K) \in \mathcal{C}_{\text{full}}$$



☐ Gradient computation

Lemma 1: For every $\mathsf{K} = (A_\mathsf{K}, B_\mathsf{K}, C_\mathsf{K}) \in \mathcal{C}_\mathrm{full}$, we have

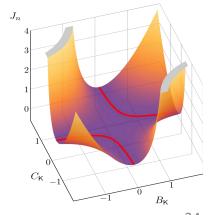
$$\begin{split} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} &= 2 \left(Y_{12}^{\mathsf{T}} X_{12} + Y_{22} X_{22} \right), \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} &= 2 \left(Y_{22} B_{\mathsf{K}} V + Y_{22} X_{12}^{\mathsf{T}} C^{\mathsf{T}} + Y_{12}^{\mathsf{T}} X_{11} C^{\mathsf{T}} \right), \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} &= 2 \left(R C_{\mathsf{K}} X_{22} + B^{\mathsf{T}} Y_{11} X_{12} + B^{\mathsf{T}} Y_{12} X_{22} \right), \end{split}$$

are the unique positive semidefinite solutions to two Lyapunov equations.

How does the set of Stationary **Points look like?**

$$\begin{cases} \mathsf{K} \in \mathcal{C}_{\mathrm{full}} \ \left| \begin{array}{l} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \right\} \end{cases}$$

- ☐ Local minimum, local maximum, saddle points, or globally minimum?



■ Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable A_{K}

$$K = (A_K, 0, 0) \in \mathcal{C}_{\text{full}}$$

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point) or equal to zero (high-order saddle or else).

Example:
$$\dot{x}(t) = -x(t) + u(t) + w(t)$$
 $y(t) = x(t) + v(t)$

$$Q = 1, R = 1, V = 1, W = 1$$

Stationary point: $\mathsf{K}^\star = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix} \in \mathbb{R}^{2 \times 2}, \quad \text{with } a < 0$

$$\text{ Cost function: } J \bigg(\begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \bigg) = \frac{A_{\mathsf{K}}^2 - A_{\mathsf{K}} (1 + B_{\mathsf{K}}^2 C_{\mathsf{K}}^2) - B_{\mathsf{K}} C_{\mathsf{K}} (1 - 3B_{\mathsf{K}} C_{\mathsf{K}} + B_{\mathsf{K}}^2 C_{\mathsf{K}}^2)}{2 (-1 + A_{\mathsf{K}}) (A_{\mathsf{K}} + B_{\mathsf{K}} C_{\mathsf{K}})}.$$

0 and
$$\pm \frac{1}{2(1-a)}$$

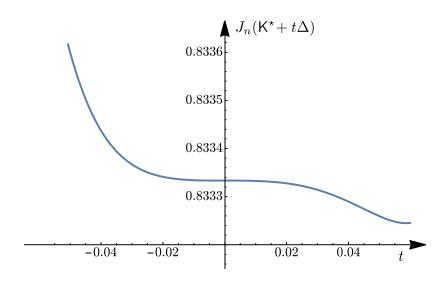
☐ Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable $A_{\rm K}$

$$\mathsf{K} = (A_\mathsf{K}, 0, 0) \in \mathcal{C}_{\mathrm{full}}$$

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point) or equal to zero (high-order saddle or else).

Another example with zero Hessian



How does the set of Stationary Points look like?

$$\begin{cases} \mathsf{K} \in \mathcal{C}_{\mathrm{full}} \ | \ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{cases}$$

- Non-unique, nonisolated
- ☐ Strictly suboptimal points; Strict saddle points
- ☐ All bad stationary points correspond to non-minimal controllers

■ Main Result

Theorem 5:

All stationary points corresponding to controllable and observable controllers are globally optimum.

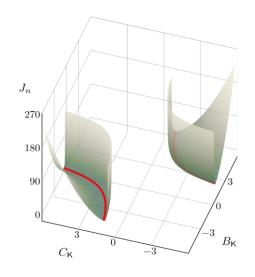
Particularly, given a stationary point that is a minimal controller

- 1) This stationary point is a global optimum of J(K)
- 2) The set of all global optima forms a manifold with 2 connected components. They are connected by a similarity transformation.

$$\left\{ \mathsf{K} \in \mathcal{C}_{\mathrm{full}} \left| \begin{array}{l} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \right\}$$

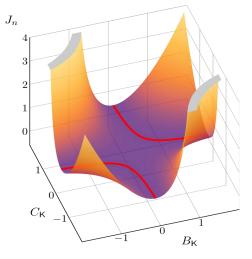
Example: open-loop unstable system

$$\dot{x}(t) = x(t) + u(t) + w(t)$$
$$y(t) = x(t) + v(t)$$



Example: open-loop stable system

$$\dot{x}(t) = -x(t) + u(t) + w(t)$$
$$y(t) = x(t) + v(t)$$



Proof idea

☐ Proof: all minimal stationary points are unique up to a similarity transformation

All minimal stationary points $K = (A_K, B_K, C_K) \in \mathcal{C}_{\text{full}}$ to the LQG problem are in the form of

$$A_{\mathsf{K}} = T(A - BK - LC)T^{-1}, \qquad B_{\mathsf{K}} = -TL, \qquad C_{\mathsf{K}} = KT^{-1},$$

$$K = R^{-1}B^{\mathsf{T}}S, \ L = PC^{\mathsf{T}}V^{-1},$$

T is an invertible matrix and P, S are the unique positive definite solutions to the Riccati equations

 $\frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 2 \left(R C_{\mathsf{K}} X_{22} + B^{\mathsf{T}} Y_{11} X_{12} + B^{\mathsf{T}} Y_{12} X_{22} \right),$

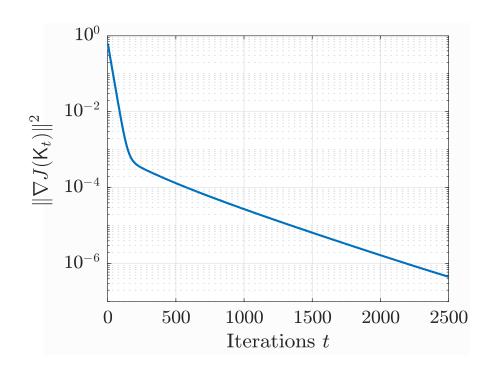
$$\begin{cases} \mathsf{K} \in \mathcal{C}_{\mathrm{full}} \middle| \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \end{cases} & \underset{\mathsf{Controller}}{\mathsf{Minimal}} & \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2 \left(Y_{12}^\mathsf{T} X_{12} + Y_{22} X_{22} \right), \end{cases} & \underset{\mathsf{CK}}{\mathsf{Minimal}} & \underset{\mathsf{Controller}}{\mathsf{Controller}} & \underset{\mathsf{CK}}{\mathsf{Minimal}} & \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2 \left(Y_{12}^\mathsf{T} X_{12} + Y_{22} X_{22} \right), \end{cases} & \underset{\mathsf{CK}}{\mathsf{CK}} & \underset{\mathsf{CK}}{\mathsf{CK}} & \underset{\mathsf{CK}}{\mathsf{CK}} = R^{-1} B^\mathsf{T} S T^{-1} \\ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2 \left(Y_{12} B_{\mathsf{K}} V + Y_{22} X_{12}^\mathsf{T} C^\mathsf{T} + Y_{12}^\mathsf{T} X_{11} C^\mathsf{T} \right), \end{cases}$$

☐ Implication

Corollary: Consider gradient descent iterations

$$\mathsf{K}_{t+1} = \mathsf{K}_t - \alpha \nabla J(\mathsf{K}_t)$$

If the iterates converge to a minimal controller, then this minimal controller is a global optima.



More questions:

- ✓ Escaping saddle points?
- ✓ Convergence conditions?
- ✓ Convergence speed?
- ✓ Alternative model-free parameterization?

Comparison with LQR

LQR as an Optimization problem

$$\min_{K} J(K)$$

s.t.
$$K \in \mathcal{K}$$

LQG as an Optimization problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$

s.t.
$$K = (A_K, B_K, C_K) \in \mathcal{C}_{\text{full}}$$

Connectivity of
feasible region

Always connected

Disconnected, but at most 2 connected comp.

They are almost identical to each other

Stationary points

Unique

- Non-unique, non-isolated stationary points
- Spurious stationary points (strict saddle, nonminimal controller)
- All mini. stationary points are globally optimal

Gradient Descent

- Gradient dominance
- Global fast convergence (like strictly convex)

- No gradient dominance
- Local convergence/speed (unknown)
- Many open questions

References

Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others

Zheng*, Tang*, Li. 2021, link (* equal contribution)

Outline

- ☐ LQG problem Setup
- ☐ Connectivity of the Set of Stabilizing Controllers
- ☐ Structure of Stationary Points of the LQG cost
- ☐ Escaping saddle points via PGD

Perturbed Gradient Descent

☐ Local geometry

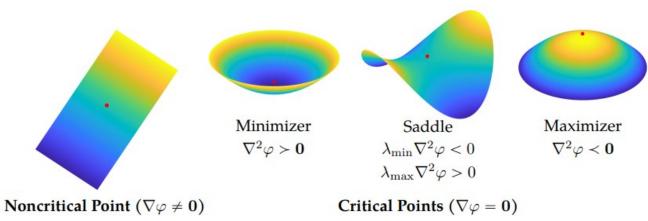
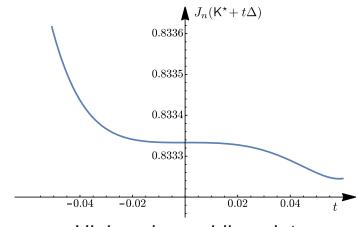


Figure taken from Zhang et al., 2020

- ☐ Strict saddle points: the hessian has a strict negative eigenvalue (i.e., escaping direction)
- □ Non-strict (high-order) saddle points: no such escaping direction, i.e., minimum eigenvalue is zero.
- ☐ Simple perturbed gradient descent (PGD) methods can escape strict saddle points efficiently (e.g., Jin et al., 2017)

LQG as a non-convex optimization problem

$$\min_{\mathsf{K}} J(\mathsf{K})$$
s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\mathrm{full}}$



High-order saddle point with zero hessian

- ✓ Zhang, Yuqian, Qing Qu, and John Wright. "From symmetry to geometry: Tractable nonconvex problems." *arXiv preprint arXiv:2007.06753* (2020).
- ✓ Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., & Jordan, M. I. (2017, July). How to escape saddle points efficiently. In *International Conference on* 32 *Machine Learning* (pp. 1724-1732). PMLR.

Perturbed Gradient Descent

Our idea: a structural perturbation

A high-order saddle

A strict saddle point with the same LQG cost

☐ Theorem 1 (informal): all bad stationary points are in the same form

If
$$\mathsf{K} = \begin{bmatrix} 0 & C_\mathsf{K} \\ B_\mathsf{K} & A_\mathsf{K} \end{bmatrix} \in \mathcal{C}_n$$
 is a stationary point but not minimal, then $\tilde{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_\mathsf{K} & 0 \\ \frac{1}{B}_\mathsf{K} & \hat{A}_\mathsf{K} & 0 \end{bmatrix} \in \mathcal{C}_n$ is also a stationary point with the same LQG cost, where $\hat{\mathsf{K}} = \begin{bmatrix} 0 & \hat{C}_\mathsf{K} \\ \hat{B}_\mathsf{K} & \hat{A}_\mathsf{K} \end{bmatrix} \in \mathcal{C}_q$ is a minimal realization

 \Box Theorem 2 (informal): Choosing the diagonal stable block Λ randomly leads to a strict saddle point with probability almost 1

See details in our paper:

✓ Yang Zheng*, Yue Sun*, Maryam Fazel, and Na Li. "Escaping High-order Saddles in Policy Optimization for Linear Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2204.00912 (2022). *Equal contribution

Perturbed Gradient Descent

Our idea: a structural perturbation

A high-order saddle

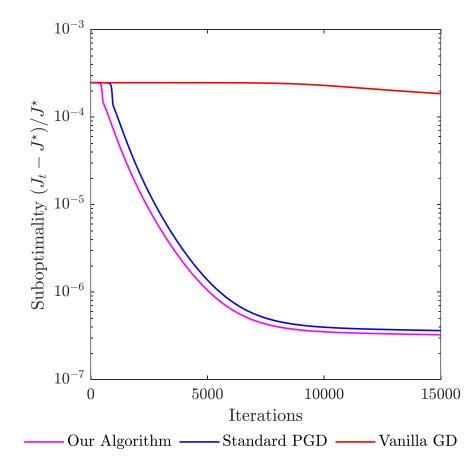
LQG example

$$A = \begin{bmatrix} -0.5 & 0 \\ 0.5 & -1 \end{bmatrix}, B = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, C = \begin{bmatrix} -\frac{1}{6} & \frac{11}{12} \end{bmatrix},$$
$$W = Q = I_2, V = R = 1.$$

Close to be a high-order saddle with zero hessian

$$A_{K,0} = -0.5I_2, \ B_{K,0} = \begin{bmatrix} 0\\0.01 \end{bmatrix}, \ C_{K,0} = [0, -0.01]$$

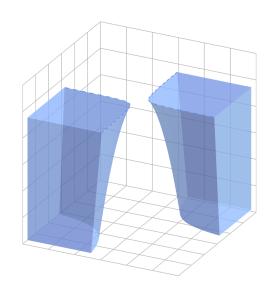
A strict saddle point with the same LQG cost

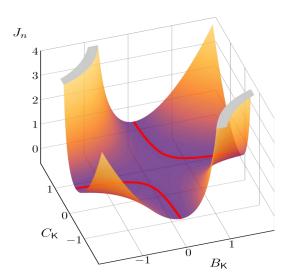


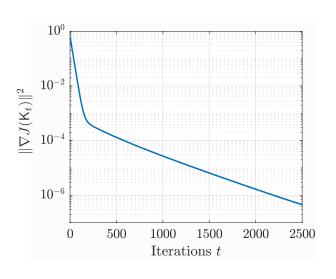
Conclusions

Non-convex optimization for LQG control

- ☐ Much richer and more complicated than LQR
- ☐ Disconnected, but at most 2 connected components
- Non-unique, non-isolated stationary points, strict saddle points
- Minimal stationary points are globally optimal
- ☐ A new perturbed gradient descent algorithm







Ongoing and Future work

- ☐ How to certify the optimality of a non-minimal stationary point
- Convergence proof of perturbed policy gradient (PGD)
- More quantitative analysis of PGD algorithms for LQG
- ☐ Alternative model-free parametrization of dynamical controllers
 - ✓ Better optimization landscape structures, smaller dimension

Non-convex Optimization for Linear Quadratic Gaussian (LQG) Control

Thank you for your attention!

Q&A

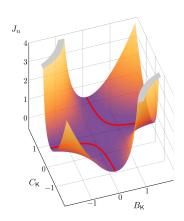
More details. Check out our papers:

https://arxiv.org/abs/2102.04393;

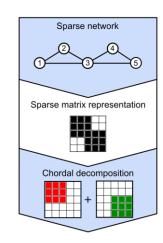
https://arxiv.org/abs/2204.00912

SOC lab at UC San Diego

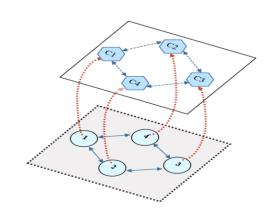
Data-driven and learning-based control



Sparse conic optimization



Scalable distributed control



Connected and autonomous vehicles (CAVs)

