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Motivation
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❑ Model-free methods and data-driven control 
• Use direct policy updates 

• Become very popular in both academia and practice, from game playing, robotics, 
and drones, etc.

DeepMind OpenAI Applications

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; 
Mania et al., 2019; Fazel et al., 2018; Recht, 2019; 



Motivation
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❑ Model-free methods and data-driven control 

Apply a control 

strategy

Accumulate 

observed data

Refine the 

control strategy

• Lack of non-asymptotic performance 
guarantees 

➢ Sample complexity

➢ Suboptimality

➢ Convergence, etc. 

❖ Highly nontrivial even for linear dynamical systems

• Directly search over a given policy class

• Directly optimize performance on the true 
system, bypassing the model estimation 
(not on an approximated model)

Opportunities Challenges



Today’s talk
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❑ Optimal Control

Feedback Paradigm

Feedback 
Controller

System

MeasurementControl input

Control theory: the principled use of feedback 

loops and algorithms to drive a dynamical 
system to its desired goal

d(t) w(t)

y(t)u(t) x(t)

Linear Quadratic Optimal control

• Many practical applications 

• Linear Quadratic Regulator (LQR) when the state 
𝑥𝑡 is directly observable

• Linear Quadratic Gaussian (LQG) control when 
only partial output 𝑦𝑡 is observed 

• Extensive classical results (Dynamic programming, 
Separation principle, Riccati equations, etc.)

Major challenge: how to perform optimal 
control when the system is unknown?



Model-free: Direct policy iteration
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❑ Controller parameterization

• Give a parameterization of control policies; say 
neural networks?

• Control theory already tells us many structural 
properties 

• Linear feedback is sufficient for LQR

• Set of stabilizing controllers

• A fast-growing list of references

Direct policy iteration

✓ Good Landscape properties (Fazel et al., 
2018)

• Connected feasible region

• Unique stationary point

• Gradient dominance

✓ Fast global convergence (exponential)

➢ Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; 
Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others 

LQR as an Optimization problem



Challenges for partially observed LQG

Applications Sparse structures
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❑ Results on model-free LQG control are much fewer

• LQG is more complicated than LQR

• Requires dynamical controllers

• Its landscape properties are much richer and more complicated than LQR

Our focus: Landscape Analysis of LQG

▪ Question 1: Properties of the domain (set of stabilizing 

controllers)

• convexity, connectivity, open/closed?

▪ Question 2: Properties of the accumulated cost

• convexity, differentiability, coercivity?

• set of stationary points/local minima/global minima?



Outline

❑ LQG problem Setup

❑ Connectivity of the Set of Stabilizing Controllers

❑ Structure of Stationary Points of the LQG cost

❑ Conclusions



Outline

❑ LQG problem Setup

❑ Connectivity of the Set of Stabilizing Controllers

❑ Structure of Stationary Points of the LQG cost

❑ Conclusions



LQG Problem Setup
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Gaussian white

➢ order of the controller

➢ full-order

➢ reduced-order

Plant

w(t)v(t)

dynamical controller

➢ internal state of the controller

u(t)y(t)

Minimal controller

The input-output behavior cannot be 

replicated by a lower order controller.

*                       controllable and observable

Controllable

Observable

Standard 
Assumption

Objective: The LQG cost



Separation principle
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Gaussian white

Plant

w(t)v(t)

dynamical controller

u(t)y(t)

Solution: Kalman filter for state estimation 
+ LQR based on the estimated state

Two Riccati equations

➢ Kalman gain

➢ Feedback gain
Explicit dependence on the dynamics

Objective: The LQG cost



LQG as an Optimization problem

Model-free Optimization formulation
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❑ Closed-loop dynamics

❑ Feasible region of the controller parameters 

❑ Cost function

Solution to Lyapunov equations

Direct policy iteration

✓ Does it converge at all?

✓ Converge to which point?

✓ Convergence speed?

Landscape 
Analysis

Hyland, David, and Dennis Bernstein. "The optimal projection equations for fixed-order 
dynamic compensation." IEEE Transactions on Automatic Control 29.11 (1984): 1034-1037.



Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected?

• If not, how many connected components can it have?

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle)

stationary points?

• How to check if a stationary point is globally optimal?

LQG as an Optimization problem
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Connectivity of the feasible region
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❑ Simple observation: non-convex and unbounded

Stabilize the plant, and thus belong to 

Fails to stabilize the plant, and thus outside

Example

Lemma 1: the set          is non-empty, unbounded, and can be non-convex.



Connectivity of the feasible region
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❑Main Result 1: dis-connectivity

Theorem 1: The set can be disconnected but has at most 2 connected components.

✓ Different from the connectivity of static stabilizing state-feedback controllers, 
which is always connected!

✓ Is this a negative result for gradient-based algorithms? → No



Connectivity of the feasible region
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❑Main Result 2: dis-connectivity

Theorem 2: If         has 2 connected components, then there is a smooth bijection T between 

the 2 connected components that has the same cost function value.

✓ In fact, the bijection T is defined by a similarity 
transformation (change of controller state coordinate)

Positive news: For gradient-based local search

methods, it makes no difference to search over

either connected component.



Connectivity of the feasible region
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❑Main Result 3: conditions for connectivity

Theorem 3: 1) is connected if there exists a reduced-order stabilizing controller.

2) The sufficient condition above becomes necessary if the plant is single-input or 

single-output.

Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers          is connected.  

Routh--Hurwitz stability criterion

Example: Open-loop stable system 



Connectivity of the feasible region
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❑Main Result 3: conditions for connectivity

• Routh--Hurwitz stability criterion

Disconnected feasible region

• Two path-connected components

Example: Open-loop unstable system (SISO) 



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

• Connectivity of the static stabilizing state feedback gains

Open, connected, 

possibly nonconvex

• How about the set of stabilizing dynamical controllers Change of variables for 
output feedback control 

is highly non-trivial

[Gahinet and Apkarian, 1994]
[Scherer et al., IEEE TAC 1997]



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

[Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]

Two connected components

Convex thus 

connected

General linear group: the set 

of invertible matrices 

(similarity transformation)

at most 2 connected

components



LQG as an Optimization problem

Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected? No

• How many connected components can it have? Two

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle) stationary 

points?

• How to check if a stationary point is globally optimal?
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Structure of Stationary Points
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❑ Simple observations

Similarity transformation

1) is a real analytic function over its domain

(smooth, infinitely differentiable)

2) has non-unique and non-isolated global optima

➢ is invariant under similarity transformations.

➢ It has many stationary points, unlike the LQR with a unique 
stationary point 

LQG as an Optimization problem



Structure of Stationary Points
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❑ Gradient computation

Lemma 1: For every                                            , we have 

where 

are the unique positive semidefinite solutions to two 

Lyapunov equations. 

How does the set of Stationary 
Points look like?

❑ Non-unique, non-isolated

❑ Local minimum, local 

maximum, saddle points, 

or globally minimum? 



Structure of Stationary Points
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❑Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle 

point) or equal to zero. 

Stationary point:

➢ Cost function:

➢ Hessian:

Indefinite with 
eigenvalues:

Example:



Structure of Stationary Points
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Another example with zero Hessian

❑Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point)

or equal to zero. 

❑ Non-unique, non-

isolated

❑ Strictly suboptimal 

points; Strict saddle 

points

❑ All bad stationary points 
correspond to non-
minimal controllers

How does the set of Stationary 
Points look like?



1) This stationary point is a global optimum of

2) The set of all global optima forms a manifold with 2 connected

components. They are connected by a similarity transformation. 

Particularly, given a stationary point that is a minimal controller

Structure of Stationary Points
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❑Main Result
Theorem 5: All stationary points corresponding to controllable and 

observable controllers are globally optimum.

Example: open-loop 
unstable system

Example: open-loop 
stable system



Proof idea
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❑ Proof: all minimal stationary points are unique up to a similarity transformation

All minimal stationary points                                                   to the LQG problem are in the form of

T is an invertible matrix and  P,  S are the unique positive definite solutions to the Riccati equations

Minimal 
controller

Special case in Theorem 20.6 of Zhou et al., 1996 and 
Section II of Hyland, 1984



Structure of Stationary Points
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❑ Implication

Corollary: Consider gradient descent iterations

If the iterates converge to a minimal controller, then this minimal controller is a global optima.

Open questions:

✓ Convergence conditions?

✓ Convergence speed?

✓ Alternative model-free parameterization

A very recent and related paper on output estimation is 

Umenberger, J., Simchowitz, M., Perdomo, J. C., Zhang, K., & 

Tedrake, R. (2022). Globally Convergent Policy Search over Dynamic 
Filters for Output Estimation. arXiv preprint arXiv:2202.11659.



LQR as an Optimization problem
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Connectivity of
feasible region

Stationary
points

❖ Disconnected, but at most 2 connected comp.

❖ They are almost identical to each other

❖ Non-unique, non-isolated stationary points

❖ Spurious stationary points (strict saddle, 

nonminimal controller)

❖ All mini. stationary points are globally optimal

Zheng*, Tang*, Li. 2021, link (* equal contribution)

Comparison with LQR

LQG as an Optimization problem

❖ Always connected

❖ Unique

Gradient 
Descent

❖ Gradient dominance

❖ Global fast convergence 

(like strictly convex)

❖ No gradient dominance

❖ Local convergence/speed (unknown)

❖ Many open questions

References
Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 
2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 
2019; Feiran Zhao & Keyou You, 2021, and many others 

https://arxiv.org/abs/2102.04393
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Landscape Analysis of LQG control

❑ Much richer and more complicated than LQR

❑ Disconnected, but at most 2 connected components

❑ Non-unique, non-isolated stationary points, strict saddle points

❑ Minimal stationary points are globally optimal
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Ongoing and Future work

❑ A comprehensive classification of stationary points

❑ Conditions for existence of minimal globally optimal controllers

❑ Saddle points with vanishing Hessians may exist. How to deal with them?

❑ Alternative model-free parametrization of dynamic controllers

✓ Better optimization landscape structures, smaller dimension

❑ Perturbed policy gradient?
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Thank you for your attention!

Q & A

More details. Check out our paper: https://arxiv.org/abs/2102.04393

Analysis of the Optimization Landscape of Linear 

Quadratic Gaussian (LQG) Control

https://arxiv.org/abs/2102.04393


SOC lab at UC San Diego

35

Data-driven and 
learning-based 

control

Sparse conic 
optimization

Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

Check out our webpage: https://zhengy09.github.io/soclab.html

   
   

https://zhengy09.github.io/soclab.html

