Distributed Control of Connected Vehicles and Fast ADMM for Sparse SDPs

Yang Zheng

Department of Engineering Science, University of Oxford

Homepage: http://users.ox.ac.uk/~ball4503/index.html

Talk at Cranfield University, May 2017

OUTLINE

1 Distributed Control of Connected Vehicles

2 Fast ADMM for Sparse SDPs

Outline

1 Distributed Control of Connected Vehicles

1) Background

- 2) Modeling: the four-component framework
- 3) Analysis: Stability and Robustness

4) Synthesis: Design of DMPC

- 1. Zheng, Y., Li, S. E., Wang, J., Cao, D., & Li, K. (2016). Stability and scalability of homogeneous vehicular platoon: Study on the influence of information flow topologies. *IEEE Transactions on Intelligent Transportation Systems*, *17*(1), 14-26.
- 2. Zheng, Y., Li, S. E., Li, K., & Wang, L. Y. (2016). Stability margin improvement of vehicular platoon considering undirected topology and asymmetric control. IEEE Transactions on Control Systems Technology, 24(4), 1253-1265.
- 3. Zheng, Y., Li, S. E., Li, K., Borrelli, F., & Hedrick, J. K. (2017). Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies. IEEE Transactions on Control Systems Technology, 25(3), 899-910.

Background: Vehicle Platoon

Control Objectives

- a) to ensure all the vehicles in the same group to move at the same speed with the leader
- b) to maintain the desired spaces between adjacent vehicles

Potential Benefits

- Improve traffic efficiency, enhance road safety, and reduce fuel consumption, etc.
- The earliest implementation can date back to the PATH program during the last eighties

Real-world experiments

USA - PATH

View platoons from a networked control perspective

Connected Vehicle by V2V

New challenges: Variety of topologies

- 1. Dynamical Modeling
- 2. Performance Analysis
- 3. Controller Synthesis

Different Communication Topologies

- 1. The four-component framework
- 2. Stability and robustness analysis
- 3. Design of Distributed Model Predictive Control

Modeling: Networks of Dynamical Systems

Source: http://www.mcs.anl.gov/~fulin/talks/argonne.pdf

Applications

- From Control Perspective
 - 1. Dynamics + Communication
 - 2. Control Theory + Graph Theory

Research topics

- 1. Dynamic: single integrator, double integrator, linear dynamic, nonlinear dynamic
- 2. Communication: data rate, switching topology, time-delay

Vehicle platoons can be viewed as a special one-dimensional network of dynamical system

Modeling of Platoons: the four-component framework

- Vehicle Dynamics: linear dynamics, nonlinear dynamics;
- Formation Geometry: constant spacing, time headway policy.
- Distributed Controller: linear controller, MPC, robust control;
- ➢ Information Flow Topology: PF, PFL, BD, etc; ←

Algebraic graph theory

Explicitly highlight the influence of different components !

■ Modeling: Categorization of existing works [Li and Zheng et al., 2015]

Node Dynamics (ND)									
Single-integrator	Second-orde	r model	Third-order model	Third-order model SISO mod					
[49][50][51][52][53]	[13][15][16][28][29][32]][49][61][62][63][6	[33][44][46][47][48 [3][5][6][6][69][72][73] [27][30]	8][9][10][11][14][15][17][[31][34][36][42][45][58][6	19][20][23][26] 7][68][70][71]	[12][41][59][64][65]	[18][35][43][54][56][60]			
	Homogene	ous		Hete	rogeneous				
[3][5][6][8][10][15][16][20][23][28][30][31][32][33][34][41][42][46][48][49][50][51][52][53] [9][10][11][12][13][14][17][18][19][26][27][29][35][36][43][4 [58][59][61][62][63][65][66][69][70][73] 7][54][56][60][64][67][68][71][72]									
		Information Flov	v Topology (IFT)						
PF	7	PFL	BD		BDL	TPF			
[3][8][9][10][11][15][19]][42][45][46][48][54][58	[3][8][9][10][11][15][19][20][23][27][30][36][41][42][45][46][48][54][58][61][65][70][71][73]		[12][13][16][23][30][32][33][34][41][43][47][48][49][59][60][64][68][72][73]		[12][23][30][34]	[20][23][30] [58]			
TPFL		Undirected	Limited Range		General Topologi	es			
[23][30] [23][30][31][34][44][62]			[64][66] [23][28][29][30][32][50][51][52][53][63]						
	Distributed Controller (DC)								
	Linear Controlle	ar (Optimal Controller	\mathcal{H}_{∞} controller	SMC	MPC			
[3][6][9][11][12][13][16][19][23][27][28][29][30][31][32][33][34][36][41][42][44][47][48][50][52][53][58][59][60][61][62][64][65][66][68][69][70][71][72][73			46 [15][17][49] [51][54][63]	[14][26][20][67]	[5][8][10] [35][43][56]	[18][19][45]			
		Formation G	eometry (FG)						
CD CTH [3][5][6][9][11][12][13][14][16][17][18][23][26][28][30][31][32][33][34][35][41][43][44][46 [9][10][15][19][20][27][29][36][42][45][54][6][47][48][49][50][51][52][53][55][56][58][59][61][62][63][64][66][67][68][69][72][73] 0][64][65][71][73]									
Performance Metric									
	String Stability		Stability Mar	gin	Coher	ence Behavior			
[3][5][6][8][9][10][11][12 44][45][46][54][56][58]	2][14][15][17][18][19][20][59][60][61][62][64][65]][26][27][35][36][41][42][43][[67][68][69][70][71][72][73]	[13][16][23][28][29][30] [6	[31][32][33][34][47 3]	7][48] [16] [5	[[49][50][51] 52][53][66]			

TABLE I. CATEGORIZATION OF PLATOON CONTROL

Modeling: Typical case

1. Linear dynamics $\dot{x}_i(t) = Ax_i(t) + B_1u_i(t) + B_2w_i(t)$ $x_i(t) = \begin{bmatrix} p_i \\ v_i \\ a_i \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -\frac{1}{\tau} \end{bmatrix}, B_1 = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\tau} \\ \frac{1}{\tau} \end{bmatrix}, B_2 = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\tau} \\ \frac{1}{\tau} \end{bmatrix}$

2. Constant spacing policy

$$\begin{cases} \lim_{t \to \infty} \|v_i(t) - v_0(t)\| = 0, \quad i = 1, 2, \dots N \\ \lim_{t \to \infty} \|p_{i-1}(t) - p_i(t) - d_{i-1,i}\| = 0 \end{cases},$$

3. Communication topology

Pinning matrix \mathcal{P} , Adjacency matrix \mathcal{A} , Laplacian matrix \mathcal{L}

4. Linear controller

$$u_{i}(t) = -\sum_{j \in \mathbb{I}_{i}} \left[k_{p} \left(p_{i} - p_{j} - d_{i,j} \right) + k_{v} \left(v_{i} - v_{j} \right) + k_{a} \left(a_{i} - a_{j} \right) \right]$$

Closed-loop dynamics

$$\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes B_1 k^T\} \cdot X + I_N \otimes B_2 \cdot W$$

Analysis: Stability and Robustness

Performance index

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes B_1 k^T\} \cdot X + I_N \otimes B_2 \cdot W$

10c

Stability Region Analysis [Zheng et al. 2014, ITSC]

Consider a homogeneous platoon with linear controllers given by

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\}X$

If graph *G* satisfies certain conditions (all the eigenvalues of $\mathcal{L} + \mathcal{P}$ are positive real numbers), the platoon is asymptotically stable if and only if

$$\begin{cases} k_p > 0\\ k_v > k_p \tau / \min(\lambda_i k_a + 1)\\ k_a > -1 / \max(\lambda_i) \end{cases}$$

Proof sketch:

Similarity transformation + Routh–Hurwitz stability criterion

$$S(I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T) = \bigcup_{i=1}^N \{S(A - \lambda_i Bk^T)\}$$
$$|sI - (A - \lambda_i Bk^T)| = s^3 + \frac{\lambda_i k_a + 1}{\tau} s^2 + \frac{\lambda_i k_v}{\tau} s + \frac{\lambda_i k_p}{\tau}$$

Scaling of Stability Margin [Zheng et al. 2016, IEEE ITS]

Consider a homogeneous platoon with linear controllers given by

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\} X$

- (2.1) if the graph G is in Bidirectional topology, then the stability margin decays to zero as $O(1/N^2)$
- (2.2) if the graph G is in BDL topology, then the stability margin is always bounded away from zero.

Bidirectional-leader (BDL) topology

Stability Margin Improvement : Asymmetric control [Zheng et al. 2016, IEEE CST]

Consider a homogeneous platoon under the BD topology with the asymmetric controller architecture given by

$$\dot{X} = \{I_N \otimes A - (\mathcal{L}_{BD} + \mathcal{P}_{BD})_{\epsilon} \otimes Bk^T\}X$$

(3.2) For any fixed $\epsilon \in (0,1)$, the stability margin is bounded away from zero and independent of the platoon size *N* (*N* can be any finite integer).

Asymmetric control

The controller is called asymmetric, if

$$\begin{cases} k_i^f = (1+\epsilon)k, k_i^b = (1-\epsilon)k & i = 1, \cdots, N-1 \\ k_N^f = (1+\epsilon)k, \end{cases}$$

where $\epsilon \in (0,1)$ is called the asymmetric degree. Note that if $\epsilon = 0$, then it is reduced to the symmetric case.

Stability Margin Improvement : Asymmetric control [Zheng et al. 2016, IEEE CST]

- □ Tradeoff: Convergence Speed and Transient Performance
 - Benefit: bounded stability margin
 good for convergence speed
 - Cost: overshooting phenomena in transient process.

Space errors for homogeneous platoons under BD topology with different asymmetric degree ϵ . (a) ϵ =0 (symmetric); (b) ϵ =0.2; (c) ϵ =0.4; (d) ϵ =0.6

Stability Margin Improvement : Topological Selection [Zheng et al. 2016, IEEE CST]

Consider a homogeneous platoon with linear controllers given by

 $\dot{X} = \{I_N \otimes A - (\mathcal{L} + \mathcal{P}) \otimes Bk^T\}X$

(3.1) if the graph *G* is undirected, to maintain bounded stability margin, it needs at least lots of followers (i.e. $\Omega(N) = O(N)$) to obtain the leader's information.

To maintain bounded stability margin, the tree depth of graph G should be a constant number and independent of the platoon size N

Stability Margin Improvement : Topological Selection [Zheng et al. 2016, IEEE CST]

Extending information flow to reduce the tree depth is one major way to guarantee a bounded stability margin.

Design of DMPC for Nonlinear Heterogeneous platoons

Design a distributed controller for a heterogeneous platoon considering **nonlinear dynamics**, **input constraints** and **variety of communication topologies**

DMPC: Local open-loop optimal control problem

This is based on the local average of neighboring outputs.

DMPC: Local open-loop optimal control problem

Assumption 1 (Unidirectional topology): The graph G contains a spanning tree rooting at the leader, and the communications are unidirectional from preceding vehicles to downstream ones

Sufficient conditions [Zheng *et al.* 2017 IEEE CST]

If G satisfies Assumption 1, a platoon under proposed DMPC is asymptotically stable if satisfying

$$F_i \ge \sum_{j \in \mathbb{O}_i} G_j$$
, $i \in \mathcal{N}$

The main strategy is to construct a proper Lyapunov function for the platoon and prove its decreasing property

sum of local cost functions

4.	Synthesis:	Design	of DMPC
----	-------------------	--------	---------

The de	esired traje	ectory v_0 =	$= \begin{cases} 20 \ m/s \\ 20 + 2t \\ 22 \ m/s \end{cases}$	t <u>s</u> m/s 1s t 1	$\leq 1 s$ $t < t \leq 2 s^{\bullet} \leftarrow$ $> 2s$	• ←	(a)	← ● ←	- •
Weights	PF	PLF	TPF	TPLF	-	•		← ● ←	_ •
F _i	$F_i = 10I_2, \\ i \in \mathcal{N}$	$F_i = 10I_2, \\ i \in \mathcal{N}$	$F_i = 10I_2, \\ i \in \mathcal{N}$	$F_i = 10I_2, \\ i \in \mathcal{N}$	_				
G _i	$G_1 = 0,$ $G_i = 5I_2,$ $i \in \mathcal{N} \setminus \{1\}$	$\begin{array}{l} G_1 = 0, \\ G_i = 5I_2, \\ i \in \mathcal{N} \backslash \{1\} \end{array}$	$\begin{array}{l} G_1 = 0, \\ G_i = 5I_2, \\ i \in \mathcal{N} \backslash \{1\} \end{array}$	$\begin{array}{l} G_1 = 0, \\ G_i = 5I_2, \\ i \in \mathcal{N} \backslash \{1\} \end{array}$			(c)		_ •
Q _i	$\begin{array}{l} Q_1 = 10I_2,\\ Q_i = 0,\\ i \in \mathcal{N} \backslash \{1\} \end{array}$	$\begin{array}{l} Q_i = 10I_2, \\ i \in \mathcal{N} \end{array}$	$Q_{1} = 10I_{2}, Q_{2} = 10I_{2}, Q_{i} = 0, i \in \mathcal{N} \setminus \{1, 2\}$	$\begin{aligned} Q_i &= 10I_2, \\ i \in \mathcal{N} \end{aligned}$	N	N-1	(d) N-2 2		0
R _i	$\begin{aligned} R_i &= I_2, \\ i \in \mathcal{N} \end{aligned}$	$R_i = I_2, \\ i \in \mathcal{N}$	$\begin{aligned} R_i &= I_2, \\ i \in \mathcal{N} \end{aligned}$	$\begin{aligned} R_i &= I_2, \\ i \in \mathcal{N} \end{aligned}$.		6 ··· 🍋		
0.2 0.15 0.1 0.1 0.05 0.05 0.05 -0.15 0.05	(a) PF	1 2 3 4 5 6 7 7	0.2 0.15 0.15 0.05		0.15 0.15 0.05 0.05 0 0.05 0 0.05 0 0 0.05 0 0 0.05 0 0 0 0 0 0 0 0 0 0 0 0 0		$\begin{array}{c} 0.2\\ 0.15\\ 0.15\\ 0.05\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 7\\ 4\\ 6\\ 1 \\ F\\ 21\\ \end{array} $	

Outline

2 Fast ADMM for Sparse SDPs

1) SDPs with Chordal Sparsity

2) ADMM for Primal and Dual Sparse SDPs

3) ADMM for the Homogeneous Self-dual Embedding

4) CDCS: Cone Decomposition Conic Solver

- 1. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2016). Fast ADMM for semidefinite programs with chordal sparsity. *arXiv preprint arXiv:1609.06068*.
- 2. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2016). Fast ADMM for homogeneous selfdual embeddings of sparse SDPs. arXiv preprint arXiv:1611.01828.

Standard Primal-dual Semidefinite Programs (SDPs)

• **Applications:** control theory, power systems, polynomial optimization, combinatorics, operations research, etc.

Control of a networked system (e.g., via Lyapunov theory)

Optimal power flow problem (*e.g.*, by dropping a rank constraint)

Standard Primal-dual Semidefinite Programs (SDPs)

- Applications: control theory, fluid mechanics, polynomial optimization, combinatorics, operations research, etc.
- Interior-point solvers: SeDuMi, SDPA, SDPT3 (suitable for small and medium-sized problems); Modelling package: YALMIP, CVX;
- Large-scale cases: it is important to exploit the inherent structure of the instances (De Klerk, 2010):
 - Low Rank
 - Algebraic Symmetry
 - > Chordal Sparsity:
 - ✓ Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010;
 - ✓ First-order methods: Madani et al. 2015; Sun, Andersen, and Vandenberghe, 2014.

Sparsity Pattern of Matrices

 $\min_{X} \quad \langle C, X \rangle$ subject to $\mathcal{A}(X) = b$, $X \in \mathbb{S}^{n}_{+}$, $\begin{array}{ll} \max_{y,Z} & \langle b,y \rangle \\ \text{subject to} & \mathcal{A}^*(y) + Z = C, \\ & Z \in \mathbb{S}^n_+. \end{array}$

Sparse matrices

Dual

 $S^{n}(\mathcal{E}, 0) = \left\{ X \in S^{n} | X_{ij} = 0, \forall (i, j) \notin \mathcal{E} \right\}$ $S^{n}_{+}(\mathcal{E}, 0) = \left\{ X \in S^{n}(\mathcal{E}, 0) | X \ge 0 \right\}$

 $S^n(\mathcal{E},?)$ = the set of $n \times n$ partial symmetric matrices with elements defined on \mathcal{E} .

 $\mathbb{S}^n_+(\mathcal{E},?) = \left\{ X \in \mathbb{S}^n(\mathcal{E},?) | \exists M \ge 0, M_{ij} = X_{ij}, \forall (i,j) \in \mathcal{E} \right\}$

 $\mathbb{S}^{n}_{+}(\mathcal{E},?)$ and $\mathbb{S}^{n}_{+}(\mathcal{E},0)$ are dual cones of each other.

Chordal Graph

A graph G is *chordal* if every cycle of length at least four has a chord.

Any non-chordal graph can be chordal extended;

A chordal graph can be decomposed into its maximal cliques $C = \{C_1, C_2, \dots, C_p\}$.

• Cliques in a graph are maximal complete subgraphs

Clique Decomposition

Given a choral graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with a set of maximal cliques $\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_p$

Grone's Theorem:

 $X \in \mathbb{S}^n_+(\mathcal{E},?)$ if and only if $X(\mathcal{C}_k) \ge 0, k = 1, ..., p$.

Clique Decomposition

Given a choral graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ with a set of maximal cliques $\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_p$

Agler's Theorem:

 $X \in \mathbb{S}^n_+(\mathcal{E}, 0)$ if and only if there exists $M_k \in \mathbb{S}^n_+(\mathcal{C}_k)$ such that $X = \sum_{k=1}^p M_k$.

+

 $X\in \mathbb{S}^n_+(\mathcal{E},0)$

 $M_1 \in \mathbb{S}^n_+(\mathcal{C}_1)$

 $M_2 \in \mathbb{S}^n_+(\mathcal{C}_2)$

 $M_3 \in \mathbb{S}^n_+(\mathcal{C}_3)$

Sparse Cone Decomposition (chordal)

Topics in this talk

- ✓ ADMM for primal and dual SDPs;
- ✓ ADMM for the homogeneous self-dual embedding;

+

 ✓ CDCS: Cone Decomposition Conic Solver.
 28

ADMM algorithm

 $\begin{array}{ll} \min & f(x) + g(y) \\ \text{subject to} & Ax + By = c, \end{array}$

Augmented Lagrangian

$$L_{\rho}(x, y, z) = f(x) + g(y) + \frac{\rho}{2} \left\| Ax + By - c + \frac{1}{\rho} z \right\|^{2}$$

ADMM steps

Iterations of ADMM:

 $\begin{aligned} x^{(n+1)} &= \arg\min_{x} L_{\rho}(x, y^{(n)}, z^{(n)}), & \longrightarrow \quad \text{a)} \quad \text{An x-minimization step} \\ y^{(n+1)} &= \arg\min_{y} L_{\rho}(x^{(n+1)}, y, z^{(n)}), & \longrightarrow \quad \text{b)} \quad \text{A y-minimization step} \\ z^{(n+1)} &= z^{(n)} + \rho(Ax^{(n+1)} + By^{(n+1)} - c). & \longrightarrow \quad \text{c)} \quad \text{A dual variable update} \end{aligned}$

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. *Foundations and Trends® in Machine Learning, 3*(1), 1-122.

Cone Decomposition of Sparse SDPs

✓ A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;
 ✓ Our idea: introduce additional variables to decouple the coupling constraints.

ADMM for primal SDPs

 $\begin{array}{ccc} \min_{x} & c^{T}x \\ \text{subject to} & Ax = b \\ \max(H_{k}x) \in \mathbb{S}_{+}^{|\mathcal{C}_{k}|}, k = 1, \dots, p., \end{array} \xrightarrow{\begin{sublementation} \min_{x, x_{1}, \dots, x_{p}} & \langle c, x \rangle \\ \text{subject to} & Ax = b, \\ x_{k} = H_{k}x \\ x_{k} \in \mathcal{S}_{k}, \quad k = 1, \dots, p. \end{array}$

Reformulate using indicator functions

$$\min_{x,x_1,\dots,x_p} \quad \langle c,x \rangle + \delta_0 \left(Ax - b \right) + \sum_{k=1}^p \delta_{\mathcal{S}_k}(x_k)$$

subject to $x_k = H_k x, \quad k = 1, \dots, p.$

Augmented Lagrangian

$$\mathcal{L} := \langle c, x \rangle + \delta_0 \left(Ax - b \right) \\ + \sum_{k=1}^p \left[\delta_{\mathcal{S}_k}(x_k) + \frac{\rho}{2} \left\| x_k - H_k x + \frac{1}{\rho} \lambda_k \right\|^2 \right]$$

• Regroup the variables

$$\mathcal{X} := \{x\},$$

$$\mathcal{Y} := \{x_1, \dots, x_p\},$$

$$\mathcal{Z} := \{\lambda_1, \dots, \lambda_p\}.$$

32

ADMM for primal SDPs

 $\min_{x} c^{T}x$
subject to Ax = b

 $\max(H_k x) \in \mathbb{S}_+^{|\mathcal{C}_k|}, k = 1, \dots, p.,$

• 1) Minimization over block X

$$\min_{x} \quad \langle c, x \rangle + \frac{\rho}{2} \sum_{k=1}^{p} \left\| x_{k}^{(n)} - H_{k}x + \frac{1}{\rho} \lambda_{k}^{(n)} \right\|^{2}$$

subject to $Ax = b$.

• 2) Minimization over block Y

$$\min_{x_k} \quad \left\| x_k - H_k x^{(n+1)} + \rho^{-1} \lambda_k^{(n)} \right\|^2$$

subject to $x_k \in \mathcal{S}_k$.

QP with linear constraint (Projections onto a linear subspace)

 $\begin{array}{c} x_k = H_k x \\ x_k \in \mathcal{S}_k, \\ x_k \in \mathcal{S}_k, \\ k = 1, \dots, p. \end{array}$ Consensus

 $\min_{x,x_1,\ldots,x_p} \quad \langle c,x \rangle$

subject to Ax = b,

Projections onto small PSD cones; Can be computed in parallel.

• 3) Update multipliers

$$\lambda_k^{(n+1)} = \lambda_k^{(n)} + \rho \left(x_k^{(n+1)} - H_k x^{(n+1)} \right)$$

ADMM for dual SDPs

 $\min_{\substack{y, z_k, v_k}} - \langle b, y \rangle$ subject to $A^T y + \sum_{k=1}^p H_k^T v_k = c,$ Consensus $\begin{bmatrix} z_k - v_k = 0, \\ z_k \in \mathcal{S}_k, \end{bmatrix} k = 1, \dots, p,$ $k = 1, \dots, p.$ $\min_{y, z_k} - \langle b, y \rangle$ subject to $A^T y + \sum_{k=1}^p H_k^T z_k = c,$ $z_k \in \mathcal{S}_k, \qquad k = 1, \ldots, p.$

Reformulate using indicator functions •

min
$$-\langle b, y \rangle + \delta_0 \left(c - A^T y - \sum_{k=1}^p H_k^T v_k \right) + \sum_{k=1}^p \delta_{\mathcal{S}_k}(z_k)$$

subject to $z_k = v_k, \quad k = 1, \dots, p.$

Augmented Lagrangian Lagrangian $\mathcal{L} := -\langle b, y \rangle + \delta_0 \left(c - A^T y - \sum_{k=1}^p H_k^T v_k \right) \qquad \qquad \mathcal{X} := \{y, v_1, \dots, v_p\}, \\ \mathcal{Y} := \{z_1, \dots, z_p\}, \\ \mathcal{Z} := \{\lambda_1, \dots, \lambda_p\}.$ • $+\sum_{k=1}^{p} \left[\delta_{\mathcal{S}_{k}}(z_{k}) + \frac{\rho}{2} \left\| z_{k} - v_{k} + \frac{1}{\rho} \lambda_{k} \right\|^{2} \right], \checkmark \quad \text{QP with linear constraints} \\ \checkmark \quad \text{Projections in parallel}$

ADMM steps in the dual form are scaled versions of those in the primal form !

The Big Picture

The duality between the primal and dual SDP is inherited by the decomposed problems by virtue of the duality between Grone's and Agler's theorems.

3. ADMM for the Homogenous Self-dual Embedding

KKT condition

min
 $x,x_1,...,x_p$ $\langle c, x \rangle$ \min_{y,z_k,v_k} $-\langle b, y \rangle$ Primalsubject toAx = b,
 $x_k = H_k x$
 $x_k \in S_k$,Dualsubject to $A^T y + \sum_{k=1}^p H_k^T v_k = c$,
 $z_k - v_k = 0$,
 $z_k \in S_k$,k = 1, ..., p,
 $z_k \in S_k$,k = 1, ..., p.

Notational simplicity

$$s := \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}, \quad z := \begin{bmatrix} z_1 \\ \vdots \\ z_p \end{bmatrix}, \quad v := \begin{bmatrix} v_1 \\ \vdots \\ v_p \end{bmatrix}, \quad H := \begin{bmatrix} H_1 \\ \vdots \\ H_p \end{bmatrix}, \quad S := S_1 \times \dots \times S_p$$

- KKT conditions
 - ➢ Primal feasible $\begin{aligned} Ax^* r^* &= b, & r^* = 0, \\ s^* + w^* &= Hx^*, & w^* = 0, & s^* \in \mathcal{S}. \end{aligned}$

Dual feasible
$$A^{T}y^{*} + H^{T}v^{*} + h^{*} = c, \quad h^{*} = 0, \\ z^{*} - v^{*} = 0, \quad z^{*} \in \mathcal{S}.$$

> Zero-duality gap $c^T x^* - b^T y^* = 0.$

3. ADMM for the Homogenous Self-dual Embedding

The Homogeneous Self-dual Embedding

$$\begin{bmatrix} h\\z\\r\\w\\\kappa \end{bmatrix} = \begin{bmatrix} 0 & 0 & -A^T & -H^T & c\\0 & 0 & 0 & I & 0\\A & 0 & 0 & 0 & -b\\H & -I & 0 & 0 & 0\\-c^T & 0 & b^T & 0 & 0 \end{bmatrix} \begin{bmatrix} x\\s\\y\\v\\\tau \end{bmatrix}$$

 τ, κ : two non-negative and complementary variables

• Notational simplicity

$$u := \begin{bmatrix} x \\ s \\ y \\ v \\ \tau \end{bmatrix}, \quad v := \begin{bmatrix} h \\ z \\ r \\ w \\ \kappa \end{bmatrix}, \quad Q := \begin{bmatrix} 0 & 0 & -A^T & -H^T & c \\ 0 & 0 & 0 & I & 0 \\ A & 0 & 0 & 0 & -b \\ H & -I & 0 & 0 & 0 \\ -c^T & 0 & b^T & 0 & 0 \end{bmatrix}$$
$$\mathcal{K} := \mathbb{R}^{n^2} \times \mathcal{S} \times \mathbb{R}^m \times \mathbb{R}^{n_d} \times \mathbb{R}_+.$$

• Feasibility problem

find
$$(u, v)$$

subject to $v = Qu$,
 $(u, v) \in \mathcal{K} \times \mathcal{K}^*$

 The big sparse PSD cone has already been equivalently replaced by a set of coupled small PSD cones;

3. ADMM for the Homogenous Self-dual Embedding

ADMM algorithm

find
$$(u, v)$$

subject to $v = Qu$,
 $(u, v) \in \mathcal{K} \times \mathcal{K}^*$

ADMM steps (similar to the solver SCS [1])

 $\hat{u}^{k+1} = (I+Q)^{-1}(u^k+v^k), \bullet \to \bullet$ Projection onto a subspace $v^{k+1} = v^k - \hat{u}^{k+1} + u^{k+1}.$

Q is highly structured and sparse

$$Q := \begin{bmatrix} 0 & 0 & -A^T & -H^T & c \\ 0 & 0 & 0 & I & 0 \\ A & 0 & 0 & 0 & -b \\ H & -I & 0 & 0 & 0 \\ -c^T & 0 & b^T & 0 & 0 \end{bmatrix}$$

 $u^{k+1} = \prod_{\mathcal{K}} (\hat{u}^{k+1} - v^k),$ Projection onto cones (smaller dimension) $\mathcal{K} := \mathbb{R}^{n^2} \times \mathcal{S} \times \mathbb{R}^m \times \mathbb{R}^{n_d} \times \mathbb{R}_+$ $\mathcal{S} := \mathcal{S}_1 \times \cdots \times \mathcal{S}_n$

38

- Block elimination can be applied here to speed up the projection greatly;
- \checkmark Then, the per-iteration cost is the same as applying a splitting method to the primal or dual alone.

[1] O'Donoghue, B., Chu, E., and Parikh, Nealand Boyd, S. (2016b). Conic optimization via operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3), 1042–1068

CDCS

- An open source MATLAB solver for partially decomposable conic programs;
- CDCS supports constraints on the following cones:
 - ✓ Free variables
 - $\checkmark\,$ non-negative orthant
 - ✓ second-order cone
 - $\checkmark\,$ the positive semidefinite cone.
- Input-output format is in accordance with SeDuMi;
- Works with latest Yalmip release.

Syntax:

[x,y,z,info] = cdcs(At,b,c,K,opts);

Download from https://github.com/OxfordControl/CDCS

Random SDPs with block-arrow pattern

- Block size: d,
- Number of Blocks: I
- Arrow head: h
- Number of constraints: m

Numerical Comparison

- SeDuMi
- SCS
- sparseCoLO (preprocessor) +SeDuMi

CDCS and SCS $\epsilon_{tol} = 10^{-3}$

Numerical Results

Fig. 3. CPU time for SDPs with block-arrow patterns. Left to right: varying number of constraints; varying number of blocks; varying block size.

Benchmark problems in SDPLIB [2]

Three sets of benchmark problems in SDPLIB (Borchers, 1999):

- 1) Four small and medium-sized SDPs (theta1, theta2, qap5 and qap9);
- 2) Four large-scale sparse SDPs (maxG11, maxG32, qpG11 and qpG51);
- 3) Two infeasible SDPs (infp1 and infd1).

	Small and medium-size $(n \le 100)$			Large-scale and sparse $(n \ge 800)$				Infeasible		
	theta1	theta2	qap5	qap9	maxG11	maxG32	qpG11	qpG51	infp1	infd1
Original cone size, n	50	100	26	82	800	2000	1600	2000	30	30
Affine constraints, m	104	498	136	748	800	2000	800	1000	10	10
Number of cliques, p	1	1	1	1	598	1499	1405	1675	1	1
Maximum clique size	50	100	26	82	24	60	24	304	30	30
Minimum clique size	50	100	26	82	5	5	1	1	30	30

Table 1. Details of the SDPLIB problems considered in this work.

[2] Borchers, Brian. "SDPLIB 1.2, a library of semidefinite programming test problems." *Optimization Methods and Software* 11.1-4 (1999): 683-690.

41

Result: small and medium-sized instances

		SeDuMi	SparseCoLO+ SeDuMi	SCS	CDCS (primal)	CDCS (dual)	Self-dual
theta1	Total time (s) Pre- time (s) Iterations Objective	0.262 0 14 2.300×10^{1}	$0.279 \\ 0.005 \\ 14 \\ 2.300 \times 10^{1}$	$0.145 \\ 0.011 \\ 240 \\ 2.300 \times 10^{1}$	$\begin{array}{c} 0.751 \\ 0.013 \\ 317 \\ 2.299 \times 10^1 \end{array}$	0.707 0.010 320 2.299×10^{1}	$0.534 \\ 0.012 \\ 230 \\ 2.303 \times 10^{1}$
theta2	Total time (s) Pre- time (s) Iterations Objective	1.45 0 15 3.288×10^{1}	1.55 0.014 15 3.288×10^{1}	0.92 0.018 500 3.288×10^{1}	$ \begin{array}{r} 1.45 \\ 0.046 \\ 287 \\ 3.288 \times 10^1 \end{array} $	$ \begin{array}{r} 1.30 \\ 0.036 \\ 277 \\ 3.288 \times 10^1 \end{array} $	0.60 0.031 110 3.287×10^{1}
qap5	Total time (s) Pre- time (s) Iterations Objective	0.365 0 12 -4.360×10 ²	0.386 0.006 12 -4.360×10^2	0.412 0.026 320 -4.359×10^2	0.879 0.011 334 -4.360×10^{2}	0.748 0.009 332 -4.364×10^2	$1.465 \\ 0.009 \\ 783 \\ -4.362 \times 10^2$
qap9	Total time (s) Pre- time (s) Iterations Objective	6.291 0 25 -1.410×10 ³	6.751 0.012 25 -1.410×10^3	$3.261 \\ 0.010 \\ 2000 \\ -1.409 \times 10^{3}$	$7.520 \\ 0.064 \\ 2000 \\ -1.407 \times 10^{3}$	7.397 0.036 2000 -1.409×10 ³	$ \begin{array}{r} 1.173 \\ 0.032 \\ 261 \\ -1.410 \times 10^3 \end{array} $

Table 2. Results for some small and medium-sized SDPs in SDPLIB.

Result: large-sparse instances

		SeDuMi	SparseCoLO+ SeDuMi	SCS	CDCS (primal)	$\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(dual)} \end{array}$	Self-dual
maxG11	Total time (s) Pre- time (s) Iterations Objective	92.0 0 13 6.292×10^2	9.83 2.39 15 6.292×10^2	$160.5 \\ 0.07 \\ 1860 \\ 6.292 \times 10^2$	$\begin{array}{c} 126.6 \\ 3.33 \\ 1317 \\ 6.292 \times 10^2 \end{array}$	$114.1 \\ 4.28 \\ 1306 \\ 6.292 \times 10^2$	23.9 2.45 279 6.295×10^2
maxG32	Total time (s) Pre- time (s) Iterations Objective	$\begin{array}{r} 1.385 \times 10^{3} \\ 0 \\ 14 \\ 1.568 \times 10^{3} \end{array}$	577.4 7.63 15 1.568×10 ³	$\begin{array}{r} 2.487 \times 10^{3} \\ 0.589 \\ 2000 \\ 1.568 \times 10^{3} \end{array}$	520.0 53.9 1796 1.568×10 ³	273.8 55.6 943 $1.568 imes 10^3$	$\begin{array}{r} 87.4 \\ 30.5 \\ 272 \\ 1.568 \times 10^3 \end{array}$
qpG11	Total time (s) Pre- time (s) Iterations Objective	$ \begin{array}{r} 675.3 \\ 0 \\ 14 \\ 2.449 \times 10^3 \end{array} $	27.3 11.2 15 $2.449 imes 10^3$	$\begin{array}{c} 1.115 \times 10^{3} \\ 0.57 \\ 2000 \\ 2.449 \times 10^{3} \end{array}$	273.6 6.26 1355 2.449×10 ³	92.5 6.26 656 2.449×10 ³	$\begin{array}{r} 32.1 \\ 3.85 \\ 304 \\ 2.450 \times 10^3 \end{array}$
qpG51	Total time (s) Pre- time (s) Iterations Objective	1.984×10^{3} 0 22 1.182×10^{3}	- - -	$2.290 \times 10^{3} \\ 0.90 \\ 2000 \\ 1.288 \times 10^{3}$	$\begin{array}{r} 1.627{\times}10^{3} \\ 10.82 \\ 2000 \\ 1.183{\times}10^{3} \end{array}$	$\begin{array}{r} 1.635 \times 10^{3} \\ 12.77 \\ 2000 \\ 1.186 \times 10^{3} \end{array}$	538.1 7.89 716 1.181×10 ³

Table 3. Results for some large-scale sparse SDPs in SDPLIB.

- maxG32: original cone size 2000; after chordal decomposition, maximal size 60;
- **qpG11**: original cone size **1600**; after chordal decomposition, maximal size **24**;

Result: Infeasible instances

		SeDuMi	SparseCoLO+ SeDuMi	SCS	$\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(primal)} \end{array}$	$\begin{array}{c} \mathrm{CDCS} \\ \mathrm{(dual)} \end{array}$	Self-dual
	Total time (s)	0.063	0.083	0.062	*	*	0.18
: f= 1	Pre- time (s)	0	0.010	0.016	*	*	0.010
intpl	Iterations	2	2	20	*	*	104
	Status	Infeasible	Infeasible	Infeasible	*	*	Infeasible
	Total time (s)	0.125	0.140	0.050	*	*	0.144
infd1	Pre- time (s)	0	0.009	0.013	*	*	0.009
	Iterations	4	4	40	*	*	90
	Status	Infeasible	Infeasible	Infeasible	*	*	Infeasible

Table 4. Results for two infeasible SDPs in SDPLIB.

Result: CPU time per iteration

-					
		SCS	CDCS (primal)	CDCS (dual)	Self-dual
- small and medium size	theta1 theta2 qap5 qap9	6×10^{-4} 1.8×10^{-3} 1.2×10^{-3} 1.5×10^{-3}	2.3×10^{-3} 5.1×10^{-3} 2.6×10^{-3} 3.6×10^{-3}	2.2×10^{-3} 4.7×10^{-3} 2.2×10^{-3} 3.7×10^{-3}	2.3×10^{-3} 5.5×10^{-3} 1.9×10^{-3} 4.2×10^{-3}
large-scale and sparse	maxG11 maxG32 qpG11 qpG51	$\begin{array}{c} 0.086 \\ 1.243 \\ 0.557 \\ 1.144 \end{array}$	$\begin{array}{c} 0.094 \\ 0.260 \\ 0.198 \\ 0.808 \end{array}$	$0.084 \\ 0.231 \\ 0.132 \\ 0.811$	$\begin{array}{c} 0.077 \\ 0.209 \\ 0.093 \\ 0.741 \end{array}$

Table 5. CPU time per iteration (s) for some SDPs in SDPLIB

✓ Work with smaller semidefinite cones for large-scale sparse problems

- Our codes are currently written in MATLAB
- SCS is implemented in C.

5. Conclusion

CDCS: Download from https://github.com/OxfordControl/CDCS

Ongoing work

- Develop ADMM algorithms for sparse SDPs arising in SOS.
- Applications in networked systems and power systems.

Thank you for your attention! Q & A