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1 Distributed Control of Connected Vehicles

1) Background

2) Modeling: the four-component framework

3) Analysis: Stability and Robustness 

4) Synthesis: Design of DMPC
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2. Zheng, Y., Li, S. E., Li, K., & Wang, L. Y. (2016). Stability margin improvement of vehicular platoon considering undirected topology and 

asymmetric control. IEEE Transactions on Control Systems Technology, 24(4), 1253-1265.
3. Zheng, Y., Li, S. E., Li, K., Borrelli, F., & Hedrick, J. K. (2017). Distributed model predictive control for heterogeneous vehicle platoons 

under unidirectional topologies. IEEE Transactions on Control Systems Technology, 25(3), 899-910.
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 Potential Benefits

1. Distributed Control of Connected Vehicles

 Control Objectives

a) to ensure all the vehicles in the same group to move at the same speed with the leader 

b) to maintain the desired spaces between adjacent vehicles

 Background: Vehicle Platoon 

➢ Improve traffic efficiency, enhance road safety, and 

reduce fuel consumption, etc. 

➢ The earliest implementation can date back to the 

PATH program during the last eighties 

 Real-world experiments

USA - PATH Europe - SARTRE Japan - Energy ITS
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1. Distributed Control of Connected Vehicles

 View platoons from a networked control perspective

Typical Communication Topology

Connected Vehicle by V2V 

Different Communication Topologies

...
( f )

( e )

...

...
( c )

...

...
( d )

( b )

...
( a )

 New challenges: Variety of topologies 

1. Dynamical Modeling

2. Performance Analysis

3. Controller Synthesis

1. The four-component framework 

2. Stability and robustness analysis 

3. Design of Distributed Model Predictive Control
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1. Distributed Control of Connected Vehicles

 Modeling: Networks of Dynamical Systems
➢ From Control Perspective

➢ Research topics

 Applications

Vehicle platoons can be viewed as a special one-dimensional network of dynamical system

1. Dynamics + Communication

2. Control Theory + Graph Theory

1. Dynamic: single integrator, 

double integrator, linear dynamic, 

nonlinear dynamic

2. Communication: data rate, 

switching topology, time-delay

Nature Transportation Smart grid

Source: http://www.mcs.anl.gov/~fulin/talks/argonne.pdf
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1. Distributed Control of Connected Vehicles

 Modeling of Platoons: the four-component framework

➢ Vehicle Dynamics: linear dynamics, nonlinear dyanmics; 

➢ Formation Geometry: constant spacing, time headway policy.

➢ Distributed Controller: linear controller, MPC, robust control;

➢ Information Flow Topology: PF, PFL, BD, etc;

Vehicle Dynamics

...... LV

01node iN i-1

v0

t

Information Flow Topology

dr,i

ddes,i

Formation Geometry 

Controller Ci Ci-1

Distributed Controller

ui ui-1

C1

u1

CN

uN

Algebraic graph theory

Explicitly highlight the influence of different components !
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1. Distributed Control of Connected Vehicles

 Modeling: Categorization of existing works [Li and Zheng et al., 2015]
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1. Distributed Control of Connected Vehicles

 Modeling: Typical case

ሶ𝑥𝑖 𝑡 = 𝐴𝑥𝑖 𝑡 + 𝐵1𝑢𝑖 𝑡 + 𝐵2𝑤𝑖 𝑡

𝑥𝑖 𝑡 =

𝑝𝑖
𝑣𝑖
𝑎𝑖

, 𝐴 =

0 1 0
0 0 1

0 0 −
1

𝜏

, 𝐵1 =

0
0
1

𝜏

, 𝐵2 =

0
0
1

𝜏

1. Linear dynamics

2. Constant spacing policy

൝
lim
𝑡→∞

𝑣𝑖 𝑡 − 𝑣0 𝑡 = 0, 𝑖 = 1,2,⋯𝑁

lim
𝑡→∞

𝑝𝑖−1 𝑡 − 𝑝𝑖 𝑡 − 𝑑𝑖−1,𝑖 = 0
,

4. Linear controller

𝑢𝑖 𝑡 = −෍

𝑗∈ 𝕀𝑖

𝑘𝑝 𝑝𝑖 − 𝑝𝑗 − 𝑑𝑖,𝑗 + 𝑘𝑣 𝑣𝑖 − 𝑣𝑗 + 𝑘𝑎 𝑎𝑖 − 𝑎𝑗

3. Communication topology

Pinning matrix 𝒫, Adjacency matrix 𝒜, Laplacian matrix ℒ

ሶ𝑋 = 𝐼𝑁⨂𝐴 − ℒ + 𝒫 ⨂𝐵1𝑘
𝑇 ∙ 𝑋 + 𝐼𝑁⨂𝐵2 ∙ 𝑊

Closed-loop dynamics
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1. Distributed Control of Connected Vehicles

 Analysis: Stability and Robustness

➢ Closed-loop Stability:

➢ Stability Margin:

ሶ𝑋 = 𝐼𝑁⨂𝐴 − ℒ + 𝒫 ⨂𝐵1𝑘
𝑇 ∙ 𝑋 + 𝐼𝑁⨂𝐵2 ∙ 𝑊

R

Im

dmin

Stability Margin

𝑤𝑖 𝑡 ℒ2 = න
0

+∞

𝑤𝑖 𝑡
2
𝑑𝑡 < ∞

➢ Robustness index:

𝐴𝐹𝑓2𝑙 = sup
෤𝑝𝑁 ℒ2

𝑤1 ℒ2

= 𝐺𝑓2𝑙 𝑠 ℋ∞

𝐴𝐹𝑎2𝑎 = sup
𝑌 ℒ2

𝑊 ℒ2

= 𝐺𝑎2𝑎 𝑠 ℋ∞

Performance index
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1. Distributed Control of Connected Vehicles

 Stability Region Analysis [Zheng et al. 2014, ITSC]

Consider a homogeneous platoon with linear controllers given by

ሶ𝑋 = 𝐼𝑁⨂𝐴 − ℒ + 𝒫 ⨂𝐵𝑘𝑇 𝑋

If graph 𝐺 satisfies certain conditions (all the eigenvalues of ℒ + 𝒫 are positive real 

numbers), the platoon is asymptotically stable if and only if

൞

𝑘𝑝 > 0

𝑘𝑣 > Τ𝑘𝑝𝜏 min 𝜆𝑖𝑘𝑎 + 1

𝑘𝑎 > − Τ1 max 𝜆𝑖

Similarity transformation + Routh–Hurwitz stability criterion

➢ Proof sketch:

𝑠𝐼 − 𝐴 − 𝜆𝑖𝐵𝑘
𝑇 = 𝑠3 +

𝜆𝑖𝑘𝑎+1

𝜏
𝑠2 +

𝜆𝑖𝑘𝑣

𝜏
𝑠 +

𝜆𝑖𝑘𝑝

𝜏
.

𝑆 𝐼𝑁⨂𝐴 − ℒ + 𝒫 ⨂𝐵𝑘𝑇 =ራ

𝑖=1

𝑁

𝑆 𝐴 − 𝜆𝑖𝐵𝑘
𝑇
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1. Distributed Control of Connected Vehicles

 Scaling of Stability Margin [Zheng et al. 2016, IEEE ITS]

(2.1) if the graph 𝐺 is in Bidirectional topology, then the stability margin decays to zero

as 𝑂 Τ1 𝑁2

(2.2) if the graph 𝐺 is in BDL topology, then the stability margin is always bounded

away from zero.

Bidirectional (BD) topology

01N-2N N-1

...

Bidirectional-leader (BDL) topology

01N-2N N-1

...

Consider a homogeneous platoon with linear controllers given by

ሶ𝑋 = 𝐼𝑁⨂𝐴 − ℒ + 𝒫 ⨂𝐵𝑘𝑇 𝑋

R

Im

dmin

Stability Margin
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1. Distributed Control of Connected Vehicles

 Stability Margin Improvement : Asymmetric control [Zheng et al. 2016, IEEE CST]

Consider a homogeneous platoon under the BD topology with the asymmetric controller 

architecture given by

ሶ𝑋 = 𝐼𝑁 ⊗𝐴− ℒ𝐵𝐷 + 𝒫𝐵𝐷 𝜖⨂𝐵𝑘
𝑇 𝑋

(3.2) For any fixed ϵ ∈ 0,1 , the stability margin is bounded away from zero and independent

of the platoon size 𝑁 (N can be any finite integer).

...
012N N-1

k
f
N

k
b

N-2

k
f
1

k
b

N-1

k
f
N-1

kb
2

kf
3

kb
1

kf
2

... LV

ቐ
𝑘𝑖
𝑓
= 1 + 𝜖 𝑘, 𝑘𝑖

𝑏 = 1 − 𝜖 𝑘 𝑖 = 1,⋯ ,𝑁 − 1

𝑘𝑁
𝑓
= 1 + 𝜖 𝑘,

The controller is called asymmetric, if

➢ Asymmetric control

where 𝜖 ∈ 0,1 is called the asymmetric degree. Note that if 𝜖 = 0, then it is reduced to 

the symmetric case.



10 100 500
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

The number of vehicles:N

S
ta

bi
lit

y 
M

ar
gi

n

 

 

ε=0

ε=0.2

ε=0.4

ε=0.6

0 50 100 150 200
-10

-5

0

5

10

15

Time (s)

S
p
a
c
in

g
 E

rr
o
r 

(m
)

 

 

1

6

12

18

24

30

0 50 100 150 200
-30

-20

-10

0

10

20

30

Time (s)

S
p
a
c
in

g
 E

rr
o
r 

(m
)

 

 

1

6

12

18

24

30

0 50 100 150 200
-40

-30

-20

-10

0

10

20

30

40

Time (s)

S
pa

ci
ng

 E
rr

or
 (

m
)

 

 

1

6

12

18

24

30

0 50 100 150 200
-25

-20

-15

-10

-5

0

5

10

15

20

25

Time (s)

S
p
a
c
in

g
 E

rr
o
r 

(m
)

 

 

1

6

12

18

24

30

(a)                                    (b)

(c)                                    (d)
Space errors for homogeneous platoons under BD topology 

with different asymmetric degree ϵ. (a) ϵ=0 (symmetric); (b) 

ϵ=0.2; (c) ϵ=0.4; (d) ϵ=0.6

1. Distributed Control of Connected Vehicles

 Stability Margin Improvement : Asymmetric control [Zheng et al. 2016, IEEE CST]

 Tradeoff：Convergence Speed and Transient Performance

➢ Benefit: bounded stability margin 

 good for convergence speed

➢ Cost: overshooting phenomena in 

transient process.
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1. Distributed Control of Connected Vehicles

 Stability Margin Improvement : Topological Selection [Zheng et al. 2016, IEEE CST]

(3.1) if the graph 𝐺 is undirected, to maintain bounded stability margin, it needs at least lots of

followers (i.e. Ω(N) = O(N)) to obtain the leader’s information.

Consider a homogeneous platoon with linear controllers given by

ሶ𝑋 = 𝐼𝑁⨂𝐴 − ℒ + 𝒫 ⨂𝐵𝑘𝑇 𝑋

To maintain bounded stability margin, the tree depth of graph G should be a constant 

number and independent of the platoon size N

... ...
012n

n

n+1N=2n

0

1 2 n-1 n

..
.

N
=

2
n

n
+

2

...

c

... ...
0cckck+1N=c(k+1)

...
c(k-1)+1

...
1

0

1
c+1 c(k-1)+1

ck+1

..
.

N
=

c(
k+

1
)

c+
1

...

..
.

c
...
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1. Distributed Control of Connected Vehicles

 Stability Margin Improvement : Topological Selection [Zheng et al. 2016, IEEE CST]
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Ω(N)=N/2,Tree depth: c=2

Ω(N)=N/4,Tree depth: c=4

Ω(N)=N/2,Tree depth: c=N/2

Ω(N)=N/4,Tree depth: c=3N/4

➢ Extending information flow to reduce the tree depth is one major way to 
guarantee a bounded stability margin.



 Design of DMPC for Nonlinear Heterogeneous platoons

1. Distributed Control of Connected Vehicles

17

Design a distributed controller for a heterogeneous platoon considering nonlinear 

dynamics, input constraints and variety of communication topologies

Design of DMPC

Nonlinear Heterogeneous model

Stability analysis

Simulation

ሶ𝑝𝑖 𝑡 = 𝑣𝑖 𝑡
𝜂T,𝑖
𝑟w,𝑖

𝑇𝑖 𝑡 = 𝑚𝑖 ሶ𝑣𝑖 𝑡 + 𝐶A,𝑖𝑣𝑖
2 𝑡 + 𝑚𝑖𝑔𝑓𝑖

𝜏𝑖 ሶ𝑇𝑖 𝑡 + 𝑇𝑖 𝑡 = 𝑢𝑖 𝑡

𝒙𝑖 𝑡 + 1 = 𝜙𝑖 𝒙𝑖 +𝝍𝑖 ∙ 𝑢𝑖 𝑡

discretization

Linear homogeneous 

platoon

Performance 

analysis 

Benchmark
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1. Distributed Control of Connected Vehicles

 DMPC: Local open-loop optimal control problem

min
𝑈𝑖

𝐽𝑖 𝒚𝑖
𝑝 ȁ: 𝑡 , 𝑢𝑖

𝑝 ȁ: 𝑡 , 𝒚𝑖
𝑎 ȁ: 𝑡 , 𝒚−𝑖

𝑎 ȁ: 𝑡

= ෍

𝑘=0

𝑁𝑝−1

𝑙𝑖 𝒚𝑖
𝑝 ȁ𝑘 𝑡 , 𝑢𝑖

𝑝 ȁ𝑘 𝑡 , 𝒚𝑖
𝑎 ȁ𝑘 𝑡 , 𝒚−𝑖

𝑎 ȁ𝑘 𝑡

s.t.

ሶ𝒙𝑖
𝑝 ȁ𝑘 + 1 𝑡 = 𝜙𝑖 𝒙𝑖

𝑝 ȁ𝑘 𝑡 + 𝝍𝑖 ∙ 𝑢𝑖
𝑝 ȁ𝑘 𝑡

𝒚𝑖
𝑝 ȁ𝑘 𝑡 = 𝜸𝒙𝑖

𝑝 ȁ𝑘 𝑡
,

𝑘 = 0,⋯ ,𝑁𝑝 − 1

𝒙𝑖
𝑝 ȁ0 𝑡 = 𝒙𝑖 𝑡

𝑢𝑖
𝑝 ȁ𝑘 𝑡 ∈ 𝒰

𝒚𝑖
𝑝

ห𝑁𝑝 𝑡 =
1

𝕀𝑖
෍

𝑗∈𝕀𝑖

𝒚𝑗
𝑎 ห𝑁𝑝 𝑡 − ෩𝒅𝑗,𝑖

𝑇𝑖
𝑝

ห𝑁𝑝 𝑡 = ℎ𝑖 𝑣𝑖
𝑝

ห𝑁𝑝 𝑡

Cost function

Dynamic constraints in 

predictive horizon

Input constraints

Terminal Constraints

stability

Problem ℱ𝑖: For 𝑖 ∈ 1,2, … , 𝑁 at time 𝑡

This is based on the local average 

of neighboring outputs. 
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1. Distributed Control of Connected Vehicles

 DMPC: Local open-loop optimal control problem

 Construction of local cost function

𝑙𝑖 𝑦𝑖
𝑝 ȁ𝑘 𝑡 , 𝑢𝑖

𝑝 ȁ𝑘 𝑡 , 𝑦𝑖
𝑎 ȁ𝑘 𝑡 , 𝑦−𝑖

𝑎 ȁ𝑘 𝑡

= 𝑄𝑖 𝑦𝑖
𝑝 ȁ𝑘 𝑡 − 𝑦des,𝑖 ȁ𝑘 𝑡

2

+ 𝑅𝑖 𝑢𝑖
𝑝 ȁ𝑘 𝑡 − ℎ𝑖 𝑣𝑖

𝑝 ȁ𝑘 𝑡
2

+ 𝐹𝑖 𝑦𝑖
𝑝 ȁ𝑘 𝑡 − 𝑦𝑖

𝑎 ȁ𝑘 𝑡
2

+ ෍

𝑗∈ℕ𝑖

𝐺𝑖 𝑦𝑖
𝑝 ȁ𝑘 𝑡 − 𝑦𝑗

𝑎 ȁ𝑘 𝑡 − ሚ𝑑𝑖,𝑗 2

Tracking leader 𝑝𝑖 = 0, 𝑄𝑖 = 0

Penalize the input 𝑅𝑖 ≥ 0

Maintain its assumed output 𝐹𝑖 ≥ 0

Maintain the assumed 

output of its neighbors
𝐺𝑖 ≥ 0

Design Parameters

jj1 j2 j3 j4

𝕆𝑗 = 𝑗1, 𝑗2, 𝑗3, 𝑗4 .

ii1 i2 i3 i4

ℕ𝑖 = 𝑖1, 𝑖2, 𝑖3, 𝑖4

This output is sent to the nodes in set 𝕆𝑖

Node 𝑖 tries to maintain the output as 

close to the assumed trajectories of its 

neighbors (i.e., 𝑗 ∈ ℕ𝑖) as possible

Stability
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1. Distributed Control of Connected Vehicles

 Sufficient conditions [Zheng et al. 2017 IEEE CST]

If G satisfies Assumption 1, a platoon under proposed DMPC is asymptotically stable if 

satisfying

𝐹𝑖≥ ෍

𝑗∈𝕆𝑖

𝐺𝑗 , 𝑖 ∈ 𝒩

Assumption 1 (Unidirectional topology): The graph 𝔾 contains a spanning tree rooting at the leader, 

and the communications are unidirectional from preceding vehicles to downstream ones

...
( d )

( c )

...

...
( b )

...
( a )

012N N-1

...
N-2

LV

The main strategy is to construct a proper 

Lyapunov function for the platoon and 

prove its decreasing property

sum of local cost functions
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4. Synthesis: Design of DMPC

𝑣0 = ቐ
20 Τ𝑚 𝑠 𝑡 ≤ 1 𝑠
20 + 2𝑡 Τ𝑚 𝑠 1𝑠 < 𝑡 ≤ 2 𝑠
22 Τ𝑚 𝑠 𝑡 > 2𝑠

The desired trajectory 

...
( d )

( c )

...

...
( b )

...
( a )

012N N-1

...
N-2

LV

Weights PF PLF TPF TPLF

𝐹𝑖
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𝑖 ∈ 𝒩
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𝑖 ∈ 𝒩

𝐹𝑖 = 10𝐼2,

𝑖 ∈ 𝒩

𝐹𝑖 = 10𝐼2,
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𝐺𝑖
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2 Fast ADMM for Sparse SDPs

1) SDPs with Chordal Sparsity

2) ADMM for Primal and Dual Sparse SDPs

3) ADMM for the Homogeneous Self-dual Embedding

4) CDCS: Cone Decomposition Conic Solver 

1. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2016). Fast ADMM for 

semidefinite programs with chordal sparsity. arXiv preprint arXiv:1609.06068.
2. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2016). Fast ADMM for homogeneous self-

dual embeddings of sparse SDPs. arXiv preprint arXiv:1611.01828.
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1. SDPs with Chordal Sparsity

 Standard Primal-dual Semidefinite Programs (SDPs)

Dual

• Applications: control theory, power systems, polynomial optimization, combinatorics, 
operations research, etc.

Optimal power flow problem
(e.g., by dropping a rank constraint)

Control of a networked system 
(e.g., via Lyapunov theory)

Picture sources: http://scholar.princeton.edu/ghall/home



24

1. SDPs with Chordal Sparsity

 Standard Primal-dual Semidefinite Programs (SDPs)

Dual

• Applications: control theory, fluid mechanics, polynomial optimization, combinatorics, 
operations research, etc.

• Interior-point solvers: SeDuMi, SDPA, SDPT3 (suitable for small and medium-sized 
problems); Modelling package: YALMIP, CVX; 

• Large-scale cases: it is important to exploit the inherent structure of the instances (De 
Klerk, 2010):

➢ Low Rank

➢ Algebraic Symmetry

➢ Chordal Sparsity:

✓ Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010;

✓ First-order methods: Madani et al. 2015; Sun, Andersen, and Vandenberghe, 2014.
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1. SDPs with Chordal Sparsity

 Sparsity Pattern of Matrices

𝕊𝑛 ℰ, 0 = ȁ𝑋 ∈ 𝕊𝑛 𝑋𝑖𝑗 = 0, ∀ 𝑖, 𝑗 ∉ ℰ

𝕊+
𝑛 ℰ, 0 = ȁ𝑋 ∈ 𝕊𝑛 ℰ, 0 𝑋 ≥ 0

• Sparse matrices

𝕊𝑛 ℰ, ? = the set of 𝑛 × 𝑛 partial symmetric 

matrices with elements defined on ℰ.

𝕊+
𝑛 ℰ, ? = ȁ𝑋 ∈ 𝕊𝑛 ℰ, ? ∃𝑀 ≥ 0,𝑀𝑖𝑗 = 𝑋𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ ℰ

𝕊+
𝑛 ℰ, ? and 𝕊+

𝑛 ℰ, 0 are dual cones of each other.

Dual



Chordal extension
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1. SDPs with Chordal Sparsity

 Chordal Graph

A graph G is chordal if every cycle of length at 
least four has a chord. 

• Any non-chordal graph can be chordal 
extended;

A chordal graph can be decomposed into its

maximal cliques 𝒞 = 𝒞1, 𝒞2, … , 𝒞𝑝 .

• Cliques in a graph are maximal complete

subgraphs
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1. SDPs with Chordal Sparsity

 Clique Decomposition

Given a choral graph 𝒢 = 𝒱, ℰ with a set of maximal cliques 𝒞1, 𝒞2, … , 𝒞𝑝

Grone’s Theorem:

𝑋 ∈ 𝕊+
𝑛 ℰ, ? if and only if 𝑋 𝒞𝑘 ≥ 0, 𝑘 = 1,… , 𝑝.

𝑋 ∈ 𝕊+
𝑛 ℰ, ?

𝑋 𝒞1 ≥ 0

𝑋 𝒞2 ≥ 0

𝑋 𝒞3 ≥ 0i.e., matrix X is PSD 
completable
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1. SDPs with Chordal Sparsity

 Clique Decomposition

Given a choral graph 𝒢 = 𝒱, ℰ with a set of maximal cliques 𝒞1, 𝒞2, … , 𝒞𝑝

Agler’s Theorem:

𝑋 ∈ 𝕊+
𝑛 ℰ, 0 if and only if there exists 𝑀𝑘 ∈ 𝕊+

𝑛 𝒞𝑘 such that 𝑋 = σ𝑘=1
𝑝

𝑀𝑘 .

𝑋 ∈ 𝕊+
𝑛 ℰ, 0 𝑀1 ∈ 𝕊+

𝑛 𝒞1 𝑀2 ∈ 𝕊+
𝑛 𝒞2 𝑀3 ∈ 𝕊+

𝑛 𝒞3

𝕊+
𝑛 ℰ, ?

 Sparse Cone Decomposition (chordal)

𝕊+
𝑛 ℰ, 0

Dual

Grone’s Theorem Agler’s Theorem
Dual

Topics in this talk

✓ ADMM for primal and dual SDPs;

✓ ADMM for the homogeneous 
self-dual embedding;

✓ CDCS: Cone Decomposition Conic 
Solver.
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1. SDPs with Chordal Sparsity

 ADMM algorithm

 Augmented Lagrangian

 ADMM steps

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via 
the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1), 1-122.

Iterations of ADMM:

a) An x-minimization step

b) A y-minimization step

c) A dual variable update



30

2. ADMM for Primal and Dual Sparse SDPs

 Aggregate sparsity pattern of matrices

Primal Dual

A union of patterns 
of 𝐶, 𝐴1 , 𝐴2

Patterns of solutions

Cone replacement
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2. ADMM for Primal and Dual Sparse SDPs

 Cone Decomposition of Sparse SDPs

Dual

Primal Dual

Cone 
Decomposition

✓ A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;
✓ Our idea: introduce additional variables to decouple the coupling constraints.

Aggregate sparsity pattern ℰ
is union of patterns of 𝐶, 

𝐴1, . . . , 𝐴m
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2. ADMM for Primal and Dual Sparse SDPs

 ADMM for primal SDPs

Consensus

• Reformulate using indicator functions

• Augmented Lagrangian

• Regroup the variables
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2. ADMM for Primal and Dual Sparse SDPs

 ADMM for primal SDPs

• 1) Minimization over block X

• 2) Minimization over block Y

• 3) Update multipliers

Projections onto small 
PSD cones; Can be 
computed in parallel.

QP with linear constraint 
(Projections onto a linear 
subspace)

Consensus
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2. ADMM for Primal and Dual Sparse SDPs

 ADMM for dual SDPs

Consensus

• Reformulate using indicator functions

• Augmented Lagrangian

ADMM steps in the dual form are scaled versions of those in the primal form ! 

✓ QP with linear constraints

✓ Projections in parallel
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2. ADMM for Primal and Dual Sparse SDPs

 The Big Picture

The duality between the primal and dual SDP is inherited by the decomposed 
problems by virtue of the duality between Grone’s and Agler’s theorems.
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3. ADMM for the Homogenous Self-dual Embedding

 KKT condition

Primal Dual

• Notational simplicity 

• KKT conditions

➢ Primal feasible

➢ Dual feasible

➢ Zero-duality gap



37

3. ADMM for the Homogenous Self-dual Embedding

 The Homogeneous Self-dual Embedding

𝜏, 𝜅: two non-negative and 
complementary variables 

• Notational simplicity 

• Feasibility problem 

✓ The big sparse PSD cone has 
already been equivalently 
replaced by a set of coupled 
small PSD cones;
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3. ADMM for the Homogenous Self-dual Embedding

 ADMM algorithm

[1] O’Donoghue, B., Chu, E., and Parikh, Nealand Boyd, S. (2016b). Conic optimization via operator splitting and 
homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3), 1042– 1068

• ADMM steps (similar to the solver SCS [1])

Q is highly structured and sparse

Projection onto a subspace

Projection onto cones (smaller dimension)

✓ Block elimination can be applied here to 
speed up the projection greatly;

✓ Then, the per-iteration cost is the same as 
applying a splitting method to the primal or 
dual alone.
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4. CDCS: Cone Decomposition Conic Solver

 CDCS

• An open source MATLAB solver for partially decomposable conic programs;

• CDCS supports constraints on the following cones:

✓ Free variables

✓ non-negative orthant

✓ second-order cone

✓ the positive semidefinite cone.

• Input-output format is in accordance with SeDuMi;

• Works with latest Yalmip release.

Download from https://github.com/OxfordControl/CDCS

[x,y,z,info] = cdcs(At,b,c,K,opts);

Syntax:
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4. CDCS: Cone Decomposition Conic Solver

 Random SDPs with block-arrow pattern

• Block size: d,
• Number of Blocks: l
• Arrow head: h
• Number of constraints: m

Numerical Comparison

• SeDuMi

• SCS

• sparseCoLO (preprocessor)
+SeDuMi

𝜖tol = 10−3CDCS and SCS

Numerical Results
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4. CDCS: Cone Decomposition Conic Solver

 Benchmark problems in SDPLIB [2]

Three sets of benchmark problems in SDPLIB (Borchers, 1999):

1) Four small and medium-sized SDPs ( theta1, theta2, qap5 and qap9);

2) Four large-scale sparse SDPs (maxG11, maxG32, qpG11 and qpG51);

3) Two infeasible SDPs (infp1 and infd1).

[2] Borchers, Brian. "SDPLIB 1.2, a library of semidefinite programming test problems." Optimization Methods 

and Software 11.1-4 (1999): 683-690.
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4. CDCS: Cone Decomposition Conic Solver

 Result: small and medium-sized instances
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4. CDCS: Cone Decomposition Conic Solver

 Result: large-sparse instances

• maxG32: original cone size 2000; after chordal decomposition, maximal size 60;
• qpG11: original cone size 1600; after chordal decomposition, maximal size 24;   
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4. CDCS: Cone Decomposition Conic Solver

 Result: Infeasible instances
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4. CDCS: Cone Decomposition Conic Solver

 Result: CPU time per iteration

✓ Work with smaller semidefinite cones for large-scale sparse problems 

large-scale 
and sparse 

small and 
medium size 

• Our codes are currently written in MATLAB 

• SCS is implemented in C. 
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5. Conclusion

 Summary

• Introduced a conversion framework for sparse SDPs

• Developed efficient ADMM algorithms

✓ Primal and dual standard form;
✓ The homogeneous self-dual embedding; 

• CDCS: Download from https://github.com/OxfordControl/CDCS

 Ongoing work

• Develop ADMM algorithms for sparse SDPs arising in SOS.

• Applications in networked systems and power systems.

suitable for first-order methods;



Thank you for your attention!
Q & A


