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Automatic control example
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Highway cruise control

sense
speed

Feedback
Controller

Actuator
Throttle

❑ “Simple” centralized control systems are well understood.

❑ “Complexity” can enter in different ways . . .

Feedback Paradigm

Feedback 
Controller

System

MeasurementControl input

Disturbances (wind, 
slope)

Control theory: the principled use of 

feedback loops and algorithms to 
drive a system to its goal



Complex autonomous systems

Applications Sparse structures
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❑ Complex nonlinear dynamics

• Aircraft, jet engine, robotics

Source: https://solidmechanicsproblems.wordpress.com/;
https://www.bostondynamics.com/

❑ Complex distributed systems

• Multiple subsystems & local commutation

. . .  

Distributed controller



Applications Sparse structures
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Distributed control laws Desired collective behavior

Examples of large-scale autonomous systems 

Sensor networksDrone formations Robotic networks

Transportation network Smart grid

Image Credit: Getty Images; Google Images; www.pinterest.com

Self-organization



Challenges
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❑Model uncertainty

- Model might be unknown for practical systems;

- Model might be uncertain; Learning-based solutions

❑ Information constraints

- Large numbers of components;

- Subsystems or components may have dynamic coupling;

- Only local information available for control decision; 

❑ High dimensional problems

- A very large number of states and control variables;

- Require to solve large-scale optimization efficiently;

❑ Real world applications

Scalable Optimization & 
Control (SOC) Lab

. . .  

Distributed controller

Learning-based & Robust control

Distributed control

Scalable Optimization

Mixed traffic control



Scalable Optimization and Control (SOC) lab
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Data-driven and 
learning-based 

control

Sparse conic 
optimization

Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

   
   

Zheng, Yang, Yujie Tang, and Na Li. "Analysis of the Optimization Landscape of Linear Quadratic Gaussian 

(LQG) Control." arXiv preprint arXiv:2102.04393 (2021).



Motivation
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❑ Model-free methods and data-driven control 
• Use direct policy updates; 

• Become very popular in both academia and practice, from game playing, robotics, 
and drones, etc.

• lack non-asymptotic performance guarantees, such as sample complexity, safety, 
suboptimality, convergence etc. → linear dynamical systems!

DeepMind OpenAI Applications



This talk

Applications Sparse structures
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❑ Linear Quadratic Optimal control

• Many practical applications 

• Extensive classical results (Dynamic programming, 
Separation principle, Riccati equations, etc)

• Linear Quadratic Regulator (LQR) when the state 
𝑥𝑡 is directly observable

• LQG when only partial output 𝑦𝑡 is observed 

Major challenge: how to perform 
optimal control when the system 

is unknown?

Feedback Paradigm

Feedback 
Controller

System

MeasurementControl input

d(t) w(t)

y(t)u(t) x(t)



Two main approaches
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❑ Model-free: Direct policy iteration

• Give a parameterization of control policies; say 
neural networks?

• Control theory already tells us many structural 
properties: Linear feedback is sufficient for LQR

Set of stabilizing controllers:

Direct policy iteration

✓ Good Landscape properties

• Connected feasible region

• Unique stationary point

• Gradient dominance

✓ Fast global convergence (exponential)

• Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; Zhang et al., 2019; 
Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others 

A fast-growing list of references

LQR as an Optimization problem



Two main approaches

Applications Sparse structures
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❑ Model-based: Sys ID + robust control

• System ID + certainty equivalent control  → adaptive control (Åström & Wittenmark, 2013). 

• Recent works → robust stability guarantees and sample complexity results, LQR problems 
(so-called system-level parameterization, Wang, Matni & Doyle, TAC, 2019)

Estimated model

Physical systems

Control inputs 𝑢𝑡
Output meas. 𝑦𝑡

Estimated model + uncertainty

✓ Dean et al., 2020; Berberich et al., 2020; Boczar et al., 2018; Tsiamis et al., 2020; 
Umenberger et al., 2019; Yiwen Lu and Yilin Mo, 2021, and many others



Challenges for partially observed LQG

Applications Sparse structures
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❑ Results on model-free or model-based LQG control are much fewer

• LQG is more sophisticated than LQR

• Requires dynamical controllers

• Its landscape properties are much richer and more 
complicated than LQR

Topic 1 Landscape Analysis

• The underlying technique, system-level parameterization, 
becomes non-trivial to use for the LQG case

• New techniques based on Input-output parameterization (IOP) 
(Furieri et al., 2019), are used for learning a robust LQG 
controller

Topic 2 Sample complexity
Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2021, May). Sample 

complexity of linear quadratic gaussian (LQG) control for output feedback 
systems. In Learning for Dynamics and Control (pp. 559-570). PMLR.



LQG as an Optimization problem

Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected?

• If not, how many connected components can it have?

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle)

stationary points?

• How to check if a stationary point is globally optimal?



Connectivity of the feasible region
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❑ Simple observation: non-convex and unbounded

Lemma 1: the set          is non-empty, unbounded, and can be non-convex.

Example: 

Stabilize the plant, and thus belong to 

Fails to stabilize the plant, and thus outside



Connectivity of the feasible region
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❑ Main Result 1: dis-connectivity

Theorem 1: The set can be disconnected but has at most 2 connected components.

✓ Different from the connectivity of static stabilizing state-feedback controllers, 
which is always connected!

✓ Is this a negative result for gradient-based algorithms? → No

Example 2Example 1



Connectivity of the feasible region
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❑ Main Result 2: dis-connectivity

Theorem 2: If         has 2 connected components, then there is a smooth bijection T between 

the 2 connected components that has the same cost function value

✓ In fact, the bijection T is defined by a similarity 
transformation (change of controller state coordinate)

Positive news: For gradient-based local search

methods, it makes no difference to search over

either connected component.



LQG as an Optimization problem

Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected? No

• How many connected components can it have? Two

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle) stationary 

points?

• How to check if a stationary point is globally optimal?



LQG as an Optimization problem

Structure of Stationary Points
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❑ Simple observations

1) is a real analytic function over its domain

(smooth, infinitely differentiable)

2) has non-unique and non-isolated global optima

Similarity transformation

➢ is invariant under similarity transformations.

➢ It has many stationary points, unlike the LQR with a 
unique stationary point 



LQG as an Optimization problem

Structure of Stationary Points
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❑ Gradient computation

Lemma 1: For every                                            , we have 

where

are the unique solutions to two Lyapunov equations 

How does the set of Stationary 
Points look like?

❑ Non-unique, non-isolated

❑ Local minimum, local maximum, saddle 

points, or globally minimum? 



Structure of Stationary Points
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❑ Main Result

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point.  Furthermore, the corresponding hessian is either indefinite (strict 

saddle point) or equal to zero. 

Another example with zero Hessian All bad stationary points correspond to non-
minimal controllers



Structure of Stationary Points
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❑ Main Result

Theorem 5:
All stationary points corresponding to 

controllable and observable controllers 
are globally minimal!!

1) This stationary point is a global optimum of

2) The set of all global optima forms a manifold with 2 connected components. They 

are connected by a similarity transformation. 

Example 1 Example 2

Particularly, given a stationary point that is a minimal controller



Structure of Stationary Points
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❑ Implication

Consider gradient descent iterations

If the iterates converge to a minimal controller, then this minimal controller is a

global optimum.

Open questions:

✓ Convergence conditions?

✓ Convergence speed?

✓ Alternative model-free 
parameterization

72 pages

Zheng, Yang, Yujie Tang, and Na Li. "Analysis of the Optimization Landscape of Linear 
Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2102.04393 (2021).



Some other recent results
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Model-based Learning 
LQG controller

Model-free Learning LQG 
controller in finite horizon

Non-asymptotic System 
Identification



Scalable Optimization and Control (SOC) lab
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Data-driven and 
learning-based 

control

Sparse conic 
optimization

Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

Check out our webpage: https://zhengy09.github.io/soclab.html

   
   

https://zhengy09.github.io/soclab.html


General procedure
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Control problems 
(analysis/synthesis)

Convex reformulation 
as LMI or SDP

Call a numerical 
solver

Challenge 2: How to 
recover convexity 

Challenge 3: How to solve
large-scale semidefinite 

programs (SDPs)

. . .  

Distributed controller

Challenge 1: Model-free 
or Model-based design



Centralized Controller
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Optimization perspective: dynamic

• is the set of stabilizing dynamic
controllers

Optimization perspective: static

• is the set of stabilizing static
controllers.

Centralized 
Controller



Design of Distributed Controller

27

❑ Why distributed?

• No need of a centralized coordinator

• Allow for local communication

❑ Sparsity constraint

1 2 3 4 5 6

The binary matrix S encodes local communication



Design of Distributed Controller
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Optimization perspective: static

• is the set of static stabilizing 
controllers

Optimization perspective: dynamic

• is the set of dynamic stabilizing 
controllers

✓ Geometrical properties: Han & Lavei, ACC 2019; Bu et 
al, 2019; 

✓ Convex restriction: Geromel et al., 1994; Conte et 
al.,2012; Rubio et al., 2013; 

✓ Non-convex optimization: Lin, Fardad, Jovanovic, TAC 
2011; Dörfler, et al, IEEE TPS 2014

✓ Special cases: Polyak, Khlebnikov, & Shcherbakov, ECC 
2013;

✓ Exact solutions for special classes of systems:
Quadratic Invariance (Rotkowitz & Lall, TAC 2005); 
Partially ordered sets (Shah & Parrilo, TAC 2013);

✓ Non-smooth optimization: Apkarian, and Dominikus
IEEE TAC 2016.

✓ Alternative formulation: system-level synthesis (wang, 
Matni, Doyle, TAC 2019)



Change of Variables

29

• Do not optimize the controller 𝑲 directly: Convex reformation via a change of variables 

(convex SDP); Boyd et al. 1994

✓ defines a Lyapunov function for the closed-loop system.

Lyapunov inequality

is stable 

Change of Variables



Challenges and heuristics
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❑ Method via a change of variables

Non-convex constraint

One approximation strategy (Geromel et al., 1994; 

Conte et al.,2012; Rubio et al., 2013; Han et al., 2017)

• Requires a diagonal Lyapunov 
function

• May be too restrictive.

❑ Optimization perspective: static state feedback



Sparsity Invariance
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Sparsity invariance (SI)

A new and unified framework based on Sparsity Invariance (SI) for
convex design of the largest known class of distributed control problems

Goes beyond the well-known notion of QI

Static case
• Strictly better than the widely used 

diagonal approximation strategy
(Geromel et al., 1994; Conte et al.,2012; Rubio 
et al., 2013; Han et al., 2017)

dynamical case
• Guaranteed to be optimal when QI 

holds 
• Best known performance for non-QI 

cases (Rotkowitz & Martins, 2012)



Some other results

32

Sparse Invariance
(Best student paper award 

finalist at ECC19)

Equivalence of three 
controller parameterizations

New controller 
parameterizations



Scalable Optimization and Control (SOC) lab
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Scalable 
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Check out our webpage: https://zhengy09.github.io/soclab.html

   
   

https://zhengy09.github.io/soclab.html


A simple example

Applications Sparse structures

34Benefits: Reduce computational complexity, and thus improve efficiency! (3 × 3→ 2 × 2)

Sparse positive semidefinite (PSD) cone decomposition (Agler et al. 1984)



Sparse Matrix Decomposition

Applications Sparse structures
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• Many other sparsity patterns admit similar matrix decompositions

• They can be commonly characterized by chordal graphs (any cycle of length > 3 has a 

chord).



Matrix Decomposition and Chordal Graphs

Applications Sparse structures
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• A chordal graph can be decomposed into its maximal cliques 𝒞 = 𝒞1, 𝒞2, … , 𝒞𝑝 .

(Agler, et al., 1988; Griewank and Toint, 1984)

Clique (Chordal) 
Decomposition



A Sparse SDP example
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Patterns of feasible 
solutions

Cone replacement

✓Applying the clique decomposition (Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 

2010; Madani et al., 2015; Sun, Andersen, and Vandenberghe, 2014; Zheng et al., 2017 & 2019)

Define an SDP



First-order algorithms for SDPs
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Work
Complexity per 

Iteration 
Generality

Infeasibility 
Detection

Open-source 
Solver 

O’Donoghue et al. 
2016

𝒪 𝑛3 + QP General SDP Yes SCS

Dall’Anese, Zhu, 
Giannakis, 2013

𝒪 𝐶𝑘
3 + QP

Special OPF problems 
with Sep. constraints

No No

Sun &Vandenberghe, 
2015

𝒪 𝐶𝑘
3 Special SDP with no 

equality constraints
No No

Sun et al, 2014 𝒪 𝐶𝑘
3 + IPM General SDP No No

Madani et al, 2015 𝒪 𝐶𝑘
3 + QP

General sparse SDP 
with ineq. Constraints 

No No

Kalbat & Lavaei, 2015 𝒪 𝐶𝑘
3 + QP

Special sparse SDP with 
Sep. constraints

No No

Today’s talk (Zheng 
et al., 2017 & 2019)

𝓞 𝑪𝒌
𝟑 + QP General SDP Yes CDCS



Open-source Solver: CDCS

39

Case 1: Test on sparse benchmark problems (from Andersen, Dahl, Vandenberghe, 2010)

Problem instance: rs1907
• PSD size 5357× 5357
• > 10 million decision 

variables

✓ SeDuMi ran out of memory

✓ The first-order solver SCS took 
over 13 hours to return a 
solution

✓ CDCS took 6 minutes to get a 
solution; 100 × speedup!

Exploiting sparsity achieves 
massive scalability in both 

time and memory



Open-source Solver: CDCS

Applications Sparse structures
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Case 2: Test on stability/H2/Hinf analysis of linear network systems

• Randomly generated stable subsystems (state dimension: 5-10).
• The graph is a line where the maximal cliques are 𝒞i = 𝑖, 𝑖 + 1
• Apply a block-diagonal Lyapunov function → preserve sparsity

❑ Example 1: a chain of interconnected subsystems

❑ Example 2: a sparse network system

Orders of magnitude 
faster

→Massive Scalability



Open-source Solver: CDCS

Applications Sparse structures
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Large-scale practical problems 

• Fosson, S. M., & Abuabiah, M. (2019). Recovery of binary sparse signals from compressed linear measurements 
via polynomial optimization. IEEE Signal Processing Letters.

• Eltved, A., Dahl, J., & Andersen, M. S. (2018). On the robustness and scalability of semidefinite relaxation for 
optimal power flow problems. Optimization and Engineering, 1-18.

❑ Signal recovery problem

❑ Optimal power flow problem

• Driggs & Fawzi (2019). “AnySOS: An anytime algorithm for semidefinite programming" IEEE CDC, 1-6.

❑ Nonlinear systems analysis



Scalable Optimization and Control (SOC) lab
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Data-driven and 
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Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

Check out our webpage: https://zhengy09.github.io/soclab.html

   
   

https://zhengy09.github.io/soclab.html
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• Reduce traffic accidents
– 37,000 fatalities

– 41% deaths of young adults (ages 15-24)

– 94% of serious crashes caused by human error

Autonomous Vehicles

• Ease traffic congestion
– 6.9 billion hours wasted annually

– Cost of traffic congestion is $1740 per person annually in US/Europe.

• Improve energy efficiency
– 28% of greenhouse gas emission is from transportation

• New mobility patterns: on-demand mobility, mobility as service etc. 

U.S. Census Bureau, 2017.



Mix-Autonomy Mobility
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Mixed-autonomy mobility: a traffic condition where both 
autonomous vehicles and human-driven vehicles co-exist.

• Q1: How will a small scale of autonomous vehicles change traffic dynamics?

• Q2: How to integrate a small scale of autonomous vehicles to improve 
traffic performance?

Theoretical evidence of the 
high potential of autonomous 

vehicles

Practical design via distributed 
control and scalable 

optimization



Mixed urban mobility
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Design an optimal distributed controller for autonomous vehicles to actively smooth traffic flow

Real-world Experiments in 2008 (Sugiyama, et al. 2008)

• The linearized system is stabilizable after introducing 
a single autonomous vehicle;

• Design a distributed controller;

zheng et al., IEEE Journal Internet of Things, 2019, accepted



Sparsity invariance: Mixed urban mobility
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Design an optimal distributed controller for autonomous vehicles to actively smooth traffic flow

zheng et al., IEEE Journal Internet of Things, 2019, accepted

OVM: Optimal Velocity Model



Some other results
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Smoothing Traffic 
Flow

Leading Cruise Control Controllability Analysis



Conclusion



SOC lab at UC San Diego. Join us!
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https://zhengy09.github.io/soclab.html


Thank you for your attention!

Q & A

More details. Check out our webpage: https://zhengy09.github.io/soclab.html

https://zhengy09.github.io/soclab.html


Extra slides



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

• Connectivity of the static stabilizing state feedback gains

Open, connected, 

possibly nonconvex

• How about the set of stabilizing dynamical controllers Change of variables for 
output feedback control is 

highly non-trivial

[Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory [Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]

Convex thus 

connected

General linear group: the set 

of invertible matrices 

(similarity transformation)

at most 2 connected components

2 connected components



LQR as an Optimization problem
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Connectivity of
feasible region

Stationary
points

❖ Disconnected, but at most 2 connected comp.

❖ They are almost identical to each other

❖ Non-unique, non-isolated stationary points

❖ Spurious stationary points (saddle, nonminimal 

controller)

❖ All mini. stationary points are globally optimal

Zheng, Tang, Li. 2021, link

Comparison with LQR
LQG as an Optimization problem

❖ Always connected

❖ Unique

Gradient 
Descent

❖ Gradient dominance

❖ Global fast convergence 

(like strictly convex)

❖ No gradient dominance

❖ Local convergence/speed (unknown)

❖ Many open questions

References
Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., 
IEEE TAC, 2020; Li et al., 2019; Zhang et al., 2019; Furieri et al., 
2019; Feiran Zhao & Keyou You, 2021, and many others 

https://arxiv.org/abs/2102.04393
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Sys ID 
methods

Synthesis 
Technique

❖ Least squares

❖ Frequency domain

❖ Input-output parameterization, IOP, 

(Furieri et al., 2019)

❖ Taylor expansion

• Zheng,  Furieri,  Kamgarpour,  & 
Li, (2021, May). link

Comparison with LQR

❖ Least squares

❖ Frequency domain

❖ System-level synthesis, 

SLS (Wang et al., 2019)

❖ Taylor expansion

Sample 
Complexity

❖ both stable and unstable systems ❖ Only for open-loop stable system

References
✓ Dean et al., 2020; Berberich et al., 2020; Boczar et al., 

2018; Tsiamis et al., 2020; Umenberger et al., 2019; and 
many others

https://arxiv.org/abs/2011.09929

