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Automatic control example

Highway cruise control Feedback Paradigm
Disturbances (wind, & S
slope) —_— / & N ' ystem -
Actuator ‘5 sense
Throttle ( ' speed
A
Feedback p
Control input Controller | Measurement
Feedback
< ! o
Controller Control theory: the principled use of

feedback loops and algorithms to
drive a system to its goal

d “Simple” centralized control systems are well understood.

d “Complexity” can enter in different ways . . . 3



Complex autonomous systems

(J Complex nonlinear dynamics J Complex distributed systems

* Aircraft, jet engine, robotics  Multiple subsystems & local commutation

Distributed controller

Source: https://solidmechanicsproblems.wordpress.com/;
https://www.bostondynamics.com/



Examples of Iarge-scale autonomous systems
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Sensor networks Robotic networks

i e

Transportation network Smart grid Self-organization

Distributed control laws mmm)  Desired collective behavior

Image Credit: Getty Images; Google Images; www.pinterest.com



Challenges

(d Model uncertainty =) Learning-based & Robust control
- Model might be unknown for practical systems;
- Model might be uncertain; Learning-based solutions

 Information constraints =) Distributed control
- Large numbers of components;
- Subsystems or components may have dynamic coupling;
- Only local information available for control decision;
 High dimensional problems = scalable Optimization
- Avery large number of states and control variables;

- Require to solve large-scale optimization efficiently;

(] Real world applications = mixed traffic control

Scalable Optimization &

Control (SOC) Lab
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Zheng, Yang, Yujie Tang, and Na Li. "Analysis of the Optimization Landscape of Linear Quadratic Gaussian
(LQG) Control." arXiv preprint arXiv:2102.04393 (2021).



Motivation

J Model-free methods and data-driven control
 Use direct policy updates;

 Become very popular in both academia and practice, from game playing, robotics,
and drones, etc.

@ ‘,?\ N

Applications

DeepMind

* lack non-asymptotic performance guarantees, such as sample complexity, safety,
suboptimality, convergence etc. = linear dynamical systems!



This talk

 Linear Quadratic Optimal control

T
. 1
Feedback Paradigm min lim E | — Z (2! Qzy + uf Ruy)
UT U gueny T —00 T
d(t) w(t) t=1
— — .
] subject to x;41 = Axy + Buy + wy
— System .- -
u(t) X ] y(t) y; = Cwy + vy
* Many practical applications
Feedback p e Extensive classical results (Dynamic programming,
Control input | Controller | Measurement Separation principle, Riccati equations, etc)

e Linear Quadratic Regulator (LQR) when the state
X is directly observable

Major challenge: how to perform

optimal control when the system « LQG when only partial output y, is observed
is unknown?




Two main approaches

(J Model-free: Direct policy iteration

Give a parameterization of control policies; say
neural networks? x

Control theory already tells us many structural
properties: Linear feedback is sufficient for LQR

Ut — K.I't

1

T — o0

T
lim E Z [ Qzy +u) Ruy) | = J(K)
=

Set of stabilizing controllers: K & K

A fast-growing list of references

LQR as an Optimization problem

min J(K)
K
st. KekK

Direct policy iteration
Kz'—i—l = Kz — OKZVJ(KZ)

v" Good Landscape properties
* Connected feasible region
* Unique stationary point
e Gradient dominance

v’ Fast global convergence (exponential)

Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; Zhang et al., 2019;

Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others
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Two main approaches

(J Model-based: Sys ID + robust control

« System ID + certainty equivalent control = adaptive control (Astrém & Wittenmark, 2013).

Physical systems

—|_|_|7 : W~W’W Estimated model
s e - A B

\ 4

Control inputs u; Output meas. y;

* Recent works = robust stability guarantees and sample complexity results, LQR problems
(so-called system-level parameterization, Wang, Matni & Doyle, TAC, 2019)

Estimated model + uncertainty A+AA, B+ AB, |AA| < ea,||AB| <e€p,

v" Dean et al., 2020; Berberich et al., 2020; Boczar et al., 2018; Tsiamis et al., 2020;
Umenberger et al., 2019; Yiwen Lu and Yilin Mo, 2021, and many others



Challenges for partially observed LQG

(] Results on model-free or model-based LQG control are much fewer

LQG is more sophisticated than LQR
Requires dynamical controllers

Its landscape properties are much richer and more
complicated than LQR

Topic 1 Landscape Analysis

The underlying technique, system-level parameterization,

. Ou
becomes non-trivial to use for the LQG case Py |e—b :
New techniques based on Input-output parameterization (IOP)

(Furieri et al., 2019), are used for learning a robust LQG Oy Y+ VY

controller T K

o " Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2021, May). Sample
TO |C 2 Sa m E I e com E I EXIt y complexity of linear quadratic gaussian (LQG) control for output feedback

systems. In Learning for Dynamics and Control (pp. 559-570). PMLR.

12



Model-free Optimization formulation

v(t) Gaussian white w(t)

| | .
Blant LQG as an Optimization problem
#(t) = Ax(t) + Bu(t) + w(t) |« .
y(t) = Ca(t) + v(t) m&n J(K)

s.t. K=(Ak, Bk, Ck) € Cru

y(t) | £(t) = Ak&(t) + Bey(t) | ult)

dynamical controller

“=UBeO m Q1: Connectivity of the feasible region Cpy
Is it connected?

If not, how many connected components can it have

Landscape
= Q2: Structure of stationary points of J(K)

Analysis

Are there spurious (strictly suboptimal, saddle)

stationary points?

How to check if a stationary point is globally optimal?



Connectivity of the feasible region

O Simple observation: non-convex and unbounded

Lemma 1: the set Cry11 is non-empty, unbounded, and can be non-convex.

ecample: (1) = (1) + u(t) + w(r) e
y(t) = z(t) + v(t) V‘_‘,f/‘

———
h.‘.

L 0 CK 2% 2 ]. CK . ‘/
Ceunl = { K [BK AK] eR Be A is stable p .
K1) — {_02 _22] ; K2 = [(2) :3] Stabilize the plant, and thus belong to Crull

14



Connectivity of the feasible region

d Main Result 1: dis-connectivity

Theorem 1: The set Cgy can be disconnected but has at most 2 connected components.

Example 2

v’ Different from the connectivity of static stabilizing state-feedback controllers,
which is always connected!

v’ Is this a negative result for gradient-based algorithms? =2 No

15



Connectivity of the feasible region

d Main Result 2: dis-connectivity

Theorem 2: If Cey has 2 connected components, then there is a smooth bijection T between
the 2 connected components that has the same cost function value

Lk“) v’ In fact, the bijection T is defined by a similarity
Y transformation (change of controller state coordinate)

o Dk CKT_l
Tr(K) = {TBK TAKT_1] |

Positive news: For gradient-based local search
methods, it makes no difference to search over

either connected component.

16



Model-free Optimization formulation

v(t) Gaussian white w(t)

¢ !

y(t)

Plant

&(t) = Ax(t) + Bu(t) + w(t) |«

y(t) = Cx(t) +v(t)

£(t) = Ak &(t) + Bry(t)

u(t)

u(t) = Ck &(t)

dynamical controller
K = (Ak, Bk, Ck)

Landscape

Analysis

LQG as an Optimization problem

miin J(K)

s.t. K=(Ak, Bk, Ck) € Crun

= Q1: Connectivity of the feasible region Ceu
|s it connected? NoO

How many connected components can it have? Two

= Q2: Structure of stationary points of J(K)

Are there spurious (strictly suboptimal, saddle) stationary
points?

How to check if a stationary point is globally optimal?

17



Structure of Stationary Points

O Simple observations LQG as an Optimization problem
1) J(K)is a real analytic function over its domain S J(K)
(smooth, infinitely differentiable) s.t. K=(Ax, Bk, Ck) € Cun

2) J(K) has non-unique and non-isolated global optima

Similarity transformation

(AK, BK, CK) —> (TAKT_l, TBK, CKT_l)

§(t) = Ak &(t) + Bk y(t)
u(t) = Ck §(t)

» J(K) is invariant under similarity transformations.

» It has many stationary points, unlike the LQR with a
unique stationary point

18



Structure of Stationary Points

[ Gradient computation LQG as an Optimization problem
min J(K)
Lemma 1: For every K = (Ak, Bk, Ck) € Cra1, we have K
8J(K) s.t. K:(AKaBKacK) < Cfull
A 2 (Y15 X12 + Y22 Xo0) ,
&](I};) How does the set of Stationary
T 2 (Yoo BKV + Y22 X ,CT + Y5 X1:CT), Points look like?
&J(E) r 0J(K) _
25w 2 (RCxX22 4+ B'Y11X12 + B'Y12X0,), DAk ’
“ 9. (K)
< K € Cran =0,
where X — X11 X12] Vi — {Yu Ym] 0Bk
XIQ XQQ ’ Yng Y22 8J(K) —0
\ oCx

are the unique solutions to two Lyapunov equations

O Non-unique, non-isolated

O Local minimum, local maximum, saddle

points, or globally minimum? o



Structure of Stationary Points

(J Main Result

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable Ak

K = (4k,0,0) € Cran
is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict

saddle point) or equal to zero.

Another example with zero Hessian

A Jn(K*+tA)
0.8336}

0.8335}

0.8334}

r 2I(K)
0 Ak ’
97 (K)
K e Cpy =0,
9 full | ~55- 0, ¢
0.8333} \ 0J(K) -
\ oCx

All bad stationary points correspond to non-

minimal controllers

>

2004 -0.02 0.02

0.04

t

20



Structure of Stationary Points

(J Main Result

All stationary points corresponding to

Theorem 5:
controllable and observable controllers

are globally minimal!!

Particularly, given a stationary point that is a minimal controller

1) This stationary point is a global optimum of J(K)

N

( d0.J(K) _0 \
0Ax
dJ (K)
K e Cy =
€ Ctull 9B« 0, p
0J(K) _0
\ 0Ck Y

2) The set of all global optima forms a manifold with 2 connected components. They

are connected by a similarity transformation.

Jn

Example 1

&(t)=x(t)+u(t)+w(t) »
y(t) = x(t)+o(t) B

180

=) — o @ ~

z(t) € R 0

0

Example 2

21



Structure of Stationary Points

O Implication

IV (Kol

10°

1072
10|

10-° |

Consider gradient descent iterations

Kt_|_1 = Kt — OéVJ(Kt)

If the iterates converge to a minimal controller, then this minimal controller is a

global optimum.

Open questions:

v Convergence conditions?

v' Convergence speed?

v’ Alternative model-free
parameterization

0 500 1000 1500

Iterations ¢

2000 2500

arXiv:2102.04393v1 [math.OC] 8 Feb 2021

Analysis of the Optimization Landscape of Linear
Quadratic Gaussian (LQG) Control *

Yang Zheng?. Yujie Tang!, and Na Li*

!Sehool of Engineering and Applied Sciences, Harvard University

9 February, 2021

rich. We show that 1) the set of
and they are di

72 pages

Zheng, Yang, Yujie Tang, and Na Li. "Analysis of the Optimization Landscape of Linear
Quadratic Gaussian (LQG) Control." arXiv preprint arXiv:2102.04393 (2021).
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Some other recent results

Model-free Learning LQG
controller in finite horizon

Model-based Learning
LQG controller

Non-asymptotic System
Identification

Pages::1-22, 2020

Non-asymptotic Identification of Linear Dynamical
. . . . Systems Using Multiple Trajectories®
Sample Complexity of Linear Quadratic Gaussian (1

for Output Feedback Systems Learning the Globally Optimal Distributed LQ Regula

Yang Zheng'? and Na Li'?

1$chool of Engineering and Applied Sciences, Harvard University
?Harvard Center for Green Buildings and Cites, Harvard Universi

Luca Furieri FURIERIL @ CONTRO

Yang Zheng * ZHEN(
School of Engineering and Applied Sciences, Harvard University, USA

Luca Furieri * LUC
Automatic Control Laboratory, ETH Zurich, Switzerland,
Laboratoire d’Automatique, EPFL, Switzerland

Maryam Kamgarpour MAI
Electrical and Computer Engineering, University of British Columbia, Canada

1y 2020
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Automatic Control Laboratory, ETH Zurich, Switzerland

Yang Zheng ZHENGY @G.1
School of Engineering and Applied Sciences, Harvard University, USA

Maryam Kamgarpour * MEKAMGAR @ CONTRO

Automatic Control Laboratory, ETH Zurich, Switzerland

Abstract

November 10, 2020

Abstract

This paper considers the problem of linear time-invariant (LTI} system identification using
input/output data. Recent work has provided non-asymptotic results on partially observed
LTI system identification using a single trajectory but is only suitable for stable systems. We

2011.09929v2 [math.OC] 25 Jun 2021

provide finite-time analysis for learning Markov parameters based on the ordinary least-squares
(OLS) estimator using multiple trajectories, which covers both stable and unstable systems. For
unstable systems, our results suggest that the Markov parameters are harder to estimate in the
presence of process noise. Without process noise, our upper bound on the estimation error is
independent of the spectral radius of system dy s with high probability. These two features
are different from fully observed LTI systems for which recent work has shown that unstable
systems with a bigger spectral radius are easier to estimate. Extensive numerical experiments
demonstrate the performance of our OLS estimator.

0M

NaLi NALIG ‘We study model-free leamning methods for the output-feedback Linear Quadratic (LQ) con
lem in finite-horizon subject to subspace constraints on the control policy. Subspace ¢
naturally arise in the field of distributed control and present a significant challenge in the
standard model-based optimization and learning leads to intractable numerical progran
eral. Building upon recent results in zeroth-order optimization, we establish model-fre
complexity bounds for the class of distributed LQ problems where a local gradient domir
stant exists on any sublevel set of the cost function. We prove that a fundamental class of ¢
control problems—commonly referred to as Quadratically Invariant (QI) problems—as w
ers possess this property. To the best of our knowledge, our result is the first sample-c
bound guarantee on learning globally optimal distributed output-feedback control policic

,‘
J

School of Engineering and Applied Sciences, Harvard University, USA

[math.OC] 8 Nov 2020

,1
J

Editors: A. Jadbabaie, J. Lygeros, G. J. Pappas, P. A. Parrilo, B. Recht, C. J. Tomli1

Abstract 1 Introduction

This paper studies a class of partially observed Linear Quadratic Gaussi
with unknown dynamics. We establish an end-to-end sample complexity bound
LQG controller for open-loop stable plants. This is achieved using a robust s
where we first estimate a model from a single input-output trajectory of finite le
infinity bound on the estimation error, and then design a robust controller using |
and its quantified uncertainty. Our synthesis procedure leverages a recent contr
Output Parameterization (IOP) that enables robust controller design using ¢
For open-loop stable systems, we prove that the LQG performance degrades /i
to the model estimation error using the proposed synthesis procedure. Despi : mar " :
in the LQG problem, the achieved scaling matches previous results on learnir wodel:free, where reinforcement leaming is used to directly leam an opfimal control
Regulator (LQR) controllers with full state observations. o mf "’“"E""d N om‘Tlhomemhmlycommlcmgam OdCI f DL“he ¥ “ R

System identification estimates the models of dynamical systems from observed input-output data [1],
which is an important topic in time-series analysis, control theory, robotics, and reinforcement
learning. There is an extensive literature on theoretical and algorithmic developments of system
identification, with many excellent textbooks [1, 2] and surveys [3, 4, 5] available. Classical results
often offer asymptotic convergence gnarantees for learning system models from observed data [1, 5].
There has been an increasing interest in finite sample complexity and non-asymptotic analysis, since
good error bounds are essential for designing high-performance robust control systems as well as for

1. Introduction

Recent years have witnessed significant attention and progress in controlling unkno
systems solely based on system trajectory observations. This shift from classical contr
to data-driven ones is motivated by the ever increasing complexity of critical emergi
systems, whose mathematical models may be unreliable or simply not available (Hs
2013). When it comes to learning an optimal control policy, the available approaches ¢
divided into two categories. The first class of methods is denoted as model-based, wh establishing end-to-end performance guarantees |6, 7, 8].

ical system data is exploited to build an approximation of the nominal system and cla In this paper, we consider the problem of identifying a diserete-time linear time-invariant (LTT)
robust control is then used on this system approximation. The second class of methods system

arXiv:2009.00739v

‘
(2

L1 = Axy + Buy + By,
yr = Ciry + Dug + Dy,

arXiv:1912.08774v3 [eess.SY]

(1)

«
<



Scalable Optimization and Control (SOC) lab & ?_ca)(b:
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|
|
|
|
|
|
|
. |
Data-drivenand |
learning-based | distributed control optimization autonomous

control : vehicles (CAVs)

I Sparse network
(2) @)
: ) 7 ”O‘O\
\/ 7 ' DMotiton “\.
I Sparse matrix representation f IIIIIIII \
| O} Jinan IO e
: ;o \@\ - ,/Qf
Chordal decomposition @7“‘\ /f;”"O
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Check out our webpage: https://zhengy09.github.io/soclab.html 24



https://zhengy09.github.io/soclab.html

General procedure

Challenge 1: Model-free
or Model-based design

Control problems

(analysis/synthesis)

— — — — — — — — — — — — — — —

|
| Challenge 2: How to

I
| |
. | recover convexity :
Convex reformulation | TELOVET LOTVERYY

as LMl or SDP

¥
¥
o

Distributed controller

Challenge 3: How to solve
large-scale semidefinite
programs (SDPs)

Call a numerical
solver

25



Centralized Controller

Optimization perspective: static
minimize J;(K)
subject to K € Cgetab.1-

. Cstab,l is the set of stabilizing static
controllers.

Optimization perspective: dynamic
minimize Js(K)
subject to K € Cgtap 2.

* Cstab,2 is the set of stabilizing dynamic
controllers

Centralized
Controller

26



Design of Distributed Controller

J Why distributed?

* No need of a centralized coordinator

 Allow for local communication

u(t) = —(33‘1 + koxo + ksxg + kaxg + ksxs + 6376)

. ki =k =0
J Sparsity constraint

KESparse(]S:[O 1 1 1 1 01 :{[0 X k% % O]}

The binary matrix S encodes local communication

27



Design of Distributed Controller

Optimization perspective: static
minimize Ji(K)
subject to K € Cgstab 1,
K € Sparse(.5)

 Cstab,1 s the set of static stabilizing
controllers

Geometrical properties: Han & Lavei, ACC 2019; Bu et
al, 2019;

Convex restriction: Geromel et al., 1994; Conte et
al.,2012; Rubio et al., 2013;

Non-convex optimization: Lin, Fardad, Jovanovic, TAC
2011; Dorfler, et al, IEEE TPS 2014

Special cases: Polyak, Khlebnikov, & Shcherbakov, ECC
2013;

Optimization perspective: dynamic
minimize Js(K)
subject to K &€ Cgtap 2,
K € Sparse(.5)

* Cstab,2 is the set of dynamic stabilizing
controllers

Exact solutions for special classes of systems:
Quadratic Invariance (Rotkowitz & Lall, TAC 2005);
Partially ordered sets (Shah & Parrilo, TAC 2013);

Non-smooth optimization: Apkarian, and Dominikus
IEEE TAC 2016.

Alternative formulation: system-level synthesis (wang,
Matni, Doyle, TAC 2019)

28



Change of Variables

* Do not optimize the controller K directly: Convex reformation via a change of variables
(convex SDP); Boyd et al. 1994

minimize K yx—! minimize ¢;(X,Y)
subject to K = CStab 1. subject to  (X,Y) € Cstan,1-

v V(z) = 2" X 'z defines a Lyapunov function for the closed-loop system.

Lyapunov inequality

| X =0

Change of Variables

— X =0 KX =Y
{AX—BY+(AX—BY)T<O 29



Challenges and heuristics

(d Optimization perspective: static state feedback

minimize

subject to

J1(K)
K € Cstab,la
K € Sparse(S)

1 Method via a change of variables
minimize ¢1(X,Y)
subject to (X,Y) € éStab,l
[YX_1 e Sparse(S)}

One approximation strategy (Geromel et al., 1994;
Conte et al.,2012; Rubio et al., 2013; Han et al., 2017)

X is diagonal, Y € Sparse(S)
=
Y X! € Sparse(S)

|

Non-convex constraint

* Requires a diagonal Lyapunov
function V(z)=2TX 'z

* May be too restrictive.

30



Sparsity Invariance

Sparsity invariance (SI)

=

X € Sparse(R), Y € Sparse(T)

K =YX ! € Sparse(S)

A new and unified framework based on Sparsity Invariance (SI) for

convex design of the largest known class of distributed control problems

Goes beyond the well-known notion of QI

Static case
Strictly better than the widely used .

diagonal approximation strategy
(Geromel et al., 1994; Conte et al.,2012; Rubio .
et al., 2013; Han et al., 2017)

dynamical case
Guaranteed to be optimal when Q
holds
Best known performance for non-Ql
cases (Rotkowitz & Martins, 2012)

31



Some other results

Sparse Invariance

(Best student paper award

finalist at ECC19)

Equivalence of three
controller parameterizations

1836 IEEE TRANSACTIONS ON CONTROL OF NETWORK

Sparsity Invariance for Col
Distributed Contr

Luca Furieri
Antonis Papachristodoulou

Abstract—We address the problem of designing opti-
mal linear time-invariant (LTI) sparse controllers for LTI
systems, which corresponds to minimizing a norm of the
closed-loop system subjected to sparsity constraints on
the controller structure. This problem is NP-hard in gen-
eral and motivates the development of tractable approxima-
tions. We characterize a class of convex restrictions based
on a new notion of sparsity invariance (Sl). The underlying
idea of Sl is to design sparsity patterns for transfer matri-
ces Y(s) and X(s) such that any corresponding controller
K(s) = Y(s)X(s)"! exhibits the desired sparsity pattern.
For sparsity constraints, the approach of Sl goes beyond
the notion of quadratic invariance (Ql): 1) the Sl approach
always yields a convex restriction and 2) the solution via
the Sl approach is guaranteed to be globally optimal when
Ql holds and performs at least, considering the nearest
Ql subset. Moreover, the notion of Sl naturally applies to
designing structured static controllers, while Qlis not utiliz-
able. Numerical examples show that even for non-Ql cases,
Sl can recover solutions that are: 1) globally optimal and
2) strictly more performing than previous methods.

Index Terms—Decentralized control,

mabismulensd asmbual  assabsmen

linear systems,

mmbiman] asmbeal  scsmsdeadia

. Student Member, IEEE, Yang Zh
, Fellow, IEEE, and |

to privacy cor
implementing
The celebra
tion can enort
inputs. Indeed
even be linear
without full o
the lack of ful
core challenge
cases of optin
which efficien
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with distribute
linear controll
a norm of the
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to be sufficier
formulation. £
codesign was

Qé’__ lEcESS IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 1, JANUARY 2021
On the Equivalence of Youla, Sys
Input—Output Parameteri

Yang Zheng“, Luca Furieri“, Antonis Papachristodoulou *“, |

Abstract—A convex parameterization of internally stabilizing
controllers is fundamental for many controller synthesis proce-
dures. The celebrated Youla parameterization relies on a doubly
coprime factorization of the system, while the recent system-level
and input—output parametrizations require no doubly coprime fac-
torization, but a set of equality constraints for achievable closed-
loop responses. In this article, we present explicit affine mappings
among Youla, system-level, and input—output parameterizations.
Two direct implications of these affine mappings are: 1) any convex
problem in the Youla, system-level, or input-output parameters can
be equivalently and | convexly formulated in any other one of these
frameworks, incl g the level synthesis; 2) the
condition of quadratic invariance is sutflclent and necessary for
the classical distributed control problem to admit an equivalent
convex reformulation in terms of either Youla, system-level, or
input-output parameters.

Index Terms—Quadratic invariance (Ql), stabilizing controller,
system-level synthesis (SLS), Youla parameterization.

l. INTRODUCTION

One of the most fundamental problems in control theory is to design
a feedback controller that stabilizes a dynamical system. Additionally.
one can further design an optimal controller by optimizing a certain
performance measure [1]. It is well known that the set of stabilizing
controllers is in general nonconvex and hence hard to ontimize directlv

parameterizatio
response) direct
problem. Also,
loop system car
convex optimiz
and optimal con
that a doubly co|
preliminary stef
parameterizatio
[6] were introdi
trollers, with nc
the system a pri
treat certain clo
synthesis is thu
closed-loop res|
closed-loop res|
closed-loop con

The Youla pa
since they chara
their explicit rel
main objective ¢
parameterizatio
mappings betwt

INPUt—OULPUL P irerans e o
problem in terms of the Youl:l system-level,

[math.OC] 28 May 2020

New controller
parameterizations

System-level, Input-output and New Parameterizations of
Stabilizing Controllers, and Their Numerical Computation

Yang Zheng ", Luca Furieri ¢, Maryam Kamgarpour 9, Na Li P
*School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02138, U.S.
" Harvard Center of Smart Cities and Buildings, Harvard University, Boston, MA, 02138, U.S.
© Automatic Control Laboratory, ETH Zurich, Switzerland.
4 Electrical & Computer Engineering, UBC, Vancouver, Canada.

Abstract

It is known that the set of internally stabilizing controller C.p is non-convex, but it admits convex characterizations using
certain closed-loop maps: a classical result is the Youla parameterization, and two recent notions are the system-level pa-
rameterization (SLP) and the input-output parameterization (IOP). In this paper, we address the existence of new convex
parameterizations and discuss potential tradeoffs of each parametrization in different scenarios. Qur main contributions are:
1) We first reveal that only four groups of stable closed-loop transfer matrices are equivalent to internal stability: one of them
is used in the SLP, another one is used in the IOP, and the other two are new, leading to two new convex parameterizations
of Cstab. 2) We then investigate the properties of these parameterizations after imposing the finite impulse response (FIR)
approximation, revealing that the IOP has the best ability of approximating Csa given FIR constraints. 3) These four param-
eterizations require no a priori doubly-coprime factorization of the plant, but impose a set of equality constraints. However,
these equality constraints will never be satisfied exactly in numerical computation. We prove that the IOP is numerically robust
for open-loop stable plants, in the sense that small mismatches in the equality constraints do not compromise the closed-loop
stability. The SLP is known to enjoy numerical robustness in the state feedback case; here, we show that numerical robustness
of the four-block SLP controller requires case-by-case analysis in the general output feedback case.

Aiminms S S s e} sasasese

input—output parameters

can be equivalently and convexly formulated into any other one of
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Check out our webpage: https://zhengy09.github.io/soclab.html

Scalable
distributed control

Sparse conic
optimization

Sparse network

L .
L]

Chordal decomposition

[ ] TT]
I
e [ [+ ]

) SOC
’ Lab

Connected and
autonomous
vehicles (CAVs)
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A simple example

3 1 0 3 1 0 0O 0 O
A=11 1 1| ={1 05 O[+1|0 05 1
0o 1 3 |0 o of |0 1 3
N N\ a—— o’
=0 ~0 =0

% 0 x *x 0 O 0 0
_0 % _OOU_ _U**_
S—— O — — ——
>0 0 0

Benefits: Reduce computational complexity, and thus improve efficiency! (3 X3 > 2 x 2) ,



Sparse Matrix Decomposition

 Many other sparsity patterns admit similar matrix decompositions

(f)
* They can be commonly characterized by chordal graphs (any cycle of length >3 has a
chord).



Matrix Decomposition and Chordal Graphs

A chordal graph can be decomposed into its maximal cliques C = {61, C,, ...,C’p}.

Clique (Chordal) Z € S (€,0)
Decomposition

p
o 2= 3 H{2uF 20 €5

k=1

Sparse network

(2) (4)

1 ©,

\/

Sparse matrix representation
L] |
L]

5

Chordal decomposition

-1
L]
RN ||+ HH

L]
+ \/

(Agler, et al., 1988; Griewank and Toint, 1984)
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A Sparse SDP example

aQ

|
==
O = O
Lo o

é;.

|

P—

Define an SDP

Patterns of feasible
solutions

Cone replacement

2 1 0 1 0 0 x %
1 1 0],A=10 1 1 | k| *
0 0 2 0 1 2 0 [* *
max_ biy1 + bayo
Y1,Y2,4

subject to 11 A1 + A+ 2 =C

T % . * % 0
Ze * " x * x —
0 " * *

: i S —
=0
3
Z €857 (€,0)

v’ Applying the clique decomposition (Fukuda et al., 2001; Nakata et al., 2003; Andersen et al.,
2010; Madani et al., 2015; Sun, Andersen, and Vandenberghe, 2014; Zheng et al., 2017 & 2019)
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First-order algorithms for SDPs

Complexity per . Infeasibilit Open-source
Work P . Y P Generality . Y P
Iteration Detection Solver
O’Donoghue et al. O(n3) +Qp General SDP Yes SCS
2016
Dall’Anese, Zhu, 3 Special OPF problems
Giannakis, 2013 O(IC,I*) +ap with Sep. constraints No No
Sun &Vandenberghe, 3 Special SDP with no
2015 OCICKI) equality constraints No No
Sun et al, 2014 O(|C|3) + 1PM General SDP No No
. General sparse SDP
3
Madani et al, 2015 O(|C,]°) +QP with ineq. Constraints No No
Kalbat & Lavaei, 2015 O(|C,I?) + QP Special sparse SPP with No No
Sep. constraints
Today’s talk (Zheng o(|c,l?) +apP General SDP Yes CDCS

etal., 2017 & 2019)
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Open-source Solver: CDCS

Case 1: Test on sparse benchmark problems (from Andersen, Dahl, Vandenberghe, 2010)

Problem instance: rs1907
e PSD size 5357X% 5357
e > 10 million decision

variables
v" SeDuMIi ran out of memory
v"  The first-order solver SCS took

over 13 hours to return a
solution

v' CDCS took 6 minutes to get a
solution; 100 X speedup!

Exploiting sparsity achieves
massive scalability in both
time and memory

rs228 rs365

Time (s) # lter. Objective Time (s) # lter. Objective
SeDuMi (high) 1655 21 64.71 e Sl *Ek
SeDuMi (low) 809 10 64.80 ¥ % *EE
SCS (direct) 2338 2000 62.06 34,497 2000 44.02
CDCS-primal 94 400 64.65 321 401 63.37
CDCS-dual 84 341 64.76 240 265 63.69
CDCS-hsde 79 361 64.87 332 442 63.64

rs1555 rs1907

Time (s) # lter. Objective Time (s) # lter. Objective
SeDuMi [high] desfeck ek He e e ek desieshe ek
SeDuMi (low) desfe ok ek He e e ek desieshe ek
SCS (direct) 139,314 2000 34.20 50,047 2000 45.89
CDCS-primal 1721 2000 61.22 330 349 62.87
CDCS-dual 317 317 69.54 271 252 63.30
CDCS-hsde 1413 2000 61.36 393 414 63.14

Entries marked *** indicate that the problem could not be solved due to memory limitations
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Open-source Solver: CDCS

Case 2: Test on stability/H2/Hinf analysis of linear network systems

1 Example 1: a chain of interconnected subsystems

L2

A

G

Y

€T

* Randomly generated stable subsystems (state dimension: 5-10).
* The graph is a line where the maximal cliques are C; = {i, i + 1}
* Apply a block-diagonal Lyapunov function = preserve sparsity

Gy

r3 Tn
- . -
€r2 Lrp—1

Gn

 Example 2: a sparse network system

(a) Scale free graph

Mumber of maximal cliques

CPU time (s)

m: Orders of magnitude
.| faster
ul - Massive Scalability

] 5 10 15 20
Size of maximal cliques

(b) Clique size distribution

25

200

400

300 ¢

200 t

100 t

Number of nodes, n

O SeDuMi # SCS m CDCS
Time (s)
sedumi SCS CDCS
Stability 115.0 108.9 40.6
Ho 805.0 556.1 147.4
Hoo 3374.8 2130.2 172.0
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Open-source Solver: CDCS

Large-scale practical problems

oxfordcontrol / CDCS @ Unwatch~ 8 % Unstar 31 YFork | 13
Code lssues 0 Pull requests 0 Actions Projects 0 Wiki Security Insights Settings
An open-source MATLAB® ADMM solver for partially decomposable conic optimization programs. Edit
sparse-semidefinite-porgrams admm cone-decomposition large-scale-optimizations  Manage topics
D 116 commits ¥ 5 branches M 0 packages 31 release 41 4 contributors gfs LGPL-3.0

Branch: master = New pull request Create new file | Upload files | Find file
J Signal recovery problem

* Fosson, S. M., & Abuabiah, M. (2019). Recovery of binary sparse signals from compressed linear measurements
via polynomial optimization. IEEE Signal Processing Letters.

d Optimal power flow problem

e Eltved, A., Dahl, J., & Andersen, M. S. (2018). On the robustness and scalability of semidefinite relaxation for
optimal power flow problems. Optimization and Engineering, 1-18.

(d Nonlinear systems analysis

* Driggs & Fawzi (2019). “AnySOS: An anytime algorithm for semidefinite programming" IEEE CDC, 1-6. "
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Autonomous Vehicles

Reduce traffic accidents
— 37,000 fatalities
— 41% deaths of young adults (ages 15-24)
— 94% of serious crashes caused by human error

Ease traffic congestion U.S. Census Bureau, 2017.
— 6.9 billion hours wasted annually
— Cost of traffic congestion is $1740 per person annually in US/Europe.

Improve energy efficiency
— 28% of greenhouse gas emission is from transportation

New mobility patterns: on-demand mobility, mobility as service etc.

RIDEHAILING m CARSHARING
@
MOBILITY-AS-A- (% BIKESHARING
SERVICE
e
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Mix-Autonomy Mobility

Mixed-autonomy mobility: a traffic condition where both
autonomous vehicles and human-driven vehicles co-exist.

* Q1: How will a small scale of autonomous vehicles change traffic dynamics?

* Q2: How to integrate a small scale of autonomous vehicles to improve
traffic performance?

Theoretical evidence of the Practical design via distributed

control and scalable
optimization

high potential of autonomous
vehicles
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Mixed urban mobility

Design an optimal distributed controller for autonomous vehicles to actively smooth traffic flow

Real-world Experiments in 2008 (sugiyama, et al. 2008)

Experimental evidence
for the physical mechanism of forming a jam
Sugivama, Minoru Fukul, Macoto Kikuchi
Akihiro Nakayama, Katsuhiro Nishinan

Satoshi Yukawa

Movie 1

YLK

ratsuya Hasepe
Shin-ichl Tadaki and

L /*O“*Q\
/' Motion \

Motion Direction

Direction

. Driving Node
O Uncontrolled Node

@,4@5,

* The linearized system is stabilizable after introducing
a single autonomous vehicle;

* Design a distributed controller;
J(K)
subject to K € C N Sparse(S).

minimize

zheng et al., IEEE Journal Internet of Things, 2019, accepted 45



Sparsity invariance: Mixed urban mobility

Design an optimal distributed controller for autonomous vehicles to actively smooth traffic flow

o —
/' Motion \
Direction
- [ @ Driving Nod \
(' aaaaa \;\ \‘ G?\) O Uizngrol?edeNode CJD
{ ,% ;. N B
el SO
\ _ \\ 2 _ /
@ g @
Su)

OVM: Optimal Velocity Model
Fy = a(V(si(t) —vi(t)) + Bsi(t)

Umax, S 2= Sgo,

07 S S Sst
V(S) = fv(s)a Sst < 8 < Sgo;

ule) = 2 (1 contn 00 ).

2 Sgo — Sst

zheng et al., IEEE Journal Internet of Things, 2019, accepted
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Some other results

Smoothing Traffic

Flow

3882

Smoothing Traffic F
of Autonomou:

Yang Zheng ~, Member, IEEE, Jiawei Wang . , St

Abstract—The emergence of autonomous vehicles (AVs) is
expected to revolutionize road transportation in the near future.
Although large-scale numerical simulations and small-scale
experiments have shown promising results, a comprehensive the-
oretical understanding to smooth traffic flow via AVs is lacking.
In this article, from a control-theoretic perspective, we estab-
lish analytical results on the controllability, stabilizability, and
reachability of a mixed traffic system consisting of human-driven
vehicles and AVs in a ring road. We show that the mixed traffic
system is not completely controllable, but is stabilizable, indi
ing that AVs can not only suppress unstable traffic waves but also
guide the traffic flow to a higher speed. Accordingly, we estab-
lish the maximum traffic speed achievable via controlling AVs.
Numerical results show that the traffic speed can be increased by
over 6% when there are only 5% AVs. We also design an optimal
control strategy for AVs to actively dampen undesirable pertur-
bations. These theoretical findings vali the high p ial of
AVs to smooth traffic flow.

Index Terms—Autonomous vehicle (AV), controllability, mixed
traffic flow, stabilizability.
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Leading Cruise Control

This article has been accepted for inclusion in a future issue of this journal. Content is final a

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Leading Cruise Control in Mi
System Modeling, Cons
and String Stabi

Jiawei Wang™, Graduate Student Member, IEEE, Yan
Chaoyi Chen", Graduate Student Member, IEEE. Qi

Abstract— Connected and autonomous vehicles (CAVs) have
great potential to improve road transportation systems. Most
existing strategies for CAVs’ longitudinal control focus on
downstream traffic conditions, but neglect the impact of CAVs’
behaviors on upstream traffic flow. In this paper, we introduce
a notion of Leading Cruise Control (LCC), in which the CAV
maintains car-following operations adapting to the states of its
preceding vehicles, and also aims to lead the motion of its
following vehicles. Specifically, by controlling the CAV, LCC
aims to attenuate downstream traffic perturbations and smooth
upstream traffic flow actively. We first present the dynamical
modeling of LCC, with a focus on three fundamental scenarios:
car-following, free-driving, and Connected Cruise Control. Then,
the analysis of controllability, observability, and head-to-tail
string stability reveals the feasibility and potential of LCC in
improving mixed traffic flow performance. Extensive numerical
studies validate that the capability of CAVs in dissipating traffic
perturbations is further strengthened when incorporating the
information of the vehicles behind into the CAVs” control.

High-accuracy
rithms enable
car-following
potential of ¢
emergence of
By exploiting
(V2V) or vel
other vehicles
thereby allowi
traditional AC

To coordin:
Control (CAC
In CACC, a
a platoon, fo
demonstrates
communicatic

Controllability Analysis

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Controllability Analysis and Optimal Control
of Mixed Traffic Flow With Human-Driven
and Autonomous Vehicles

Jiawei Wang™, Graduate Student Member, IEEE, Yang Zheng™, Member, IEEE,

Qing Xu, Jiangiang Wang =, and Keqiang Li

Abstract— Connected and automated vehicles (CAVs) have a
great potential to improve traffic efficiency in mixed traffic
systems, which has been demonstrated by multiple numerical
simulations and field experiments. However, some fundamental
properties of mixed traffic flow, including controllability and
stabilizability, have not been well understood. This paper ana-
lyzes the controllability of mixed traffic systems and designs a
system-level optimal control strategy. Using the Popov-Belevitch-
Hautus (PBH) criterion, we prove for the first time that a
ring-road mixed traffic system with one CAV and multiple
heterogeneous human-driven vehicles is not completely control-
lable, but is stabilizable under a very mild condition. Then,
we formulate the design of a system-level control strategy for
the CAV as a structured optimal control problem, where the
CAV’s communication ability is explicitly considered. Finally,
we derive an upper bound for reachable traffic velocity via
controlling the CAV. Extensive numerical experiments verify the
effectiveness of our analytical results and the proposed control
strategy. Our results validate the possibility of utilizing CAVs as

_ mobile actuators to smooth traffic flow activelv.

for traffic control rely on certain actuators at fixed locations,
such as traffic signals and signs on roadside infrastructure [2].
Two typical systems are variable speed limits and variable
speed advisory, which already have certain industrial applica-
tions [3]. Due to their dependence on fixed infrastructure and
drivers’ compliance, however, the flexibility and effectiveness
of these systems might be compromised [4].

As one key ingredient of traffic systems, the motion of
vehicles plays an important role in traffic efficiency. Recent
advancements on control and communication technologies
have led to the emergence of connected and automated vehi-
cles (CAVs), which are expected to revolutionize road trans-
portation systems significantly. Compared to human-driven
vehicles (HDVs), the cooperative formation of multiple CAVs,
e.g.. adaptive cruise control (ACC) and cooperative adap-
tive cruise control (CACC) [5], has shown very promising
effects on achievine hicher traffic efficiencv (A1 hetter drivine
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Thank you for your attention!

Q&A

More details. Check out our webpage: https://zhengy09.github.io/soclab.html
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Extra slides



Proof idea: Lifting via Change of Variables

(d Change of variables in state-space domain: Lyapunov theory

* Connectivity of the static stabilizing state feedback gains /

{K € R™"*" | A— BK is stable}

o ——
~~.

= {K e R™*" | 3P » 0,P(A— BK)" + (A - BK)P < 0}

Open, connected,
— {K cR™" 3P~ 0,PA" —L'B" + AP - BL <0,L = KP} possibly nonconvex

= {K=LP 'eR™"|3P~0,PA" —L"B" + AP — BL < 0}.

* How about the set of stabilizing dynamical controllers Change of variables for
output feedback control is
A BCk is stable highly non-trivial
BKC AK

A BCK]TJF{ A  BCk [Scherer et al., IEEE TAC 1997]

<— 4dP >0, P [BKC Ax BcC  Ax ] P <0, [Gahinet and Apkarian, 1994]
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Proof idea: Lifting via Change of Variables

(d Change of variables in state-space domain: Lyapunov theory [Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]

(I)C(Z)] = [YIB g]_l [g M—El[/AX] [g OﬁX ]_1'

at most 2 connected components

"""""""""""" () T
surjective

R
1
1
1
i
I
I X
\Eh
-
| I
-
1
1
A
=k
=
1
L

General linear group: the set
of invertible matrices

Convex thus
(similarity transformation)

connected

GL! = {II € R™*"™ | detII > 0},

2 connected components
GL, ={Il e R"*" | detII < 0}.
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Comparison with LQR

LQR as an Optimization problem

min J(K)
K
st. K ek

LQG as an Optimization problem

min J(K)

s.t. K=(Ak, Bk, Ck) € Crun

Connectivity of
feasible region

“* Always connected

Disconnected, but at most 2 connected comp.

They are almost identical to each other

Non-unique, non-isolated stationary points

Stationary “ Uni “* Spurious stationary points (saddle, nonminimal
) “* Unique
points : controller)
«» All mini. stationary points are globally optimal
. % Gradient dominance “* No gradient dominance
Gradient . ¢ Local / d (unk )
KX » Local convergence/speed (unknown
Descent + Global fast convergence g . p
(like strictly convex) “* Many open questions
Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al.,
References IEEE TAC, 2020; Li et al., 2019; Zhang et al., 2019; Furieri et al., Zheng, Tang, Li. 2021, link

2019; Feiran Zhao & Keyou You, 2021, and many others
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Comparison with LQR

T
1
T Z (y;rQyt + UIRUt)

T
: : 1 T T min su lim E
min sup lim E | = x, Qe + u; Ruy 1%
K jaallasli<e T=ee |1 Z;( t ¢ ) Kojlafw<e  Te0 t=0
subject to x;11 = (/fl + AA)x, + (B + AB)uy + vy subject to y=(G+A)u+v
Sys ID * Least squares <+ Least squares A
methods |A— A,|| <ea,l||B— B, < es, [Al[oo == [|Gx = Gl[oc <€
** Frequency domain ** Frequency domain
Synthesis “» System-level synthesis, “* Input-output parameterization, IOP,
Technique SLS (Wang et al., 2019) (Furieri et al., 2019)
**» Taylor expansion *» Taylor expansion
S | “* both stable and unstable systems «: Only for open-loop stable system
ample A -
. — J(K)—J 1
Complexity J(K) — Js ~O (L) ’ (K) *~O0—= ),
S VN J* V N
v" Deanetal., 2020; Berberich et al., 2020; Boczar et al., . ..
REferenCES 2018; Tsiamis et al., 2020; Umenberger et al., 2019; and Zheng’ Furieri, Kamgarpour, &

many others

Li, (2021, May). link 55
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