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Autonomous Vehicles

Reduce traffic accidents
— 37,000 fatalities _ : |
— 41% deaths of young adults (ages 15-24) F &= B |
— 94% of serious crashes caused by human error "

(]

Ease traffic congestion U.S. Census Bureau, 2017.
— 6.9 billion hours wasted annually
— Cost of traffic congestion is $1740 per person annually in US/Europe.

Improve energy efficiency
— 28% of greenhouse gas emission is from transportation

New mobility patterns: on-demand mobility, mobility as service etc.
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Mix-Autonomy Mobility

A long stage of mixed-autonomy mobility

_v"}"‘“\

C _' Cloud

/ o \

Mixed-autonomy mobility: a traffic condition where both
autonomous vehicles and human-driven vehicles co-exist.

e Q1: How will a small scale of autonomous vehicles
change traffic dynamics?

* Q2: How to integrate a small scale of autonomous
vehicles to improve traffic performance?



Research questions

Mixed-autonomy mobility
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* Q1: How will a small scale of autonomous vehicles change traffic
dynamics?

* Q2: How to integrate a small scale of autonomous vehicles to
improve traffic performance?

Theoretical evidence of

Practical design via

distributed control and
scalable optimization

the high potential of
autonomous vehicles




Benchmark Ring Road Experiment

Traffic Jams Sugiyama, et al.
| ; =
1950s >10,000 papers for traffic control 2008 2021
Setting:

22 human drivers

Instructions: -

i - - o
i = a5 =
drive at 30 km/h = Traffic Jam without Bottleneck
/following its Experimental evidence o
preceding vehicle for the physical mechanism of forming a jam
Environment CYuki Sugiyama, Minoru Fukul, Macoto Kikuchl ~
Sing|e lane Katsuya Hasebe, Akihiro Makayama, Katsuhiro Nishinar
No traffic light Shin-ichi Tadaki and Satoshi Yukawa
O trarTic lights, .
No stop signs, Movie 1

No lane changes.

Video credits: NewScientist.com



Benchmark Ring Road Experiment

Traffic jams Sugiyama, et al.  Stern, et al.
1 | | Ly
| | | |
1950s >10,000 papers for traffic control 2008 2018 2021
Setting:
21 human drivers
+ 1AV
Instructions: Dissipation of stop-and-go traffic
drive at 30km/h . .
following its waves via control of a single
preceding vehicle autonomous vehicle

Environment
Single lane
No traffic lights,

i I LLINOIS RUTGERS §NTEMPLE THE UNIVERSITY
NO Stop S|gns’ UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN K UNIVERSITY A

OF ARIZONA

No lane changes.



Recent advances

Traffic jams Sugiyama, etal. Stern, et al.

1 | | 1
I I I —

1950s >10,000 papers for traffic control 2008 2018 2021

Reinforcement learning:

Wu, Cathy, et al., 2018 (MIT & Berkeley); Vinitsky, E., Kreidieh, A., Le Flem,
L., Kheterpal, N., Jang, K., Wu, C,, ... & Bayen, 2018, In Conference on
robot learning.

Adaptive and PDE control:

Yu, Huan, and Miroslav Krstic. Automatica, 2019. Yu, Huan, Saurabh Amin,
and Miroslav Krstic. 2020, IEEE CDC.

Hinf control:

Mousavi, Shima Sadat, Somayeh Bahrami, and Anastasios Kouvelas. 2021
(ETH Zurich)



Theoretical Evidence in mixed traffic

(] Theoretical Evidence & Controller
design

 Why does it work?

* Does it work in other setups (e.g., different
number of HDVs, different human-driver
behavior, open straight road scenario)?

O
/ Motion \
Motion Direction
Direction S t k f \
parse networ . Driving Node
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Scalable Control & Optimization

(] Theoretical Evidence & Controller
design

» How to design distributed controllers with
limited communication?

» How to scale up the computation efficiency?

2,

Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2020). Sparsity invariance for convex design of
distributed controllers. IEEE Transactions on Control of Network Systems. (Best Student Paper Finalist, ECC 2019)
Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting

methods for sparse semidefinite programs. Mathematical Programming, 180(1), 489-532.
10



Today’s talk

Integrating Autonomy into Traffic Systems

Part 1: Theoretic potential of autonomy in traffic
e Stabilizability of mixed traffic flow;

e Autonomous vehicles as mobile actuators in traffic
networks;

 Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization

 Convex design of distributed control over traffic
network;

* Scalable optimization for large-scale convex problems;

11



Mixed-autonomy in a ring road

[ System modeling e O..
. . . / Mofion \
1. Human drivers = car-following dynamics Direction
f . Driving Node \'
Motion Direction G?\) O Uncontrolled Node Cj>
@ 8
i s R si(t), 8:(t) A s - @:\_\t;\ //«f/;o
® & o & O g ©
Vehicle ¢ \ Vehicle 1 — 1 Fu)
Interaction
Direction 0= Fi(si(t)v 0, vi(t))
\;3\ Umax
. . = / /¢’—
i (t) = Fi(si(t), 8:(¢),vi(t)) = S
Q ,U*
T; "/
e 1. (1) : - ; 11
v; (t): Velocity of vehicle i % / /7 o bever 1
« 5i(t): Spacing between vehicle i and :g f/{/" o :gzgg
vehiclei — 1 & 5 S1 152 15

Equilibrium spacing (m)

Dirk Helbing, 2001; Orosz, Wilson, and Stepan, 2010. Large SpaCing < Large velocity 12



Mixed-autonomy in a ring road

1 System modeling

2. Autonomous vehicle = direct control
{Sl(t) — v (t) — vy (t)
01(t) = ua(t)
3. Assuming an equilibrium traffic state v"(¢)
t(t) = Ax(t) + Bu(t),

where the system matrices have the following structure

C, 0 ... ... 0 (o] S
Ay Ay 0 ... ... O |
0 A, A, 0 ... 0

A: . . . 7B: 0 ?
0 0 Ay Ay O 0
0 0 Ay A e

/’ONQ\

R

Motion \
Direction

f . Driving Node \
C?\) O Uncontrolled Node Cj>

@\ )
O
@.\‘ ()

L)

A network system
with only one
controllable node

13



Mixed-autonomy in a ring road

1 Theoretical evidence 1: Unstable
behavior

i(t) = Az(t)

(Informal) The traffic system in a ring-road can
be unstable if drivers’ sensitivity to speed and
spacing errors is small (e.g. Cui et al,, 2017) Slow response to spacing; To

a + 28|< Constant catch up, it drives to a large

velocity = Oscillation
/ P

e
|
s 2 9 aorf OVM i
e e ] — Average velogity |
Sensitivity to speed 0] SRS g 1 |
. % ¢ce o ¢ ¢ o o 099 |
e e & € ® ¢ = |
and spacing errors 10 Sadul R T |
. e e s 95 9 = o |
=] |
z %% ee° ¢ b S 14| |
é 20 2222 a‘:'f 2 . . f CO i
= L) e )
10 - s & s { & 12 |
2 s . " 9 § !
. o & |
| 5 - ;.:? 10 0

Sl4 212 a1 08 06 -04 02 0 02 0 20 40 60 80 100
Real axis t[s] 14



Mixed-autonomy in a ring road

(] Theoretical evidence 2: Fundamental
change of dynamics

i(t) = Az(t)

Theorem (zheng et al., 2019): The mixed traffic system in the ring-road
setup is not controllable, but stabilizable.

1. Independent of the number of human-driven /O\‘O
vehicles e L
Independent of car-following dynamics 7 Direction \
Offer a strong control-theoretic support for é @ Driving Node C\D
the potential of autonomy in mixed traffic T O Uncontrolled Node ]

@ O
'\@,_\ ” O./
Integrating autonomy is a fundamental change O e @/
of traffic dynamics (more control freedom)! ?u(t)

Zheng, Wang, & Li, IEEE 10T, 2019 15



Mixed-autonomy in a ring road

J Theoretical evidence 3: Beyond
stabilization/increase traffic speed

Theorem (zheng et al., 2019): The global traffic
velocity can be increased to a larger value:

0 <" < Vpax

Traffic Flow
Direction

Traffic Flow
Direction

Vehicle N Vehicle 3

Vo v* > (%))

O Physical interpretation

v The AV can change its own spacing to influence other
HDVs’ spacing, and thus change traffic velocity v*.

Zheng, Wang, & Li, IEEE 10T, 2019 16



Numerical Experiments with Nonlinear Dynamics

Unstable traffic
system

[ o
[oe] o
S

OVM
Average velocity

OVM: Optimal Velocity Model
Fy = a(V(si(t)) —vi(t)) + B3:(t)

18 +

|
|
|
|
. |
* |
=16
% i ‘ 01 S S Sst s
g 14 | ! V(S) - fv(s)a Sst < 8§ < Sgo,
> |
| Umax; S = Sgo,
12 ‘
‘ v S— S
| max st
. | | | - fo(s) = 5 (1—COS(7TS — ))
0 20 40 80 100 go st
t [s]
OVM OVM

Autonomous vehicle
Average velocity

Velocity [m/s]
)

12+

Stabilize the traffic flow

t [s]

3

Velocity [m/s]

Autonomous vehicle
Average velocity

|

—_
e

12

Increase the traffic speed

t [s]

The existence of 5% AVs (1 out of 20) can bring 6% improvement on traffic velocity .,



Integrating Autonomy: Multiple AVs

Main question: How to coordinate multiple autonomous vehicles
in traffic flow? Is platooning the optimal choice?

5
-—O~e. .
Set function
. Motion AN . . .
g Direction Direction (0) pt iMmi zat ion
. - Autonomous Vehicle - Driving Node \
(I® Human-driven Vehicle Uncontrolled Node O
] max J(9)
/.«w S
ON 0O SCQ, |8 =k
®O_@-®@
2u(t)
Q=1{1,2,...,n}: all the vehicles _
_ ) ) Li, Wang, & Zheng, (2020), IEEE TITS,
S ={iy,...,ix} € Q: k autonomous vehicles under review

18



Integrating Autonomy: Multiple AVs

Platooning is not always optimal

Set function

optimization 0

b 1l
maX J(S) a ol a\ ,
S = L=
S C Q | S ’ — k 3 o Uniform distribution 3" o Uniform distribution
o ’ L * Platoon formation L * Platoon formation
8 16 24 32 40 8 16 24 32 40
System scale System scale

Simulation with Nonlinear Car-following Dynamics

15 25
400 15 25 . . . HDV
= HDV W w
—_ w2 [ S M0 — 1
g o = aghzn — AV E, B E AY
— — g —
‘5 200 10 B 215 o~ E Z{Hl 10 5;_‘.';- *? 15
Z g 3 z & 38
= 100 = = 1 q 00 o = 10 ]
- =2 =z
0 5 5 i . . 5 5
10 20 30 40 50 a0 10 60 4 '!ﬂ 20 40 60
t (s) t(s) t (s) t(s)
Platoon formation: Uniform distribution:

Li, Wang, & Zheng, (2020), IEEE
TITS, under review

S ={9,10,11,12} S = {3,8,13,18} 19



Integrating Autonomy in Open-straight roads

(a) CACC — Wireless Communication
\

Closed-ring road setup

Direction

CACC: Fully-autonomous scenario

(b) CCC Motion Direction
e
O QO TR O O O

™ - . . .
HDV’s Interaction Direction

Connected Cruise Control;: downstream traffic flow

» Leading Cruise Control

“Looking Behind” “|Looking Ahead”

- O- O O D D
Vehicle n Vehicle 1 Vehicle 0 Vehicle —1 Vehicle —m Head Vehicle
Upstream Traffic Flow Downstream Traffic Flow

Lead the motion of the vehicles behind Adapt to the motion of the vehicles ahead |



Leading Cruise Control (LCC)

19

No control Time = 15.0 s
. . 12 T T T
Special case 1: car-following LCC
0F _ e — - — — — .
™ el _12 ‘ :)I I t‘—-” 2'
(a) CF-LCC CF-LCC (monitor one vehicle behind)” .
12 T T T T
P "y s "INy = "IN
) #* 0 #* ;_ ! Tl e T AL T B
Vehicle n v Vehicle 1 Vehicle 0 Head Vehicle 12 s s ‘ . :
0 a0 100 150 200
) .. Reduce velocity perturbations by 28%
Special case 2: free driving LCC L g
ng control Time = 15.0 s
(b) FD-LCC | | |
T | —

1
a0 100 150 200

FD-LCC (monitor~one vehicle behind)

Pa s e N
> IR - SR - . *

Vehicle n cee Vehicle 1 Vehicle 0

oL - oo o o o o e e o o

1. The motion after AV is controllable

(|eading motion bEhlnd) 7 0 % 100 150 200

2. String stability can be improved

. . o
(attenuating perturbation ahead) Reduce velocity perturbations by 35%

Wang, J., Zheng, Y., Chen, C., Xu, Q., & Li, K. (2021). Leading cruise control in mixed traffic flow: System modeling, controllability, and string
stability. IEEE Transactions on Intelligent Transportation Systems.



Today’s talk

Integrating Autonomy into Traffic Systems

Part 2: Practical design via control & optimization

 Convex design of distributed control over traffic
network;

* Scalable optimization for large-scale convex problems;

22



General Procedure

TN

| /‘_( Cloud 3
/ \Qﬂngf\_‘j )\‘
o o &KW

Hs o o o o e

Control Problem
Formulation

¥

} convexity
Convex reformulation

Challenge 1: How to recover

as LMl or SDP

¥

Call a numerical
solver

Challenge 2: How to deal large-
scale problems (Scalability)

23



Problem formulation: distributed controller

1 Why distributed?

* No need of a centralized coordinator

 Allow for local communication

Information FIOW’—\
P e N
X e @O -
1 2 3 4 5 6
u(t) = —(SL‘l + koxo + k3x3 + kaxy + ksxs + 6936)

Compact form k1 = ke =0

u(t) = —Kx(t), K € Sparse(5) s=[0 1 1110

encodes local communication

24



Problem formulation: distributed controller

Information Flow—j

!

s N S L TN L T
@ e O Q- ) e © -
min J(K) R System performance
K (e.g., speed oscillation)
Subject to K € Cstab; » Stable controller
K e Sparse(S) » Distributed controller

This is a non-convex optimization problem

= Kl S CstabaK2 S Cstab

1
— §(K1 + KZ) ¢ Cstab

The presence of the sparsity constraint makes the
problem even more challenging (NP-hard in general).

25



Previous work on distributed control

1 90’s: Feasibility & Stabilization

1)
2)
3)

4)

Structural controllability: Glover & Silverman, TAC 1976; Wang & Davison, TAC 1973; Davison,
Automatica 1977; Mayeda and Yamada, SICON 1979, etc.

Decentralized/distributed fixed mode: Anderson & Clements, TAC 1981; Sezer & Siljak, SCL
1981; Davison & Ozgiiner, Automatica 1983; etc.

Decentralized stabilization & pole placement: Davison & Chang, TAC 1995; Ravi et al, TAC
1995

Early survey paper: Sandell, Varaiya, Athans & Safonov, TAC 1978.

 Late 90’s- Now: Performance enhancement via optimization

1)

2)
3)
4)

Exact solutions for special classes of systems: Quadratic Invariance (Rotkowitz & Lall, TAC
2005); Partially ordered sets (Shah & Parrilo, TAC 2013);

Tractable convex approximation: Dvijotham et al, TCNS 2015; Fazelnia et al, TAC 2016;
Suboptimal solutions using iterative algorithms: Fu, Fardad, & Jovanovic, TAC 2011;

Structure regularization and system-level synthesis: Jovanovi¢ & Dhingra, 2016; Wang et
al., TAC 2019;

Recover A new framework based on Sparsity Invariance

for convex design of distributed control

26



Change of Variables

* Do not optimize the controller K directly: Convex reformation
via a change of variables (convex SDP; Boyd et al., 1994);

J(K) minimize J(K)
subject to K € Cgqtab,
K € Sparse(S5)

minimize

subject to K € Csiab-

IK =YX~!
minimize ¢(X,Y) minimize ¢(X,Y)
subject to (X,Y) € Cstab- subject to (X,Y) € éStab

[ YX e Sparse(S).]

~

Non-convex constraint

27



Sparsity Invariance

minimize ¢(X,Y)
subject to (X,Y) € Csiab
[YX_1 c Sparse(S).]—> Non-convex constraint

Sparsity invariance (SI) Convex approximation

X € Sparse(R), Y € Sparse(T) )
N subject to (X,Y) € Cstap

K =Y X! € Sparse(9) X € Sparse(R)

minimize g¢(X,Y)

Y € Sparse(T).
U Translate the constraint on the

controller to separate constraints Recover

on new decision variables

Best Student Paper Finalist, European Control Conference 2019 -



Sparsity Invariance

Sparsity invariance (SI)
X € Sparse(R), Y € Sparse(T)
=X
K =Y X! € Sparse(95)

Special case: the widely used diagonal assumption

R =1,T = Sis atrivial choice; (Geromel et al., 1994; Conte et al.,2012;
Rubio et al., 2013;)

1. A full characterization
TR"1'<S
2. A practical optimal design of the patterns R, T

Further
contributions

Best Student Paper Finalist, European Control Conference 2019

29



Unified framework for distributed control

X € Sparse(R), Y € Sparse(T)
Sparsity invariance (SI) —

K =YX ! € Sparse(9)

Recover A new framework based on Sparsity Invariance

for convex design of distributed control

Static feedback
Strictly better than the widely used diagonal approximation

strategy (Geromel et al., 1994; Conte et al.,2012; Rubio et al., 2013; Han et al.,
2017)

Dynamical feedback (past information + memory)

Guaranteed to be optimal when a notion of Quadratic Invariance
(Ql) holds (Rotkowitz & Martins, 2012)

Best known performance for non-Ql cases

Furieri, Zheng, et al. IEEE TCNS, 2020.

30



Numerical Experiments with Nonlinear Dynamics

/' Motion ‘ \

Direction

Driving Node

' o
C‘;) O Uncontrolled Node
@
.\

@"\_‘\t-\—\\ /ZE/’_\O
O g ©
% ult)
OVM: Optimal Velocity Model
Fy = a(V(s(t) — vilt)) + Bsi(t)
07 ) g Sst s

fo(s),

Umax,

Vis) =

Sst < S < Sgo,

S 2 Sgo,

Umax S — Sst
»(8) = 1— — ).
fu(s) 5 ( cos(m — ))

Velocity [m/s]

=
=

EENTT T . EEENT T .

Velocity [m/s]

31



Comparison with existing methods

(J Comparison with the heuristic methods in Stern et al. 2018

60 FollowerStopper 60 Pl with saturation
E 40 | E 40 |
§ 20 | C‘% 20 |
o]
4 2
V 100 Pé ' " 100
M ])10/6 ; 50 \
"Od@%_ 0 0 (8} Uy, 0 0 t\8

Welncity st dev Fuel consunsption Braking Thrmsghput
e} flirers’iddm)  revensdeebledethm i vakie festenr )

157 Inx PR 1HS
LR s Ea% 1327

e These methods are
conservative

* They lead to large spacing,
which may cause other
vehicle to cut-in




Comparison with existing methods

(J Comparison with the heuristic methods in Stern et al. 2018

Spacing [m)]

60 -

I
.
ra

]
o
Vi

0

FollowerStopper

20
100
V\/
©h;, 50
Joje : 2

60 -

jbde_;(_ 0 0 t18)
Our method
L B
w0
. o ”_J f;f”'ﬁtsu
wd@.{; 0 0 t sz\

60 Pl with saturation
£ 10
70
k=
2 20
=¥
@ p]
0 =
20
V 100
ebjofe ‘ 50
2 0 s
Q’e,“ 0 t\
20

=]
l:l

g

a0

Maximum spacing (m)
2 e
-*E
¥
¥
'F
&
4
¥
*
¥*
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* |
Jﬁ |

O Optimal control strategy
# FollowerStopper
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2 4 f B 10 12
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General Procedure

Control Problem

Formulation

Convex reformulation

as LMl or SDP

Call a numerical

solver

Challenge 1: How to recover
convexity

Sparsity Invariance

Challenge 2: How to deal large-
scale problems (Scalability)

Sparsity Structure
Matters

34



General convex optimization

max (b, y)

Semidefinite

program gsubject to Z + ZAZyZ = C),
1=1
Z €St

* Applications: control theory, fluid mechanics, polynomial optimization,
combinatorics, operations research, finance.

e Standard interior-point solvers: SeDuMi, SDPT3, Mosek (suitable for
small and medium-sized problems; say n < 1000);

* Practical large-scale instances: Standard interior point solvers will fail
on large-scale problems (say n being a few thousands).

N EIIA I O] Decompose a big positive semidefinite constraint
Matters into multiple smaller ones

35



Sparsity Structure

Sparsity structure appears in many places of real cyber-

physical systems
1 System dynamics data

o /ONO\ - -
G C, 0 ... ... 0 Cy =
[ Direction A2 Al 0 L. 0 O
@ 8 ESZSEfrE?if Node 0 A2 A]. O 0

|

O

J — — |0
~® A ... B

@ - -
o ) : : . L :
@\@’j‘%‘@/O O ... 0 Ay A O 0
?u(t) 0 . e [ O A2 Al .

J Sparse communication




Graph Decomposition

Sparse network _3 ]_ O_ _3 ]_ O_ _O O O
() (2) A=11 1 1| =11 05 0|+ (0 05 1
= o 1 3 o o o] [0 1 3]

Chordal decomposition

-
RN ||+ ED

Vandenberghe & Andersen (2015).

1
L]

* This allows for the decomposition of a big positive semidefinite constraint

* Exploiting this decomposition = a new scalable algorithm for sparse SDP
(Zheng, Y., et al. Math. Prog., 2019)

37



Open-source Solver: CDCS

CDCS: Cone Decomposition Conic Solver

 Open-source MATLAB solver for sparse conic optimization
problems (SDPs, QPs, LPs, SOCPs, etc)

* (Can be called from modeling packages, like YALMIP and
SOSTOOLS.

e Available from: https://github.com/oxfordcontrol/CDCS

Numerical comparison
1. Standard interior-point solver: SeDuMi

2. State-of-the-art first-order solver: SCS

Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2019). Chordal decomposition in operator-splitting
methods for sparse semidefinite programs. Mathematical Programming, Series A,1-44. 33


https://github.com/oxfordcontrol/CDCS

Open-source Solver: CDCS

Case 1: Test on sparse benchmark problems (from Andersen, et al, 2010)

rs1555 rs1907

Time (s) # lter. Objective Time (s) # lter. Objective
SeDuMi (high) ok sk ok e Hdk ook o sk dedd
SeDuMi (low) ok sk ok e Hdk ook o sk dedd
SCS (direct) 139,314 2000 34.20 50,047 2000 45.89
CDCS-primal 1721 2000 61.22 330 349 62.87
CDCS-dual 317 317 69.54 271 252 63.30
CDCS-hsde 1413 2000 61.36 393 414 63.14

Entries marked *** indicate that the problem could not be solved due to memory limitations

Problem instance: rs1907 v SeDuMi ran out of memory
* PSD size 5357X 5357 v"  The first-order solver SCS took over 13
> 10 million decision hours to return a solution
variables v CDCS took 6 minutes to get a solution; 100

X speedup!

Exploiting sparsity achieves

massive scalability!

39



Open-source Solver: CDCS

Case 2: Test on stability/H2/Hinf analysis of linear cascaded systems

Order of magnitude

CPU time (s)

faster
- Massive Scalability

Number of nodes, n

0 SeDulMi #* SCS m CDCS 40



Open-source Solver: CDCS

Large-scale practical problems

L oxfordcontrol / CDCS @ Unwatch~ | 8 # Unstar 31 YFork | 13

Code lssues 0 Pull requests 0 Actions Projects 0 Wiki Security Insights Settings

An open-source MATLAB® ADMM solver for partially decomposable conic optimization programs. Edit

sparse-semidefinite-porgrams admm cone-decomposition large-scale-optimizations  Manage topics

D 116 commits ¥ 5 branches M 0 packages 31 release 41 4 contributors GPL-3

Branch: master = New pull request Create new file | Upload files | Find file Clone or download ~

J Signal recovery problem

Fosson, S. M., & Abuabiah, M. (2019). Recovery of binary sparse signals from compressed linear
measurements via polynomial optimization. IEEE Signal Processing Letters.

d Optimal power flow problem

Eltved, A., Dahl, J., & Andersen, M. S. (2018). On the robustness and scalability of semidefinite
relaxation for optimal power flow problems. Optimization and Engineering, 1-18.

d Nonlinear systems analysis

Driggs & Fawzi (2019). “AnySOS: An anytime algorithm for semidefinite programming" IEEE
CDC, 1-6.

41



Conclusion



Two main takeaways

Theoretic potential of autonomy in traffic

Mixed traffic systems is always stabilizable;

Autonomous vehicles can not only smooth traffic wave, but also
guide traffic velocity to a higher value;

Autonomous vehicles can change traffic dynamics fundamentally
(Leading Cruise Control)

Integrating Autonomy via Control and
Optimization
Convexity of distributed control: a new framework based on
sparsity invariance

Scalability of convex optimization: Sparsity-exploiting methods
based on graph decomposition

43
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SOC
Lab

£

Join the SOC lab at UC San Diego!

o

Data-driven Sparse conic Scalable Connected and
and learning- optimization distributed autonomous
based control control vehicles (CAVs)
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Check out our webpage: https://zhengy09.github.io/soclab.html
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Data-driven MPC
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Experiments
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Experiments
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Experiments

Comprehensive simulation
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Modeling and Control of Traffic Flow

* Modeling techniques e Control methods

— Ordinary differential equations — Adaptive control

— Partial differential equations — Model predictive control

— Queuing theory — Optimal cooperative control

— Cell transmission model — Reinforcement Learning

— Cascaded nonlinear systems — Formal methods

— etc. — etc.
Horowitz, R., & Varaiya, P. Control design of an Hegyi, A., De Schutter, B., & Hellendoorn, H. Model
automated highway system. Proc. [EEE, 2000. predictive control for optimal coordination of ramp
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crowds: A survey of models, speculations, and Prashanth, L. A., & Bhatnagar, S. . Reinforcement
perspectives. SIAM review, 2011 learning with function approximation for traffic signal

. . control. I[EEE TITS, 2010.
Geroliminis, N., & Daganzo, C. F. Macroscopic _ _
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Board 86th Annual Meeting, 2007. speed signs. TRB, 1990.

Daganzo, C. F. The cell transmission model, part Il: Haddad, J., Ramezani, & Geroliminis, N. Cooperative
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: , : _ regions and a freeway. TRB, 2013
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