Integrating Autonomy into Traffic Systems: Scalable Control and Optimization

Yang Zheng

Assistant Professor, ECE Department, UC San Diego

> INTR 6800 Seminar Nov 08, 2021

UC San Diego

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Acknowledgements

Na Li Harvard University

Antonis Papachristodoulou University of Oxford

Paul Goulart University of Oxford

Giovanni Fantuzzi Imperial College London

Keqiang Li Tsinghua University

Jiawei Wang Tsinghua University

Luca Furieri EPFL

Maryam Kamgarpour EPFL

Autonomous Vehicles

Reduce traffic accidents

- 37,000 fatalities
- 41% deaths of young adults (ages 15-24)
- 94% of serious crashes caused by human error
- Ease traffic congestion
 - 6.9 billion hours wasted annually
 - Cost of traffic congestion is \$1740 per person annually in US/Europe.
- Improve energy efficiency
 - 28% of greenhouse gas emission is from transportation
- New mobility patterns: on-demand mobility, mobility as service etc.

U.S. Census Bureau, 2017.

Mix-Autonomy Mobility

A long stage of mixed-autonomy mobility

Mixed-autonomy mobility: a traffic condition where both autonomous vehicles and human-driven vehicles co-exist.

- Q1: How will a small scale of autonomous vehicles change traffic dynamics?
- Q2: How to integrate a small scale of autonomous vehicles to improve traffic performance?

Research questions

Mixed-autonomy mobility

- **Q1:** How will a small scale of autonomous vehicles change traffic dynamics?
- **Q2:** How to integrate a small scale of autonomous vehicles to improve traffic performance?

Theoretical evidence of the high potential of autonomous vehicles Practical design via distributed control and scalable optimization

Benchmark Ring Road Experiment

Setting:

22 human drivers Instructions: drive at 30 km/h /following its preceding vehicle

Environment

Single lane No traffic lights, No stop signs, No lane changes.

Video credits: NewScientist.com

Benchmark Ring Road Experiment

Setting:

21 human drivers

+ 1 AV

Instructions:

drive at 30km/h /following its preceding vehicle

Environment

Single lane

No traffic lights,

No stop signs,

No lane changes.

Dissipation of stop-and-go traffic waves via control of a single autonomous vehicle

Recent advances

Reinforcement learning:

Wu, Cathy, et al., 2018 (MIT & Berkeley); Vinitsky, E., Kreidieh, A., Le Flem, L., Kheterpal, N., Jang, K., Wu, C., ... & Bayen, 2018, In Conference on robot learning.

Adaptive and PDE control:

Yu, Huan, and Miroslav Krstic. Automatica, 2019. Yu, Huan, Saurabh Amin, and Miroslav Krstic. 2020, IEEE CDC.

Hinf control:

Mousavi, Shima Sadat, Somayeh Bahrami, and Anastasios Kouvelas. 2021 (ETH Zurich)

Theoretical Evidence in mixed traffic

Theoretical Evidence & Controller design

- Why does it work?
- Does it work in other setups (e.g., different number of HDVs, different human-driver behavior, open straight road scenario)?

Zheng, Wang, & Li, IEEE IoT, 2019; Wang, & Zheng, et al., IEEE TITS, 2020

Scalable Control & Optimization

Theoretical Evidence & Controller design

- How to design distributed controllers with limited communication?
- How to scale up the computation efficiency?

- Furieri, L., **Zheng**, Y., Papachristodoulou, A., & Kamgarpour, M. (2020). Sparsity invariance for convex design of distributed controllers. IEEE Transactions on Control of Network Systems. (*Best Student Paper Finalist*, ECC 2019)
- Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. *Mathematical Programming*, *180*(1), 489-532.

Today's talk

Integrating Autonomy into Traffic Systems

Part 1: Theoretic potential of autonomy in traffic

- Stabilizability of mixed traffic flow;
- Autonomous vehicles as mobile actuators in traffic networks;
- Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization

- Convex design of distributed control over traffic network;
- Scalable optimization for large-scale convex problems;

Dirk Helbing, 2001; Orosz, Wilson, and Stepan, 2010.

System modeling

2. Autonomous vehicle \rightarrow direct control

$$\begin{cases} \dot{s}_1(t) &= v_n(t) - v_1(t) \\ \dot{v}_1(t) &= u_1(t) \end{cases}$$

3. Assuming an equilibrium traffic state $v^*(t)$

$$\dot{x}(t) = Ax(t) + Bu(t),$$

where the system matrices have the following structure

$$A = \begin{bmatrix} C_1 & 0 & \dots & \dots & 0 & C_2 \\ A_2 & A_1 & 0 & \dots & \dots & 0 \\ 0 & A_2 & A_1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_2 & A_1 & 0 \\ 0 & \dots & \dots & 0 & A_2 & A_1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

A network system with only one controllable node

Theoretical evidence 1: Unstable behavior

 $\dot{x}(t) = \hat{A}x(t)$

(Informal) The traffic system in a ring-road can be unstable if drivers' sensitivity to speed and spacing errors is small (e.g. Cui et al., 2017)

 $\alpha + 2\beta < \text{Constant}$

The Mathematical Society of Traffic Flow

Slow response to spacing; To catch up, it drives to a large velocity \rightarrow **Oscillation**

Sensitivity to speed and spacing errors

Theoretical evidence 2: Fundamental change of dynamics

$$\dot{x}(t) = \hat{A}x(t)$$

Theorem (zheng et al., 2019): The mixed traffic system in the ring-road setup is not controllable, but stabilizable.

- 1. Independent of the number of human-driven vehicles
- 2. Independent of car-following dynamics
- **3.** Offer a strong control-theoretic support for the potential of autonomy in mixed traffic

Integrating autonomy is a fundamental change of traffic dynamics (more control freedom)!

Theoretical evidence 3: Beyond stabilization/increase traffic speed

Theorem (zheng *et al.*, 2019): The global traffic velocity can be increased to a larger value:

 $0 \le v^* < v_{\max}$

Physical interpretation

✓ The AV can change its own spacing to influence other HDVs' spacing, and thus change traffic velocity v^* .

Numerical Experiments with Nonlinear Dynamics

The existence of 5% AVs (1 out of 20) can bring 6% improvement on traffic velocity 17

Integrating Autonomy: Multiple AVs

Main question: How to coordinate multiple autonomous vehicles in traffic flow? Is platooning the optimal choice?

 $\Omega = \{1, 2, \dots, n\}: \text{ all the vehicles}$ $S = \{i_1, \dots, i_k\} \subseteq \Omega: k \text{ autonomous vehicles}$

 $\begin{array}{l} & \text{Set function} \\ & \text{optimization} \end{array} \\ & \max_{S} \quad J(S) \\ & S \subseteq \Omega, |S| = k \end{array}$

Li, Wang, & **Zheng**, (2020), IEEE TITS, under review

Integrating Autonomy: Multiple AVs

Simulation with Nonlinear Car-following Dynamics

 $S = \{9, 10, 11, 12\}$

Li, Wang, & **Zheng,** (2020), IEEE TITS, under review Uniform distribution: $S = \{3, 8, 13, 18\}$

19

Integrating Autonomy in Open-straight roads

Leading Cruise Control (LCC)

Wang, J., **Zheng, Y.**, Chen, C., Xu, Q., & Li, K. (2021). Leading cruise control in mixed traffic flow: System modeling, controllability, and string stability. IEEE Transactions on Intelligent Transportation Systems.

Today's talk

Integrating Autonomy into Traffic Systems

Part 1: Theoretic potential of autonomy in traffic

- Stabilizability of mixed traffic flow;
- Autonomous vehicles as mobile actuators in traffic networks;
- Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization

- Convex design of distributed control over traffic network;
- Scalable optimization for large-scale convex problems;

General Procedure

Problem formulation: distributed controller

Why distributed?

- No need of a centralized coordinator
- Allow for local communication

Problem formulation: distributed controller

• This is a non-convex optimization problem

$$\exists K_1 \in \mathcal{C}_{\text{stab}}, K_2 \in \mathcal{C}_{\text{stab}}$$

$$\Rightarrow \quad \frac{1}{2}(K_1 + K_2) \notin \mathcal{C}_{\text{stab}}$$

• The presence of the sparsity constraint makes the problem **even more challenging** (NP-hard in general).

Previous work on distributed control

90's: Feasibility & Stabilization

- 1) Structural controllability: Glover & Silverman, TAC 1976; Wang & Davison, TAC 1973; Davison, Automatica 1977; Mayeda and Yamada, SICON 1979, etc.
- 2) Decentralized/distributed fixed mode: Anderson & Clements, TAC 1981; Sezer & Šiljak, SCL 1981; Davison & Özgüner, Automatica 1983; etc.
- **3)** Decentralized stabilization & pole placement: Davison & Chang, TAC 1995; Ravi et al, TAC 1995
- 4) Early survey paper: Sandell, Varaiya, Athans & Safonov, TAC 1978.

Late 90's- Now: Performance enhancement via optimization

- 1) Exact solutions for special classes of systems: Quadratic Invariance (Rotkowitz & Lall, TAC 2005); Partially ordered sets (Shah & Parrilo, TAC 2013);
- 2) Tractable convex approximation: Dvijotham et al, TCNS 2015; Fazelnia et al, TAC 2016;
- 3) Suboptimal solutions using iterative algorithms: Fu, Fardad, & Jovanovic, TAC 2011;
- **4)** Structure regularization and system-level synthesis: Jovanović & Dhingra, 2016; Wang et al., TAC 2019;

Recover Convexity A new framework based on Sparsity Invariance for convex design of distributed control Do not optimize the controller K directly: Convex reformation

via a change of variables (convex SDP; Boyd et al., 1994);

Sparsity Invariance

minimize
$$g(X, Y)$$

subject to $(X, Y) \in \hat{\mathcal{C}}_{Stab}$
 $YX^{-1} \in \text{Sparse}(S)$. Non-convex constraint

Sparsity invariance (SI)

$$X \in \text{Sparse}(R), Y \in \text{Sparse}(T)$$

 \Rightarrow
 $K = YX^{-1} \in \text{Sparse}(S)$

Translate the constraint on the controller to separate constraints on new decision variables **Convex approximation** inimize a(X|Y)

minimize g(X, Y)subject to $(X, Y) \in \hat{\mathcal{C}}_{Stab}$ $X \in \text{Sparse}(R)$

 $Y \in \text{Sparse}(T).$

```
Recover
Convexity
```

Sparsity Invariance

Sparsity invariance (SI) $X \in \text{Sparse}(R), Y \in \text{Sparse}(T)$ \Rightarrow $K = YX^{-1} \in \text{Sparse}(S)$

Special case: the widely used diagonal assumption

R = I, T = S is a trivial choice; (Geromel et al., 1994; Conte et al., 2012; Rubio et al., 2013;)

1. A full characterization

Further contributions

- $TR^{n-1} \le S$
- 2. A practical optimal design of the patterns R, T

Best Student Paper Finalist, European Control Conference 2019

Unified framework for distributed control

 $\begin{array}{ll} X \in \operatorname{Sparse}(R), \ Y \in \operatorname{Sparse}(T) \\ \Rightarrow \\ K = YX^{-1} \in \operatorname{Sparse}(S) \end{array}$

Recover Convexity A new framework based on Sparsity Invariance for convex design of distributed control

Static feedback

 Strictly better than the widely used diagonal approximation strategy (Geromel et al., 1994; Conte et al., 2012; Rubio et al., 2013; Han et al., 2017)

Dynamical feedback (past information + memory)

- Guaranteed to be optimal when a notion of Quadratic Invariance (QI) holds (Rotkowitz & Martins, 2012)
- Best known performance for non-QI cases

Numerical Experiments with Nonlinear Dynamics

OVM: Optimal Velocity Model $F_{i} = \alpha(V(s_{i}(t)) - v_{i}(t)) + \beta \dot{s}_{i}(t)$ $V(s) = \begin{cases} 0, & s \leq s_{st}, \\ f_{v}(s), & s_{st} < s < s_{go}, \\ v_{max}, & s \geq s_{go}, \end{cases}$ $f_{v}(s) = \frac{v_{max}}{2} \left(1 - \cos(\pi \frac{s - s_{st}}{s_{go} - s_{st}})\right).$

80

Comparison with existing methods

Comparison with the heuristic methods in Stern et al. 2018

- These methods are conservative
- They lead to large spacing, which may cause other vehicle to cut-in

Comparison with existing methods

Comparison with the heuristic methods in Stern et al. 2018

General Procedure

Challenge 1: How to recover convexity Sparsity Invariance Challenge 2: How to deal largescale problems (Scalability) Sparsity Structure Matters

General convex optimization

- **Applications:** control theory, fluid mechanics, polynomial optimization, combinatorics, operations research, finance.
- Standard interior-point solvers: SeDuMi, SDPT3, Mosek (suitable for small and medium-sized problems; say n < 1000);
- **Practical large-scale instances**: Standard interior point solvers will fail on large-scale problems (say *n* being a few thousands).

Sparsity StructureDecompose a big positive semidefinite constraintMattersinto multiple smaller ones

Sparsity Structure

Sparsity structure appears in many places of real cyberphysical systems

System dynamics data

Sparse communication

Graph Decomposition

- This allows for the decomposition of a big positive semidefinite constraint
- Exploiting this decomposition → a new scalable algorithm for sparse SDP (Zheng, Y., et al. Math. Prog., 2019)

CDCS: Cone Decomposition Conic Solver

- Open-source MATLAB solver for sparse conic optimization problems (SDPs, QPs, LPs, SOCPs, etc)
- Can be called from modeling packages, like YALMIP and SOSTOOLS.
- Available from: <u>https://github.com/oxfordcontrol/CDCS</u>

Numerical comparison

- 1. Standard interior-point solver: SeDuMi
- 2. State-of-the-art first-order solver: **SCS**

Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2019). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. *Mathematical Programming, Series A*,1-44.

Open-source Solver: CDCS

Case 1: Test on sparse benchmark problems (from Andersen, et al, 2010)

	rs1555			rs1907		
	Time (s)	# Iter.	Objective	Time (s)	# Iter.	Objective
SeDuMi (high)	***	***	***	***	***	***
SeDuMi (low)	***	***	***	***	***	***
SCS (direct)	139,314	2000	34.20	50,047	2000	45.89
CDCS-primal	1721	2000	61.22	330	349	62.87
CDCS-dual	317	317	69.54	271	252	63.30
CDCS-hsde	1413	2000	61.36	393	414	63.14

Entries marked *** indicate that the problem could not be solved due to memory limitations

- Problem instance: rs1907
- PSD size 5357× 5357
- > 10 million decision variables

Exploiting sparsity achieves massive scalability!

- SeDuMi ran out of memory
- ✓ The first-order solver SCS took over 13
 hours to return a solution
- CDCS took 6 minutes to get a solution; 100
 × speedup!

Open-source Solver: CDCS

Case 2: Test on stability/H2/Hinf analysis of linear cascaded systems

Order of magnitude faster → Massive Scalability

Open-source Solver: CDCS

Large-scale practical problems

Distance of the second	S			O Unwatch → 8 🕇 Uns	tar 31 Y Fork 13			
<> Code () Issues ()	ነን Pull requests 0 🛛 🔘 A	ctions III Projects 0	🗉 Wiki 🕕 Secu	urity 📊 Insights 🔅 Se	ttings			
An open-source MATLAB® ADMM solver for partially decomposable conic optimization programs.								
sparse-semidefinite-porgrams	admm cone-decomposit	ion large-scale-optimizatio	Manage topics					
116 commits	₿ 5 branches	🗊 0 packages	🛇 1 release	4 contributors	ಶ್ತ್ LGPL-3.0			
Branch: master New pull	l request		Create ne	w file Upload files Find file	e Clone or download -			

Gignal recovery problem

• Fosson, S. M., & Abuabiah, M. (2019). Recovery of binary sparse signals from compressed linear measurements via polynomial optimization. *IEEE Signal Processing Letters*.

Optimal power flow problem

• Eltved, A., Dahl, J., & Andersen, M. S. (2018). On the robustness and scalability of semidefinite relaxation for optimal power flow problems. *Optimization and Engineering*, 1-18.

Nonlinear systems analysis

 Driggs & Fawzi (2019). "AnySOS: An anytime algorithm for semidefinite programming" IEEE CDC, 1-6.

Conclusion

Two main takeaways

Theoretic potential of autonomy in traffic

- Mixed traffic systems is always **stabilizable**;
- Autonomous vehicles can not only **smooth traffic wave**, but also guide traffic velocity to **a higher value**;
- Autonomous vehicles can change traffic dynamics fundamentally (Leading Cruise Control)

Integrating Autonomy via Control and Optimization

- **Convexity** of distributed control: a new framework based on sparsity invariance
- **Scalability** of convex optimization: Sparsity-exploiting methods based on graph decomposition

References

Mixed autonomy analysis

- 1. Zheng, Y., Wang, J., & Li, K. (2020). Smoothing traffic flow via control of autonomous vehicles. IEEE Internet of Things Journal, 7(5), 3882-3896.
- 2. Li, K., Wang, J., & **Zheng, Y.** (2020). Cooperative Formation of Autonomous Vehicles in Mixed Traffic Flow: Beyond Platooning. arXiv preprint arXiv:2009.04254.
- 3. Wang, J., **Zheng, Y.**, Xu, Q., Wang, J., & Li, K. (2020). Controllability Analysis and Optimal Control of Mixed Traffic Flow with Human-driven and Autonomous Vehicles. *IEEE Transactions on Intelligent Transportation Systems*, accepted.
- 4. Wang, J., Zheng, Y., Chen, C., Xu, Q., & Li, K. (2021). Leading cruise control in mixed traffic flow: System modeling, controllability, and string stability. *IEEE Transactions on Intelligent Transportation Systems*.

Controller Design & Scalability

- Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). Sparsity Invariance for Convex Design of Distributed Controllers. *IEEE Transactions on Control of Network Systems, accepted.* 1-11. (Best Student Paper Award Finalist, conference version)
- **2. Zheng, Y.**, Furieri, L., Papachristodoulou, A., Li, N., & Kamgarpour, M. (2020). On the Equivalence of Youla, System-Level, and Input–Output Parameterizations. *IEEE Transactions on Automatic Control*, 66(1), 413-420.
- **3.** Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. *Mathematical Programming*, 1-44.

Join the SOC lab at UC San Diego!

Check out our webpage: https://zhengy09.github.io/soclab.html

Extra slides

Data-driven MPC

Controllable subspace

Uncontrollable subspace

 \Vert_2^2

$$\begin{split} \min_{g,u,y,\sigma_y} & \|y\|_Q^2 + \|u\|_R^2 + \lambda_g \|g\|_2^2 + \lambda_y \|\sigma_y \\ \text{s.t.} & \begin{bmatrix} U_{\mathrm{p}} \\ E_{\mathrm{p}} \\ Y_{\mathrm{p}} \\ U_{\mathrm{f}} \\ E_{\mathrm{f}} \\ Y_{\mathrm{f}} \end{bmatrix} g = \begin{bmatrix} u_{\mathrm{ini}} \\ \epsilon_{\mathrm{ini}} \\ y_{\mathrm{ini}} \\ u \\ \epsilon \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \sigma_y \\ 0 \\ 0 \\ 0 \end{bmatrix}, \\ \epsilon = 0, \ u \in \mathcal{U}, \ y \in \mathcal{Y}. \end{split}$$

Experiments

Experiments

Simulation at safety-critical scenario

Experiments

Comprehensive simulation

Wang, J., Zheng, Y., Xu, Q., & Li, K. (2021). Data-Driven Predictive Control for Connected and Autonomous Vehicles in Mixed Traffic. *arXiv preprint arXiv:2110.10097*.

Modeling and Control of Traffic Flow

Modeling techniques

- Ordinary differential equations
- Partial differential equations
- Queuing theory
- Cell transmission model
- Cascaded nonlinear systems

— etc.

Horowitz, R., & Varaiya, P. Control design of an automated highway system. *Proc. IEEE*, 2000.

Bellomo, N., & Dogbe, C. On the modeling of traffic and crowds: A survey of models, speculations, and perspectives. *SIAM review*, 2011

Geroliminis, N., & Daganzo, C. F. Macroscopic modeling of traffic in cities. *In Transportation Research Board 86th Annual Meeting*, 2007.

Daganzo, C. F. The cell transmission model, part II: network traffic. *TRB, 1995*.

Helbing, D. Traffic and related self-driven many-particle systems. *Reviews of modern physics*, 2001.

Control methods

- Adaptive control
- Model predictive control
- Optimal cooperative control
- Reinforcement Learning
- Formal methods

— etc.

Hegyi, A., De Schutter, B., & Hellendoorn, H. Model predictive control for optimal coordination of ramp metering and variable speed limits. *TRC, 2005* Prashanth, L. A., & Bhatnagar, S. . Reinforcement learning with function approximation for traffic signal control. *IEEE TITS, 2010*.

Smulders, S. Control of freeway traffic flow by variable speed signs. *TRB*, *1990*.

Haddad, J., Ramezani, & Geroliminis, N. Cooperative traffic control of a mixed network with two urban regions and a freeway. TRB, 2013