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• Reduce traffic accidents
– 37,000 fatalities

– 41% deaths of young adults (ages 15-24)

– 94% of serious crashes caused by human error

Autonomous Vehicles

• Ease traffic congestion
– 6.9 billion hours wasted annually

– Cost of traffic congestion is $1740 per person annually in US/Europe.

• Improve energy efficiency
– 28% of greenhouse gas emission is from transportation

• New mobility patterns: on-demand mobility, mobility as service etc. 

U.S. Census Bureau, 2017.



Mix-Autonomy Mobility

4

A long stage of mixed-autonomy mobility

Mixed-autonomy mobility: a traffic condition where both 
autonomous vehicles and human-driven vehicles co-exist.

• Q1: How will a small scale of autonomous vehicles 
change traffic dynamics?

• Q2: How to integrate a small scale of autonomous 
vehicles to improve traffic performance?



Research questions
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Theoretical evidence of 
the high potential of 
autonomous vehicles

Practical design via 
distributed control and 
scalable optimization

• Q1: How will a small scale of autonomous vehicles change traffic 
dynamics?

• Q2: How to integrate a small scale of autonomous vehicles to 
improve traffic performance?

Mixed-autonomy mobility
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Benchmark Ring Road Experiment

Setting: 
22 human drivers

Instructions: 
drive at 30 km/h 
/following its 
preceding vehicle

Environment
Single lane
No traffic lights, 
No stop signs,
No lane changes.

1950s 2008

Sugiyama, et al.

>10,000 papers for traffic control

Traffic jams

2021

Video credits: NewScientist.com
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Benchmark Ring Road Experiment

Setting: 
21 human drivers
+ 1 AV

Instructions: 
drive at 30km/h 
/following its 
preceding vehicle

Environment
Single lane
No traffic lights, 
No stop signs,
No lane changes.

1950s 2008

Sugiyama, et al.Traffic jams

20212018

Stern, et al.

>10,000 papers for traffic control
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Recent advances

Reinforcement learning:
Wu, Cathy, et al., 2018 (MIT & Berkeley); Vinitsky, E., Kreidieh, A., Le Flem, 
L., Kheterpal, N., Jang, K., Wu, C., ... & Bayen, 2018, In Conference on 
robot learning. 

Adaptive and PDE control: 
Yu, Huan, and Miroslav Krstic. Automatica, 2019. Yu, Huan, Saurabh Amin, 
and Miroslav Krstic. 2020, IEEE CDC.

Hinf control: 
Mousavi, Shima Sadat, Somayeh Bahrami, and Anastasios Kouvelas. 2021 
(ETH Zurich)

1950s 2008

Sugiyama, et al.Traffic jams

20212018

Stern, et al.

>10,000 papers for traffic control



Theoretical Evidence in mixed traffic
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❑Theoretical Evidence & Controller 
design

• Why does it work?                              

• Does it work in other setups (e.g., different 
number of HDVs, different human-driver 
behavior, open straight road scenario)?

Sparse network 
control

Zheng, Wang, & Li, IEEE IoT, 2019; Wang, & Zheng, et al., IEEE TITS, 2020



Scalable Control & Optimization
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❑Theoretical Evidence & Controller 
design

➢ How to design distributed controllers with 
limited communication?

➢ How to scale up the computation efficiency?

• Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2020). Sparsity invariance for convex design of 
distributed controllers. IEEE Transactions on Control of Network Systems. (Best Student Paper Finalist, ECC 2019)

• Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal decomposition in operator-splitting 
methods for sparse semidefinite programs. Mathematical Programming, 180(1), 489-532.



Today’s talk

Part 1: Theoretic potential of autonomy in traffic

• Stabilizability of mixed traffic flow;

• Autonomous vehicles as mobile actuators in traffic 
networks;

• Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization 

• Convex design of distributed control over traffic 
network;

• Scalable optimization for large-scale convex problems;

Integrating Autonomy into Traffic Systems
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Mixed-autonomy in a ring road
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❑ System modeling

1. Human drivers → car-following dynamics

• :  Velocity of vehicle 𝑖

• :  Spacing between vehicle 𝑖 and 
vehicle 𝑖 − 1

Large spacing ↔ Large velocityDirk Helbing, 2001; Orosz, Wilson, and Stepan, 2010.



Mixed-autonomy in a ring road
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❑ System modeling

2. Autonomous vehicle → direct control

3. Assuming an equilibrium traffic state    

where the system matrices have the following structure

A network system 
with only one 

controllable node



Mixed-autonomy in a ring road
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❑Theoretical evidence 1: Unstable
behavior

(Informal) The traffic system in a ring-road can 
be unstable if drivers’ sensitivity to speed and 
spacing errors is small (e.g. Cui et al., 2017)

Sensitivity to speed 
and spacing errors

Slow response to spacing; To 
catch up, it drives to a large 
velocity → Oscillation



Mixed-autonomy in a ring road
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❑Theoretical evidence 2: Fundamental 
change of dynamics

Theorem (zheng et al., 2019): The mixed traffic system in the ring-road 
setup is not controllable, but stabilizable.

Zheng, Wang, & Li, IEEE IoT, 2019

1. Independent of the number of human-driven 
vehicles 

2. Independent of car-following dynamics

3. Offer a strong control-theoretic support for 
the potential of autonomy in mixed traffic

Integrating autonomy is a fundamental change 
of traffic dynamics (more control freedom)! 



Mixed-autonomy in a ring road
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❑Theoretical evidence 3: Beyond 
stabilization/increase traffic speed

Theorem (zheng et al., 2019): The global traffic 
velocity can be increased to a larger value:

Zheng, Wang, & Li, IEEE IoT, 2019

 Physical interpretation

✓ The AV can change its own spacing to influence other 
HDVs’ spacing, and thus change traffic velocity      .



Numerical Experiments with Nonlinear Dynamics
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Stabilize the traffic flow Increase the traffic speed

Unstable traffic 
system

The existence of 5% AVs (1 out of 20) can bring 6% improvement on traffic velocity

OVM: Optimal Velocity Model



Integrating Autonomy: Multiple AVs
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Main question: How to coordinate multiple autonomous vehicles 
in traffic flow? Is platooning the optimal choice?

Set function 
optimization

Li, Wang, & Zheng, (2020), IEEE TITS,
under review



Integrating Autonomy: Multiple AVs
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Set function 
optimization

Platooning is not always optimal 

Platoon formation: Uniform distribution:

Simulation with Nonlinear Car-following Dynamics

Li, Wang, & Zheng, (2020), IEEE
TITS, under review



Integrating Autonomy in Open-straight roads
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CACC: Fully-autonomous scenario

Connected Cruise Control: downstream traffic flow

Adapt to the motion of the vehicles aheadLead the motion of the vehicles behind

➢ Leading Cruise Control

Closed-ring road setup



Leading Cruise Control (LCC)
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No control

FD-LCC (monitor one vehicle behind)

Special case 1: car-following LCC

Special case 2: free driving LCC

Reduce velocity perturbations by 35%

CF-LCC (monitor one vehicle behind)

Reduce velocity perturbations by 28%

No control

Wang, J., Zheng, Y., Chen, C., Xu, Q., & Li, K. (2021). Leading cruise control in mixed traffic flow: System modeling, controllability, and string 
stability. IEEE Transactions on Intelligent Transportation Systems.

1. The motion after AV is controllable 
(leading motion behind)

2. String stability can be improved 
(attenuating perturbation ahead)



Today’s talk

Part 1: Theoretic potential of autonomy in traffic

• Stabilizability of mixed traffic flow;

• Autonomous vehicles as mobile actuators in traffic 
networks;

• Leading Cruise Control (LCC)

Part 2: Practical design via control & optimization 

• Convex design of distributed control over traffic 
network;

• Scalable optimization for large-scale convex problems;

Integrating Autonomy into Traffic Systems
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General Procedure

23

Control Problem 
Formulation

Convex reformulation 
as LMI or SDP

Call a numerical 
solver

Challenge 1: How to recover 
convexity 

Challenge 2: How to deal large-
scale problems (Scalability) 



Problem formulation: distributed controller
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❑ Why distributed?

• No need of a centralized coordinator

• Allow for local communication

1 2 3 4 5 6

Compact form

encodes local communication



Problem formulation: distributed controller
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System performance 
(e.g., speed oscillation)

Stable controller

Distributed controller

• This is a non-convex optimization problem

• The presence of the sparsity constraint makes the 

problem even more challenging (NP-hard in general).



❑ 90’s: Feasibility & Stabilization
1) Structural controllability: Glover & Silverman, TAC 1976; Wang & Davison, TAC 1973; Davison, 

Automatica 1977; Mayeda and Yamada, SICON 1979, etc.

2) Decentralized/distributed fixed mode: Anderson & Clements, TAC 1981; Sezer & Šiljak, SCL 
1981; Davison & Özgüner, Automatica 1983; etc.

3) Decentralized stabilization & pole placement: Davison & Chang, TAC 1995; Ravi et al, TAC
1995

4) Early survey paper: Sandell, Varaiya, Athans & Safonov, TAC 1978.

❑ Late 90’s- Now: Performance enhancement via optimization
1) Exact solutions for special classes of systems: Quadratic Invariance (Rotkowitz & Lall, TAC

2005); Partially ordered sets (Shah & Parrilo, TAC 2013);

2) Tractable convex approximation: Dvijotham et al, TCNS 2015; Fazelnia et al, TAC 2016; 

3) Suboptimal solutions using iterative algorithms: Fu, Fardad, & Jovanovic, TAC 2011;

4) Structure regularization and system-level synthesis: Jovanović & Dhingra, 2016; Wang et 
al., TAC 2019; 

A new framework based on Sparsity Invariance 
for convex design of distributed control

Recover 

Convexity

Previous work on distributed control

26



• Do not optimize the controller 𝑲 directly: Convex reformation 

via a change of variables (convex SDP; Boyd et al., 1994);

Change of Variables

Non-convex constraint
27



Sparsity Invariance

Non-convex constraint

Best Student Paper Finalist, European Control Conference 2019

Sparsity invariance (SI)

❑ Translate the constraint on the 
controller to separate constraints 
on new decision variables

Recover 

Convexity

Convex approximation

28



Sparsity Invariance

Sparsity invariance (SI)

Special case: the widely used diagonal assumption

𝑅 = 𝐼, 𝑇 = 𝑆 is a trivial choice; (Geromel et al., 1994; Conte et al.,2012; 
Rubio et al., 2013;)

1. A full characterization

2. A practical optimal design of the patterns 𝑅, 𝑇

Further
contributions

Best Student Paper Finalist, European Control Conference 2019
29



Unified framework for distributed control

Sparsity invariance (SI)

Static feedback
• Strictly better than the widely used diagonal approximation 

strategy (Geromel et al., 1994; Conte et al.,2012; Rubio et al., 2013; Han et al., 

2017)

Dynamical feedback (past information + memory)

• Guaranteed to be optimal when a notion of Quadratic Invariance
(QI) holds (Rotkowitz & Martins, 2012)

• Best known performance for non-QI cases
Furieri, Zheng, et al. IEEE TCNS, 2020.

A new framework based on Sparsity Invariance 
for convex design of distributed control

Recover 

Convexity

30



Numerical Experiments with Nonlinear Dynamics

OVM: Optimal Velocity Model

31
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Comparison with existing methods

❑ Comparison with the heuristic methods in Stern et al. 2018

• These methods are 
conservative

• They lead to large spacing, 
which may cause other 
vehicle to cut-in 

PI with saturationFollowerStopper
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Comparison with existing methods

❑ Comparison with the heuristic methods in Stern et al. 2018

Our method

PI with saturationFollowerStopper



General Procedure
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Control Problem 
Formulation

Convex reformulation 
as LMI or SDP

Call a numerical 
solver

Challenge 1: How to recover 
convexity 

Challenge 2: How to deal large-
scale problems (Scalability) 

Sparsity Structure
Matters

Sparsity Invariance



General convex optimization
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Semidefinite 
program

• Applications: control theory, fluid mechanics, polynomial optimization, 
combinatorics, operations research, finance.

• Standard interior-point solvers: SeDuMi, SDPT3, Mosek (suitable for 
small and medium-sized problems; say 𝑛 < 1000);

• Practical large-scale instances: Standard interior point solvers will fail 
on large-scale problems (say 𝑛 being a few thousands).

Sparsity Structure
Matters

Decompose a big positive semidefinite constraint 
into multiple smaller ones



Sparsity Structure
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Sparsity structure appears in many places of real cyber-
physical systems

❑ System dynamics data

❑ Sparse communication



Graph Decomposition

• This allows for the decomposition of a big positive semidefinite constraint

• Exploiting this decomposition → a new scalable algorithm for sparse SDP
(Zheng, Y.,  et al. Math. Prog., 2019)

Vandenberghe & Andersen (2015).

Chordal graph decomposition

37



Open-source Solver: CDCS

• Open-source MATLAB solver for sparse conic optimization 
problems (SDPs, QPs, LPs, SOCPs, etc)

• Can be called from modeling packages, like YALMIP and 
SOSTOOLS.

• Available from: https://github.com/oxfordcontrol/CDCS

CDCS: Cone Decomposition Conic Solver

Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2019). Chordal decomposition in operator-splitting 
methods for sparse semidefinite programs. Mathematical Programming, Series A,1-44.

Numerical comparison

1. Standard interior-point solver: SeDuMi

2. State-of-the-art first-order solver: SCS

38

https://github.com/oxfordcontrol/CDCS


Open-source Solver: CDCS

Case 1: Test on sparse benchmark problems (from Andersen, et al, 2010)

Problem instance: rs1907
• PSD size 5357× 5357
• > 10 million decision 

variables

✓ SeDuMi ran out of memory

✓ The first-order solver SCS took over 13 
hours to return a solution

✓ CDCS took 6 minutes to get a solution; 100 
× speedup!

Exploiting sparsity achieves 
massive scalability! 39



Open-source Solver: CDCS
Case 2: Test on stability/H2/Hinf analysis of linear cascaded systems

Order of magnitude 
faster

→Massive Scalability

40



Open-source Solver: CDCS

Large-scale practical problems 

• Fosson, S. M., & Abuabiah, M. (2019). Recovery of binary sparse signals from compressed linear 
measurements via polynomial optimization. IEEE Signal Processing Letters.

• Eltved, A., Dahl, J., & Andersen, M. S. (2018). On the robustness and scalability of semidefinite 
relaxation for optimal power flow problems. Optimization and Engineering, 1-18.

❑ Signal recovery problem

❑ Optimal power flow problem

• Driggs & Fawzi (2019). “AnySOS: An anytime algorithm for semidefinite programming" IEEE 
CDC, 1-6.

❑ Nonlinear systems analysis

41



Conclusion
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Two main takeaways

Theoretic potential of autonomy in traffic

• Mixed traffic systems is always stabilizable;

• Autonomous vehicles can not only smooth traffic wave, but also 
guide traffic velocity to a higher value;

• Autonomous vehicles can change traffic dynamics fundamentally 
(Leading Cruise Control)

Integrating Autonomy via Control and 

Optimization

• Convexity of distributed control: a new framework based on 
sparsity invariance

• Scalability of convex optimization: Sparsity-exploiting methods 
based on graph decomposition

43
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Join the SOC lab at UC San Diego!

Data-driven 
and learning-
based control

Sparse conic 
optimization

Scalable 
distributed 

control

Connected and 
autonomous 

vehicles (CAVs)

Check out our webpage: https://zhengy09.github.io/soclab.html
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https://zhengy09.github.io/soclab.html


Extra slides



Data-driven MPC

Controllable subspace Uncontrollable subspace

47



Experiments

Comparison with MPC (Head Vehicle→2 HDVs→1 CAV→2 HDVs→1 CAV→2 HDVs)

All HDVs MPC with linearized dynamics DeePC

48



Experiments

Simulation at safety-critical scenario

All HDVs

DeePC

49



Experiments

Comprehensive simulation

Fuel consumption reduction

Phase 1 7.59%

Phase 2 1.20%

Phase 3 0.53%

Phase 4 5.39%

Tracking error reduction

Phase 1 15.16%

Phase 2 12.08%

Phase 3 4.52%

Phase 4 11.32%

Wang, J., Zheng, Y., Xu, Q., & Li, K. (2021). Data-Driven Predictive Control for Connected and Autonomous Vehicles 
in Mixed Traffic. arXiv preprint arXiv:2110.10097.
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Modeling and Control of Traffic Flow

• Modeling techniques
― Ordinary differential equations

― Partial differential equations

― Queuing theory

― Cell transmission model

― Cascaded nonlinear systems

― etc.

• Control methods
― Adaptive control

― Model predictive control

― Optimal cooperative control

― Reinforcement Learning

― Formal methods 

― etc.
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crowds: A survey of models, speculations, and 
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