
Scalable Semidefinite and Sum-of-square Optimization via
Matrix Decomposition

Yang Zheng, PhD

Postdoc, School of Engineering and Applied Sciences

Harvard University

Seminar at EECS, KTH Royal Institute of Technology

Dec 18, 2019

Acknowledgments

2/51

Outline

1 Introduction: Matrix decomposition and chordal graphs

2 Part I - Decomposition in sparse semidefinite optimization

3 Part II - Decomposition in sparse sum-of-squares optimization

4 Part III - Beyond chordal decomposition

5 Conclusion

3/51

Introduction: Matrix decomposition and chordal
graphs

⇒

Matrix decomposition and chordal graphs

Matrix decomposition:

A simple example

A =

3 1 0
1 1 1
0 1 3


︸ ︷︷ ︸

�0

=

3 1 0
1 0.5 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 0.5 1
0 1 3


︸ ︷︷ ︸

�0

This is true for any PSD matrix with such pattern, i.e., sparse cone decomposition∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

=

∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

where ∗ denotes a real scalar number.

Benefits:

Reduce computational complexity, and thus improve efficiency! (3× 3→ 2× 2)

Introduction: Matrix decomposition and chordal graphs 5/51

Matrix decomposition and chordal graphs

Matrix decomposition:

Many other patterns admit similar decompositions, e.g.

(a) (b) (c)

(d) (e) (f)

They can be commonly characterized by chordal graphs.

Introduction: Matrix decomposition and chordal graphs 6/51

Matrix decomposition and chordal graphs

Chordal graphs: An undirected graph G(V, E) is called chordal if every cycle of length
greater than three has a chord.

Notation: (Vandenberghe, & Andersen, 2014)

Chordal extension: Any non-chordal graph can be chordal extended;

Maximal clique: A clique is a set of nodes that induces a complete subgraph;

Clique decomposition: A chordal graph G(V, E) can be decomposed into a set of
maximal cliques {C1, C2, . . . , Cp}.

Introduction: Matrix decomposition and chordal graphs 7/51

Matrix decomposition and chordal graphs

Chordal graphs: An undirected graph G(V, E) is called chordal if every cycle of length
greater than three has a chord.

Clique decomposition:

⇒

Introduction: Matrix decomposition and chordal graphs 8/51

Matrix decomposition and chordal graphs

Sparse positive semidefinite (PSD) matrices

Sn(E , 0) = {X ∈ Sn | Xij = Xji = 0, ∀(i, j) /∈ E},
Sn+(E , 0) = {X ∈ Sn(E , 0) | X � 0}.

Positive semidefinite completable matrices

Sn(E , ?) = {X ∈ Sn | Xij = Xji, given if (i, j) ∈ E},
Sn+(E , ?) = {X ∈ Sn(E , ?) | ∃M � 0,Mij = Xij , ∀(i, j)∈E}.

Sn+(E , 0) and Sn+(E , ?) are dual to each other.

Introduction: Matrix decomposition and chordal graphs 9/51

Matrix decomposition and chordal graphs

Clique decomposition for PSD completable matrices (Grone, et al., 1984)

Let G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Cp}. Then,

X ∈ Sn+(E , ?)⇔ ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , p.

1 2 3X11 X12 ?
X21 X22 X23

? X32 X33

 ∈ S3
+(E , ?)

m[
X11 X12

X21 X22

]
� 0[

X22 X23

X32 X33

]
� 0

Introduction: Matrix decomposition and chordal graphs 10/51

Matrix decomposition and chordal graphs

Clique decomposition for PSD matrices (Agler, et al., 1988; Griewank and Toint, 1984)

Let G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Cp}. Then,

Z ∈ Sn+(E , 0)⇔ Z =

p∑
k=1

ETCkZkECk , Zk ∈ S|Ck|+

Sparse Cone Decomposition

Sn+(E, ?) Sn+(E, 0)

Grone’s theorem Agler’s theorem

duality

duality

Introduction: Matrix decomposition and chordal graphs 11/51

Matrix decomposition and chordal graphs

Applications (a partial and incomplete list)

Sparse semidefinite programs → Part I of the talk

– Fukuda, Kojima, Murota, Nakata, 2001; Andersen, Dahl, Vandenberghe, 2010; Sun, Andersen,

Vandenberghe, 2014; Madani, Kalbat, Lavaei, 2015; Zheng, Fantuzzi, Papachristodoulou,

Goulart, Wynn, 2017;

Analysis and control of sparse networked systems

– Andersen, Pakazad, Hansson, Rantzer, 2014; Mason, Papachristodoulou, 2014; Zheng, Mason,

Papachristodoulou, 2018; Pakazad, Hansson, Andersen, Rantzer, 2018; Zheng, Kamgarpour,

Sootla, Papachristodoulou, 2018.

Power systems (OPF problems)

– Dall’Anese, Zhu, Giannakis, 2013; Andersen, Hansson, Vandenberghe, 2014

Polynomial optimization → Part II of the talk

– Waki, Kim, Kojima, Muramatsu, 2006; Lasserre, 2006; Fawzi, Saunderson, Parrilo, 2016.

A survey paper

Vandenberghe, Lieven, and Martin S. Andersen. ”Chordal graphs and semidefinite optimization.”
Foundations and Trends in Optimization 1.4 (2015): 241-433.

Introduction: Matrix decomposition and chordal graphs 12/51

Part I: Decomposition in sparse semidefinite

optimization

Sparse semidefinite programs (SDPs)

min 〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0.

max
y, Z

〈b, y〉

subject to Z +

m∑
i=1

Ai yi = C,

Z � 0.

where X � 0 means X is positive semidefinite.

Applications: Control theory, fluid dynamics, polynomial optimization, etc.

Interior-point solvers: SeDuMi, SDPA, SDPT3 (suitable for small and medium-sized
problems); Modelling package: YALMIP, CVX

Large-scale cases: it is important to exploit the inherent structure

– Low rank;
– Algebraic symmetry;
– Chordal sparsity

Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Burer 2003;
Andersen et al., 2010.
First-order methods: Madani et al., 2015; Sun, Andersen, and Vandenberghe,
2014.

Part I - Decomposition in sparse semidefinite optimization 14/51

Aggregate sparsity pattern of matrices

C =

1 0 0
0 1 0
0 0 1

 , A1 =

2 1 0
1 1 0
0 0 2

 , A2 =

1 0 0
0 1 1
0 1 2

 =⇒

∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


Primal SDP Dual SDP

min 〈C,X〉
subject to 〈A1, X〉 = b1

〈A2, X〉 = b2

X � 0.

max
y, Z

〈b, y〉

subject to y1A1 + y2A2 + Z = C,

Z � 0.

X ∈

∗ ∗ ?
∗ ∗ ∗
? ∗ ∗

 Patterns of feasible

solutions Z ∈

∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


X ∈ S3

+(E , ?) Cone replacement Z ∈ S3
+(E , 0)

Apply the clique decomposition on S3
+(E , ?) and S3

+(E , 0)
Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010; Madani et al., 2015; Sun,
Andersen, and Vandenberghe, 2014.

Part I - Decomposition in sparse semidefinite optimization 15/51

Cone decomposition of sparse SDPs

Primal SDP Dual SDP

min 〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m

X � 0 .

max
y, Z

〈b, y〉

subject to
m∑
i=1

yiAi + Z = C,

Z � 0 .

X ∈ Sn+(E , ?)
Cone replacement

(Assuming an aggregate
sparsity pattern E)

Z ∈ Sn+(E , 0)

⇓ ⇓

min 〈C,X〉
s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m

ECkXE
T
Ck � 0, k = 1, . . . , p .

max
y, Z

〈b, y〉

s.t.
m∑
i=1

yiAi +

p∑
k=1

ETCkZkECk = C,

Zk � 0, k = 1, . . . , p

A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;

Our idea: consensus variables ⇒ decouple the coupling constraints;

Part I - Decomposition in sparse semidefinite optimization 16/51

Decomposed SDPs for operator-splitting algorithms

Primal decomposed SDP Dual decomposed SDP

min
X,Xk

〈C,X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m,

Xk = ECkXE
T
Ck , k = 1, . . . , p,

Xk ∈ S|Ck|+ , k = 1, . . . , p.

max
y,Zk,Vk

〈b, y〉

s.t.
m∑
i=1

Ai yi +

p∑
k=1

ETCkVkECk = C,

Zk − Vk = 0, k = 1, . . . , p,

Zk ∈ S|Ck|+ , k = 1, . . . , p.

A set of slack consensus variables has been introduced;

The slack variables allow one to separate the conic and the affine constraints when using
operator-splitting algorithms ⇒ fast iterations

Vectorization

min
x,xk

〈c, x〉

s.t. Ax = b,

xk = Hkx , k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p,

max
y,zk,vk

〈b, y〉

s.t. AT y +

p∑
k=1

HT
k vk = c,

zk − vk = 0 , k = 1, . . . , p,

zk ∈ Sk, k = 1, . . . , p.

Part I - Decomposition in sparse semidefinite optimization 17/51

Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm solves the optimization problem (Bertsekas and Tsitsiklis, 1989;

Boyd, et al., 2011)

min
x,y

f(x) + g(y)

subject to Ax+By = c,

where f and g are convex functions.

Augmented Lagrangian

Lρ(x, y, z) := f(x) + g(y) + zT (Ax+By − c) + ρ

2
‖Ax+By − c‖2

ADMM steps

x(n+1) = argmin
x
Lρ(x, y(n), z(n)), → x-minimization step

y(n+1) = argmin
y
Lρ(x(n+1), y, z(n)), → y-minimization step

z(n+1) = z(n) + ρ (Ax(n+1) +By(n+1) − c). → dual variable update

ADMM is particularly suitable when the subproblems have closed-form expressions, or
can be solved efficiently.

Part I - Decomposition in sparse semidefinite optimization 18/51

ADMM for primal decomposed SDPs

min
x,xk

〈c, x〉

s.t. Ax = b,

xk = Hkx , k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p,

Reformulation using indicator functions

min
x,x1,...,xp

〈c, x〉+ δ0 (Ax− b) +
p∑
k=1

δSk (xk)

s.t. xk = Hkx, k = 1, . . . , p.

x-minimization step: QP with linear constraints, KKT condition[
D AT

A 0

] [
x
y

]
=

[∑p
k=1H

T
k

(
x
(n)
k + ρ−1λ

(n)
k

)
− ρ−1c

b

]
.

y-minimization step: Parallel projections onto small PSD cones

min
xk

∥∥∥xk −Hkx(n+1) + ρ−1λ
(n)
k

∥∥∥2
s.t. xk ∈ Sk.

Update multipliers

Part I - Decomposition in sparse semidefinite optimization 19/51

ADMM for dual decomposed SDPs

max
y,zk,vk

〈b, y〉

s.t. AT y +

p∑
k=1

HT
k vk = c,

zk − vk = 0 , k = 1, . . . , p,

zk ∈ Sk, k = 1, . . . , p.

Reformulation using indicator functions

min − 〈b, y〉+ δ0

(
c−AT y −

p∑
k=1

HT
k vk

)
+

p∑
k=1

δSk (zk)

s.t. zk = vk, k = 1, . . . , p.

x-minimization step: QP with linear constraints, KKT condition[
D AT

A 0

] [
x
y

]
=

[
c−

∑p
k=1H

T
k

(
z
(n)
k + ρ−1λ

(n)
k

)
−ρ−1b

]
,

y-minimization step: Parallel projections onto small PSD cones

min
zk

∥∥∥zk − v(n)k + ρ−1λ
(n)
k

∥∥∥2
s.t. zk ∈ Sk.

Update multipliers

Part I - Decomposition in sparse semidefinite optimization 20/51

ADMM for primal and dual decomposed SDPs

Equivalence between the primal and dual cases

ADMM steps in the dual form are scaled versions of those in the primal form.

Extension to the homogeneous self-dual embedding exists.

Primal SDP Dual SDP

Decomposed
Primal SDP

Decomposed
Dual SDP

Algorithm 1 Algorithm 2

duality

duality

Scaling

Grone’s
theorem

Agler’s
theorem

ADMM ADMM

Both algorithms only require conic projections onto small PSD cones. Complexity
depends on the largest maximal cliques, instead of the original dimension!

Part I - Decomposition in sparse semidefinite optimization 21/51

CDCS

Cone decomposition conic solver

An open source MATLAB solver for sparse conic programs;

CDCS supports constraints on the following cones:

– Free variables
– non-negative orthant
– second-order cone
– the positive semidefinite cone.

Input-output format is in accordance with SeDuMi; Interface via YALMIP.

Syntax: [x,y,z,info] = cdcs(At,b,c,K,opts);

Download from https://github.com/OxfordControl/CDCS

Numerical comparison

SeDuMi (interior-point solver): default parameters, and low-accuracy solution 10−3

SCS (first-order solver)

CDCS and SCS: stopping condition 10−3 (max. iterations 2000)

All simulations were run on a PC with a 2.8 GHz Intel Core i7 CPU and 8GB of
RAM.

Part I - Decomposition in sparse semidefinite optimization 22/51

https://github.com/OxfordControl/CDCS

Large-scale sparse SDPs

Instances from Andersen, Dahl, Vandenberghe, 2010

rs35 rs200 rs228 rs365 rs1555 rs1907

Original cone size, n 2003 3025 1919 4704 7479 5357
Affine constraints, m 200 200 200 200 200 200
Number of cliques, p 588 1635 783 1244 6912 611
Maximum clique size 418 102 92 322 187 285
Minimum clique size 5 4 3 6 2 7

rs35 rs200 rs228

rs365 rs1555 rs1907

Part I - Decomposition in sparse semidefinite optimization 23/51

Large-scale sparse SDPs: Numerical results

rs35 rs200

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 1 391 17 25.33 4 451 17 99.74
SeDuMi (low) 986 11 25.34 2 223 8 99.73

SCS (direct) 2 378 †2 000 25.08 9 697 †2 000 81.87
CDCS-primal 370 379 25.27 159 577 99.61

CDCS-dual 272 245 25.53 103 353 99.72
CDCS-hsde 208 198 25.64 54 214 99.77

rs228 rs365

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 1 655 21 64.71 *** *** ***
SeDuMi (low) 809 10 64.80 *** *** ***

SCS (direct) 2 338 †2 000 62.06 34 497 †2 000 44.02
CDCS-primal 94 400 64.65 321 401 63.37

CDCS-dual 84 341 64.76 240 265 63.69
CDCS-hsde 38 165 65.02 151 175 63.75

rs1555 rs1907

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) *** *** *** *** *** ***
SeDuMi (low) *** *** *** *** *** ***

SCS (direct) 139 314 †2 000 34.20 50 047 †2 000 45.89
CDCS-primal 1 721 †2 000 61.22 330 349 62.87

CDCS-dual 317 317 69.54 271 252 63.30
CDCS-hsde 361 448 66.38 190 187 63.15

***: the problem could not be solved due to memory limitations.
†: maximum number of iterations reached.

Part I - Decomposition in sparse semidefinite optimization 24/51

Large-scale sparse SDPs: Numerical results

Average CPU time per iteration

rs35 rs200 rs228 rs365 rs1555 rs1907

SCS (direct) 1.188 4.847 1.169 17.250 69.590 25.240
CDCS-primal 0.944 0.258 0.224 0.715 0.828 0.833

CDCS-dual 1.064 0.263 0.232 0.774 0.791 0.920
CDCS-hsde 1.005 0.222 0.212 0.733 0.665 0.891

20×, 21×, 26×, and 75× faster than SCS, respectively, for problems rs200, rs365,
rs1907, and rs1555.

The computational benefit comes form the cone decomposition (projections onto
small PSD cones)

CDCS enables us to solve large, sparse conic problems with moderate accuracy that
are beyond the reach of standard interior-point and/or other first-order methods

The conic projections in all Algorithms require O(
∑p
k=1 |Ck|

3) flops. Complexity is
dominated by the largest maximal clique!

Part I - Decomposition in sparse semidefinite optimization 25/51

Part II: Decomposition in sparse SOS optimization

— bridging the gap between DSOS/SDSOS optimization and SOS optimization

Checking nonnegativity and Sum-of-squares

Checking whether a given polynomial is nonnegative has applications in many areas.

p(x) =
∑

pαx
α ≥ 0, e.g., p(x) = x21 + 2x1x2 + 2x22 = (x1 + x2)

2 + x22 ≥ 0.

Application: unconstrained polynomial optimization

min
x∈Rn

p(x) ⇐⇒
max γ

subject to p(x)− γ ≥ 0.

Sum-of-squares (SOS) relaxation: p(x) can be represented as a sum of finite
squared polynomials fi(x), i = 1, . . . ,m

p(x) =

m∑
i=1

fi(x)
2,

SDP characterization (Parrilo 2000): p(x) is SOS if and only if there exists
Q � 0,

p(x) = vd(x)
TQvd(x).

where vd(x) = [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x

d
n]
T is the standard monomial basis.

Part II - Decomposition in sparse sum-of-squares optimization 27/51

Checking nonnegativity and Sum-of-squares

Sum-of-square matrices

Consider a symmetric matrix-valued polynomial

P (x) =


p11(x) p12(x) . . . p1r(x)
p21(x) p22(x) . . . p2r(x)

...
...

. . .
...

pr1(x) pr2(x) . . . prr(x)

 � 0,∀x ∈ Rn.

Similar to the scalar case, the problem of checking whether P (x) is positive
semidefinite is NP-hard in general.

SOS relaxation: We call P (x) is an SOS matrix if

p(x, y) = yTP (x)y is SOS in [x; y]

SDP characterization (similar to the scalar case) (Parrilo et al.): P (x) is an
SOS matrix if and only if there exists Q � 0, such that

P (x) = (Ir ⊗ vd(x))TQ(Ir ⊗ vd(x)).

where Q is called the Gram matrix.

Part II - Decomposition in sparse sum-of-squares optimization 28/51

SOS optimization

A general optimization problem:

Scalar version: Consider the following real-valued SOS program

min
u

wTu

subject to p0(x) +

t∑
h=1

uhph(x) is SOS,
(1)

where p0(x), ph(x), h = 1, . . . , t are given polynomials.

Matrix version: Consider the following matrix-valued SOS program

min
u

wTu

subject to P0(x) +
t∑

h=1

uhPh(x) is SOS,
(2)

where P0(x), Ph(x), h = 1, . . . , t are given symmetric polynomial matrices .

Both (1) and (2) can be equivalently reformulated into SDPs;

One fundamental problem is the poor scalability to large-scale instances, since(
n+ d

d

)
= O(nd).

Part II - Decomposition in sparse sum-of-squares optimization 29/51

Scaled-diagonally dominant SOS (SDSOS) and DSOS

A new concept of (S)DSOS by Ahmadi and Majumdar, 2017

Diagonally dominant (dd) matrix: a symmetric matrix A = [aij] is dd if

aii ≥
∑
j 6=i

|aij |, ∀i = 1, . . . , n.

Scaled-diagonally dominant (sdd) matrix: a symmetric matrix A = [aij] is sdd if
there exists a PSD diagonal matrix D, such that

DAD is dd.

DSOS polynomials: p(x) = vd(x)
TQvd(x), where the Gram matrix Q is dd.

SDSOS polynomials: p(x) = vd(x)
TQvd(x), where the Gram matrix Q is sdd.

LP and SOCP-based optimization (Ahmadi and Majumdar, 2017)

Optimization over dd matrices or DSOS polynomials is a linear program (LP).

Optimization over sdd matrices or SDSOS polynomials is a second-order cone
program (SOCP).

Part II - Decomposition in sparse sum-of-squares optimization 30/51

The gap between DSOS/SDSOS and SOS

A brief summary

SOS: p(x) = vd(x)
TQvd(x), where the Gram matrix Q is PSD −→ SDP

SDSOS: p(x) = vd(x)
TQvd(x), where the Gram matrix Q is sdd −→ SOCP

DSOS: p(x) = vd(x)
TQvd(x), where the Gram matrix Q is dd −→ LP

Another viewpoint

SDP is an optimization problem involving PSD constraints of dimension N ×N
SOCP is an optimization problem involving PSD constraints of dimension 2× 2

LP is an optimization problem involving PSD constraints of dimension 1× 1

What is missing? How about problems that involve PSD constraints of dimension
k × k, where 1 ≤ k ≤ N

One approach: factor-width k matrices (Boman, et al. 2005) −→ Not practical(
n
k

)
= O(nk)

Chordal decomposition, considering sparsity and equivalent to sparse factor-width
k matrices −→ the main topic today.

Part II - Decomposition in sparse sum-of-squares optimization 31/51

Sparsity in SOS optimization

Sparse polynomial matrix (similar to sparse real matrix)

Given a graph G(V, E), we define a sparse polynomial matrix P (x) where

pij(x) = 0, if (i, j) /∈ E∗

For example, for a line graph of three nodes

1 2 3 P (x) =

p11(x) p12(x)
p21(x) p22(x) p23(x)

p32(x) p33(x)

 .
Define a set of sparse polynomial matrices

Rr×rn,2d(E , 0) =
{
P (x) ∈ R[x]r×rn,2d

∣∣∣∣pij(x) = pji(x) = 0, if (i, j) /∈ E∗
}
.

SOS/SDSOS/DSOS matrices with a sparsity pattern E

SOSrn,2d(E , 0) = SOSrn,2d ∩ Rr×rn,2d(E , 0),

SDSOSrn,2d(E , 0) = SDSOSrn,2d ∩ Rr×rn,2d(E , 0),

DSOSrn,2d(E , 0) = DSOSrn,2d ∩ Rr×rn,2d(E , 0).

Part II - Decomposition in sparse sum-of-squares optimization 32/51

Sparsity in SOS optimization

Sparsity in P (x) does not necessarily lead to sparsity in the Gram matrix Q !!

For example

P (x) =

p11(x) p12(x)
p21(x) p22(x) p23(x)

p32(x) p33(x)

 =

v(x)TQ11v(x) v(x)TQ12v(x) v(x)TQ13v(x)
v(x)TQ21v(x) v(x)TQ22v(x) v(x)TQ23v(x)
v(x)TQ31v(x) v(x)TQ32v(x) v(x)TQ33v(x)


= (I3 ⊗ v(x))T

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 (I3 ⊗ v(x))

If we make a restriction that Qij = 0, if pij(x) = 0, then the Gram matrix Q has
the same pattern with P (x). Now, chordal decomposition leads to

Q =

∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

=

∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

We have the same chordal decomposition for polynomial matrix P (x).

Part II - Decomposition in sparse sum-of-squares optimization 33/51

Sparse SOS matrix decomposition

Sparse version of SOS matrices

SSOSrn,2d(E , 0) =
{
P (x) ∈ SOSrn,2d(E , 0)

∣∣∣∣P (x) admits a

Gram matrix Q � 0, with Qij = 0 when pij(x) = 0

}
.

Theorem (Sparse SOS matrix decomposition)

If E is chordal with a set of maximal cliques C1, . . . , Ct, then

P (x) ∈ SSOSrn,2d(E , 0)⇔ P (x) =

t∑
k=1

ETk Pk(x)Ek,

where Pk(x) is an SOS matrix of dimension |Ck| × |Ck|.

Proof: apply the Agler’s theorem to the sparse block matrix Q.

P (x) = (Ir ⊗ vd(x))T Q (Ir ⊗ vd(x)) = (Ir ⊗ vd(x))T
(

t∑
k=1

ETC̃k
QkEC̃k

)
(Ir ⊗ vd(x))

=
t∑

k=1

[
(Ir ⊗ vd(x))T ETC̃kQkEC̃k (Ir ⊗ vd(x))

]
=

t∑
k=1

ETCkPk(x)ECk ,

Part II - Decomposition in sparse sum-of-squares optimization 34/51

LP/SOCP/SDP

We have the following inclusion relationship

DSOSrn,2d(E , 0) ⊆ SDSOSrn,2d(E , 0)⊆ SSOSrn,2d(E , 0) ⊆ SOSrn,2d(E , 0) ⊆ Prn,2d(E , 0)

Key idea: if a matrix Q is (scaled) diagonally dominant, then it is still (scaled)
diagonally dominant when replacing any off-diagonal elements with zeros.

A brief summary (scalability):

Prn,2d(E , 0) −→ NP-hard

DSOSrn,2d(E , 0) −→ LP (PSD cones: 1× 1)

SDSOSrn,2d(E , 0) −→ SOCP (PSD cones: 2× 2)

SSOSrn,2d(E , 0) −→ SDP with smaller PSD cones of k × k
SOSrn,2d(E , 0) −→ SDP with a PSD cone of N ×N

Solution quality: Pdsos,Psdsos and Pssos are a sequence of inner approximations with
increasing accuracy to the SOS problem Psos, meaning that

f∗dsos ≥ f∗sdsos ≥ f∗ssos ≥ f∗sos,

Similar results can be shown for scalar sparse SOS optimization, which rely on the
notion of correlative sparsity pattern (Waki et al., 2006).

Part II - Decomposition in sparse sum-of-squares optimization 35/51

Implementations and numerical comparison

Packages

SOS optimization: SOSTOOLS, YALMIP

DSOS/SDSOS optimization: SPOTLESS

Chordal decomposition: YALMIP (we adapted the option of correlative sparsity
technique)

SDP solver: Mosek

Numerical examples and applications

Polynomial optimization problems

Copositive optimization

Control application: finding Lyapunov functions

Part II - Decomposition in sparse sum-of-squares optimization 36/51

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

min
γ

γ

subject to P (x) + γI � 0,

where n = 2, 2d = 2, the polynomial is randomly generated. P (x) has an arrow pattern.

Table: CPU time (in seconds) required by Mosek

Dimension r 10 20 30 40 50 60 70 80

SOS 0.30 1.33 6.64 27.3 108.1 308.7 541.3 1 018.6
SSOS 0.34 0.34 0.35 0.35 0.33 0.32 0.32 0.33

SDSOS 0.47 0.63 1.09 1.29 2.67 3.70 4.40 6.02
DSOS ** ** ** ** ** ** ** **

**: The program is infeasible.

Part II - Decomposition in sparse sum-of-squares optimization 37/51

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

min
γ

γ

subject to P (x) + γI � 0,

where n = 2, 2d = 2, the polynomial is randomly generated. P (x) has an arrow pattern.

Table: Optimal value γ

Dimension r 10 20 30 40 50 60 70 80

SOS 1.447 4.813 5.917 4.154 21.61 10.09 7.364 10.19
SSOS 1.454 4.878 5.917 4.498 21.64 12.71 7.558 11.39

SDSOS 40.1 279.3 1 254.4 145.5 762.8 1 521.1 1 217.3 598.0
DSOS ** ** ** ** ** ** ** **

**: The program is infeasible.

Part II - Decomposition in sparse sum-of-squares optimization 38/51

Example 2: Copositive optimization

Consider the following copositive program

min
γ

γ

subject to Q+ γI ∈ Cn,

where Q is a random symmetric matrix with a
block-arrow sparsity pattern.

Numerical results
In the simulation, the block size is d = 3; arrow head is h = 2; we vary the number of
blocks l

Table: CPU time (in seconds) required by Mosek

l 2 4 6 8 10

SOS 0.45 7.34 248.9 * *
SSOS 0.39 0.41 0.38 0.49 0.40

SDSOS 0.54 1.22 4.99 11.07 32.18
DSOS 0.59 0.76 2.19 5.72 17.11

*: Out of memory.

Part II - Decomposition in sparse sum-of-squares optimization 39/51

Example 2: Copositive optimization

Consider the following copositive program

min
γ

γ

subject to Q+ γI ∈ Cn,

where Q is a random symmetric matrix with a
block-arrow sparsity pattern.

Numerical results
In the simulation, the block size is d = 3; arrow head is h = 2; we vary the number of
blocks l

Table: Optimal value γ

l 2 4 6 8 10

SOS 1.137 4.197 2.836 * *
SSOS 1.137 4.197 2.836 4.043 4.718

SDSOS 1.184 4.500 3.282 4.562 5.146
DSOS 2.551 7.775 6.452 12.057 15.203

*: Out of memory.

Part II - Decomposition in sparse sum-of-squares optimization 40/51

Example 3: Finding Lyapunov functions

Control application: finding Lyapunov functions

Consider a dynamical system with a banded pattern

ẋ1 = f1(x1, x2), g1(x) = γ − x21 ≥ 0

ẋ2 = f2(x1, x2, x3), g2(x) = γ − x22 ≥ 0

...

ẋn = fn(xn−1, xn), g2(x) = γ − x2n ≥ 0

Generate locally stable systems of degree three;

Consider a polynomial Lyapunov function of degree two with a banded pattern

V (x) = V1(x1, x2) + V2(x1, x2, x3) + . . .+ Vn(xn−1, xn)

Then, we consider the following SOS program

Find V (x), ri(x)

subject to V (x)− ε(xT x) is SOS

− 〈∇V (x), f(x)〉 −
n∑
i=1

ri(x)gi(x) is SOS

ri(x) is SOS, i = 1, . . . , n.

Part II - Decomposition in sparse sum-of-squares optimization 41/51

Example 3: Finding Lyapunov functions

Control application: finding Lyapunov functions

Table: CPU time (in seconds) required by Mosek

n 10 15 20 30 40 50

SOS 1.29 18.44 247.84 * * *
SSOS 0.55 0.68 0.71 0.83 1.04 1.17

SDSOS 0.71 1.76 4.47 32.21 85.99 257.20
DSOS 0.70 1.42 3.58 35.12 73.64 324.32

*: Out of memory.

Part II - Decomposition in sparse sum-of-squares optimization 42/51

Part III - Beyond chordal decomposition

Extension 1: Block chordal decomposition

Classical chordal decomposition:∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

=

∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

where ∗ denotes a real scalar number.
Question: Does the decomposition still hold if ∗ denotes a block of arbitrary size?

Figure: Sparse block matrices: (a) α1 = {1, 1, 1, 1, 1}, (b)
α2 = {3, 3, 3, 3, 3}, (c) α3 = {2, 8, 4, 6, 2}

Theorem: Both the decomposition and completion results hold for sparse block
matrices with a chordal pattern!

Part III - Beyond chordal decomposition 44/51

Extension 1: Block chordal decomposition

Theorem: Both the decomposition and completion results hold for sparse block
matrices with a chordal pattern!

Part III - Beyond chordal decomposition 45/51

Extension 2: PSD polynomial matrices

Question: Decomposition of PSD polynomial matrices?

P (x) =

p11(x) p12(x)
p21(x) p22(x) p23(x)

p32(x) p33(x)

 � 0, ∀x ∈ Rn.

Restriction to SOS matrix: P (x) ∈ SSOSrn,2d(E , 0)⇔ P (x) =

t∑
k=1

ETk Pk(x)Ek, where

Pk(x) is an SOS matrix.

Generalization: The same chordal decomposition result holds if Pk(x) is allowed to
have rational function entries.

where ∗ denotes a rational function (i.e., a ratio of two polynomials).
Part III - Beyond chordal decomposition 46/51

Extension 3: Block factor-width two matrices

Question: How to deal with dense PSD matrices with no chordal sparsity?
Answer: One useful solution is to use an inner approximation of the PSD cone, e.g., DD
and SDD matrices.

(Block) factor-width two matrices via a block partition

= + +

A new hierarchy of inner approximations of the PSD cone by varying the block
partition.

Given three partitions γ = {k1, . . . , kp}, β = {l1, . . . , lp} and α = {n1, n2}, where∑p
i=1 ki =

∑q
i=1 li = n1 + n2 = n and α w β w γ, we have the following inclusion:

SDD = FWn
1,2 ⊆ FWn

γ,2 ⊆ FWn
β,2 ⊆ FWn

α,2 = Sn+

Part III - Beyond chordal decomposition 47/51

Extension 3: Block factor-width two matrices

Figure: Boundary of x and y for which the 6× 6 symmetric matrix I6 +xA+ yB belongs
to FW6

α,2,FW6
β,2, and FW6

γ,2, where α = {4, 2}, β = {2, 2, 2}, γ = {1, 1, 1, 1, 1, 1}.

A new method to balance a trade-off between the computation scalability and solution
quality!

More examples: Y. Zheng, A. Sootla, and A. Papachristodoulou. ”Block factor-width-two matrices

and their applications to semidefinite and sum-of-squares optimization.” arXiv:1909.11076 (2019).

Part III - Beyond chordal decomposition 48/51

Conclusion

Take-home message

Message 1: Chordal decomposition: leading to sparse PSD cone decompositions

⇒

Message 2: Sparse SDPs can be solved ’fast’

min
x,xk

〈c, x〉

s.t. Ax = b,

xk = Hkx , k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p,

P (x) ∈ SSOSrn,2d(E, 0)

⇐⇒ P (x) =
t∑

k=1

ETk Pk(x)Ek,

CDCS: an open-source first-order conic solver;

Download from https://github.com/OxfordControl/CDCS

Message 3: Sparse SOS optimization can be solved ’fast’: Bridging the gap
between DSOS/SDSOS optimization and SOS optimization.

Conclusion 50/51

https://github.com/OxfordControl/CDCS

Thank you for your attention!

Q & A

Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2019). Chordal decomposition
in operator-splitting methods for sparse semidefinite programs. Mathematical Programming, 1-44.

Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2018, December). Decomposition and completion of
sum-of-squares matrices. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 4026-4031).
IEEE.

Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2019, July). Sparse sum-of-squares (SOS)
optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials. In 2019
American Control Conference (ACC) (pp. 5513-5518). IEEE.

Zheng, Y., Sootla, A., & Papachristodoulou, A. (2019). Block factor-width-two matrices and their
applications to semidefinite and sum-of-squares optimization. arXiv preprint arXiv:1909.11076.

Conclusion 51/51

	Introduction: Matrix decomposition and chordal graphs
	Part I - Decomposition in sparse semidefinite optimization
	Part II - Decomposition in sparse sum-of-squares optimization
	Part III - Beyond chordal decomposition
	Conclusion

