Scalable Semidefinite and Sum-of-square Optimization via Matrix Decomposition

Yang Zheng, PhD

Postdoc, School of Engineering and Applied Sciences Harvard University

Seminar at EECS, KTH Royal Institute of Technology Dec 18, 2019

Acknowledgments

Imperial College London

Harvard John A. Paulson School of Engineering and Applied Sciences

Outline

- 1 Introduction: Matrix decomposition and chordal graphs
- 2 Part I Decomposition in sparse semidefinite optimization
- 3 Part II Decomposition in sparse sum-of-squares optimization
- 4 Part III Beyond chordal decomposition

Matrix decomposition:

• A simple example

$$A = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} 3 & 1 & 0 \\ 1 & 0.5 & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0.5 & 1 \\ 0 & 1 & 3 \end{bmatrix}}_{\succeq 0}$$

• This is true for any PSD matrix with such pattern, *i.e.*, sparse cone decomposition

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0}$$

where * denotes a real scalar number.

Benefits:

• Reduce computational complexity, and thus improve efficiency! $(3 \times 3 \rightarrow 2 \times 2)$

Harvard John A. Paul School of Engineerin and Applied Sciences

Matrix decomposition:

• Many other patterns admit similar decompositions, e.g.

• They can be commonly characterized by chordal graphs.

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called *chordal* if every cycle of length greater than three has a chord.

Notation: (Vandenberghe, & Andersen, 2014)

- Chordal extension: Any non-chordal graph can be chordal extended;
- Maximal clique: A clique is a set of nodes that induces a complete subgraph;
- Clique decomposition: A chordal graph G(V, E) can be decomposed into a set of maximal cliques {C₁, C₂,..., C_p}.

Chordal graphs: An undirected graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is called *chordal* if every cycle of length greater than three has a chord.

Clique decomposition:

Harvard John A. Paulson School of Engineering and Applied Sciences

Sparse positive semidefinite (PSD) matrices

$$\mathbb{S}^{n}(\mathcal{E},0) = \{ X \in \mathbb{S}^{n} \mid X_{ij} = X_{ji} = 0, \forall (i,j) \notin \mathcal{E} \},\\ \mathbb{S}^{n}_{+}(\mathcal{E},0) = \{ X \in \mathbb{S}^{n}(\mathcal{E},0) \mid X \succeq 0 \}.$$

Positive semidefinite completable matrices

$$\mathbb{S}^{n}(\mathcal{E},?) = \{ X \in \mathbb{S}^{n} \mid X_{ij} = X_{ji}, \text{ given if } (i,j) \in \mathcal{E} \}, \\ \mathbb{S}^{n}_{+}(\mathcal{E},?) = \{ X \in \mathbb{S}^{n}(\mathcal{E},?) \mid \exists M \succeq 0, M_{ij} = X_{ij}, \forall (i,j) \in \mathcal{E} \}.$$

 $\mathbb{S}^n_+(\mathcal{E},0)$ and $\mathbb{S}^n_+(\mathcal{E},?)$ are dual to each other.

School of Engineerin and Applied Sciences

Clique decomposition for PSD completable matrices (Grone, et al., 1984)

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph with maximal cliques $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_p\}$. Then,

 $X \in \mathbb{S}^n_+(\mathcal{E},?) \Leftrightarrow E_{\mathcal{C}_k} X E_{\mathcal{C}_k}^T \in \mathbb{S}^{|\mathcal{C}_k|}_+, \qquad k = 1, \dots, p.$

Clique decomposition for PSD matrices (Agler, et al., 1988; Griewank and Toint, 1984)

Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a chordal graph with maximal cliques $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_p\}$. Then,

$$Z \in \mathbb{S}^{n}_{+}(\mathcal{E}, 0) \Leftrightarrow Z = \sum_{k=1}^{p} E^{T}_{\mathcal{C}_{k}} Z_{k} E_{\mathcal{C}_{k}}, \ Z_{k} \in \mathbb{S}^{|\mathcal{C}_{k}|}_{+}$$

Sparse Cone Decomposition

Harvard John A. Paulson School of Engineering and Applied Sciences

Applications (a partial and incomplete list)

- Sparse semidefinite programs \rightarrow Part I of the talk
 - Fukuda, Kojima, Murota, Nakata, 2001; Andersen, Dahl, Vandenberghe, 2010; Sun, Andersen, Vandenberghe, 2014; Madani, Kalbat, Lavaei, 2015; Zheng, Fantuzzi, Papachristodoulou, Goulart, Wynn, 2017;
- Analysis and control of sparse networked systems
 - Andersen, Pakazad, Hansson, Rantzer, 2014; Mason, Papachristodoulou, 2014; Zheng, Mason, Papachristodoulou, 2018; Pakazad, Hansson, Andersen, Rantzer, 2018; Zheng, Kamgarpour, Sootla, Papachristodoulou, 2018.
- Power systems (OPF problems)
 - Dall'Anese, Zhu, Giannakis, 2013; Andersen, Hansson, Vandenberghe, 2014
- Polynomial optimization \rightarrow Part II of the talk
 - Waki, Kim, Kojima, Muramatsu, 2006; Lasserre, 2006; Fawzi, Saunderson, Parrilo, 2016.

A survey paper

• Vandenberghe, Lieven, and Martin S. Andersen. "Chordal graphs and semidefinite optimization." Foundations and Trends in Optimization 1.4 (2015): 241-433.

Sparse semidefinite programs (SDPs)

 $\begin{array}{ll} \min & \langle C, X \rangle & \max_{y, \ Z} & \langle b, y \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, i = 1, \dots, m, \\ & X \succeq 0. & Z \succ 0. \end{array} \qquad \begin{array}{l} \max_{y, \ Z} & \langle b, y \rangle \\ \text{subject to} & Z + \sum_{i=1}^m A_i \ y_i = C, \\ & Z \succ 0. & Z \succ 0. \end{array}$

where $X \succeq 0$ means X is positive semidefinite.

- Applications: Control theory, fluid dynamics, polynomial optimization, etc.
- Interior-point solvers: SeDuMi, SDPA, SDPT3 (suitable for small and medium-sized problems); *Modelling package:* YALMIP, CVX
- Large-scale cases: it is important to exploit the inherent structure
 - Low rank;
 - Algebraic symmetry;
 - Chordal sparsity
 - Second-order methods: Fukuda *et al.*, 2001; Nakata *et al.*, 2003; Burer 2003; Andersen *et al.*, 2010.
 - First-order methods: Madani et al., 2015; Sun, Andersen, and Vandenberghe, 2014.

Aggregate sparsity pattern of matrices

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A_{1} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, A_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}$$

$$Primal SDP \qquad Dual SDP$$

$$\min \ \langle C, X \rangle$$
subject to \langle A_{1}, X \rangle = b_{1} & max \\ \langle A_{2}, X \rangle = b_{2} & subject to & y_{1}A_{1} + y_{2}A_{2} + Z = C, \\ X \succeq 0. & Z \succeq 0. \\ X \in \begin{bmatrix} * & * & ? \\ * & * & * \\ ? & * & * \end{bmatrix} \qquad Patterns of feasible \\ solutions & Z \in \begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}
$$X \in S_{+}^{3}(\mathcal{E}, ?) \qquad Cone \ replacement & Z \in S_{+}^{3}(\mathcal{E}, 0)$$

Apply the clique decomposition on $\mathbb{S}^3_+(\mathcal{E},?)$ and $\mathbb{S}^3_+(\mathcal{E},0)$

• Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010; Madani et al., 2015; Sun, Andersen, and Vandenberghe, 2014.

V

School of Engineering and Applied Sciences

Cone decomposition of sparse SDPs

A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;
Our idea: consensus variables ⇒ decouple the coupling constraints;

and Applied Sciences

Decomposed SDPs for operator-splitting algorithms

Primal decomposed SDPDual decomposed SDPmin
$$X, X_k$$
 $\langle C, X \rangle$ max_{y, Z_k, V_k} $\langle b, y \rangle$ s.t.
 $X_k \in \mathbb{S}_+^{|C_k|}$, $k = 1, \dots, p$,
 $X_k \in \mathbb{S}_+^{|C_k|}$, $k = 1, \dots, p$.s.t.
 $\sum_{i=1}^m A_i y_i + \sum_{k=1}^p E_{\mathcal{C}_k}^T V_k E_{\mathcal{C}_k} = C,$
 $Z_k \in \mathbb{S}_+^{|C_k|}$, $k = 1, \dots, p$.

- A set of slack consensus variables has been introduced;
- The slack variables allow one to separate the conic and the affine constraints when using ۲ operator-splitting algorithms \Rightarrow fast iterations

Vectorization

$$\begin{array}{l} \min_{x,x_k} & \langle c,x \rangle \\ \text{s.t.} & Ax = b, \\ \hline x_k = H_k x, \\ x_k \in \mathcal{S}_k, \\ \end{array} , \begin{array}{l} k = 1, \dots, p, \\ k = 1, \dots, p, \end{array} \end{array} \right) \begin{array}{l} \max_{y,z_k,v_k} & \langle b,y \rangle \\ \text{s.t.} & A^T y + \sum_{k=1}^p H_k^T v_k = c, \\ \hline x_k - v_k = 0, \\ z_k \in \mathcal{S}_k, k = 1, \dots, p, \end{array}$$

and Applied Sciences

Part I - Decomposition in sparse semidefinite optimization

17/51

Alternating Direction Method of Multipliers (ADMM)

The ADMM algorithm solves the optimization problem (Bertsekas and Tsitsiklis, 1989; Boyd, *et al.*, 2011)

$$\label{eq:subject} \begin{split} \min_{x,y} \quad f(x) + g(y) \\ \text{subject to} \quad Ax + By = c, \end{split}$$

where f and g are convex functions.

• Augmented Lagrangian

$$\mathcal{L}_{\rho}(x, y, z) := f(x) + g(y) + z^{T} (Ax + By - c) + \frac{\rho}{2} ||Ax + By - c||^{2}$$

ADMM steps

$$\begin{split} x^{(n+1)} &= \arg \min_{x} \ \mathcal{L}_{\rho}(x, y^{(n)}, z^{(n)}), & \to x \text{-minimization step} \\ y^{(n+1)} &= \arg \min_{y} \ \mathcal{L}_{\rho}(x^{(n+1)}, y, z^{(n)}), & \to y \text{-minimization step} \\ z^{(n+1)} &= z^{(n)} + \rho \left(Ax^{(n+1)} + By^{(n+1)} - c\right). & \to \text{dual variable update} \end{split}$$

ADMM is particularly suitable when the subproblems have closed-form expressions, or can be solved efficiently.

₩

School of Engineering and Applied Sciences

ADMM for primal decomposed SDPs

$$\begin{array}{ll} \min_{x,x_k} & \langle c,x \rangle \\ \text{s.t.} & Ax = b, \\ & \hline x_k = H_k x \\ & x_k \in \mathcal{S}_k, \quad k = 1, \dots, p, \\ & k = 1, \dots, p, \end{array}$$

Reformulation using indicator functions

$$\min_{x,x_1,\dots,x_p} \quad \langle c,x \rangle + \delta_0 \left(Ax - b \right) + \sum_{k=1}^r \delta_{\mathcal{S}_k}(x_k)$$

 \boldsymbol{n}

s.t.
$$x_k = H_k x, \quad k = 1, \ldots, p$$

• *x-minimization step:* QP with linear constraints, KKT condition

$$\begin{bmatrix} D & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^p H_k^T \left(x_k^{(n)} + \rho^{-1} \lambda_k^{(n)} \right) - \rho^{-1} c \\ b \end{bmatrix}.$$

• y-minimization step: Parallel projections onto small PSD cones

$$\min_{x_k} \quad \left\| x_k - H_k x^{(n+1)} + \rho^{-1} \lambda_k^{(n)} \right\|^2$$

s.t. $x_k \in \mathcal{S}_k.$

Update multipliers

Harvard John A. Paul School of Engineerin and Applied Sciences

Part I - Decomposition in sparse semidefinite optimization

19/51

ADMM for dual decomposed SDPs

$$\max_{\substack{z_k, v_k \\ s.t.}} \langle b, y \rangle$$

s.t. $A^T y + \sum_{k=1}^p H_k^T v_k = c,$
 $\boxed{z_k - v_k = 0}, k = 1, \dots, p,$
 $z_k \in \mathcal{S}_k, k = 1, \dots, p.$

Reformulation using indicator functions

min
$$-\langle b, y \rangle + \delta_0 \left(c - A^T y - \sum_{k=1}^p H_k^T v_k \right) + \sum_{k=1}^p \delta_{\mathcal{S}_k}(z_k)$$

s.t. $z_k = v_k, \quad k = 1, \dots, p.$

• *x-minimization step:* QP with linear constraints, KKT condition

ų

$$\begin{bmatrix} D & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c - \sum_{k=1}^p H_k^T \left(z_k^{(n)} + \rho^{-1} \lambda_k^{(n)} \right) \\ -\rho^{-1} b \end{bmatrix},$$

• y-minimization step: Parallel projections onto small PSD cones

$$\min_{z_k} \quad \left\| z_k - v_k^{(n)} + \rho^{-1} \lambda_k^{(n)} \right\|^2$$
s.t. $z_k \in \mathcal{S}_k.$

Update multipliers

Harvard John A. Paulso School of Engineering and Applied Sciences

ADMM for primal and dual decomposed SDPs

Equivalence between the primal and dual cases

- ADMM steps in the dual form are scaled versions of those in the primal form.
- Extension to the homogeneous self-dual embedding exists.

Both algorithms only require conic projections onto small PSD cones. **Complexity depends on the largest maximal cliques, instead of the original dimension!**

-

School of Engineering

and Applied Sciences

CDCS

Cone decomposition conic solver

- An open source MATLAB solver for sparse conic programs;
- CDCS supports constraints on the following cones:
 - Free variables
 - non-negative orthant
 - second-order cone
 - the positive semidefinite cone.
- Input-output format is in accordance with SeDuMi; Interface via YALMIP.
- Syntax: [x,y,z,info] = cdcs(At,b,c,K,opts);

Download from https://github.com/OxfordControl/CDCS

Numerical comparison

- SeDuMi (interior-point solver): default parameters, and low-accuracy solution 10^{-3}
- SCS (first-order solver)
- CDCS and SCS: stopping condition 10^{-3} (max. iterations 2000)
- All simulations were run on a PC with a 2.8 GHz Intel Core i7 CPU and 8GB of RAM.

Large-scale sparse SDPs

Instances	from	Andersen,	Dahl,	Vandenberghe,	2010
-----------	------	-----------	-------	---------------	------

	rs35	rs200	rs228	rs365	rs1555	rs1907
Original cone size, n	2003	3025	1919	4704	7479	5357
Affine constraints, m	200	200	200	200	200	200
Number of cliques, p	588	1635	783	1244	6912	611
Maximum clique size	418	102	92	322	187	285
Minimum clique size	5	4	3	6	2	7

Harvard John A. Paulson School of Engineering and Applied Sciences

Large-scale sparse SDPs: Numerical results

		rs35			rs200	
	Time (s)	# Iter.	Objective	Time (s)	# Iter.	Objective
SeDuMi (high)	1 391	17	25.33	4 451	17	99.74
SeDuMi (low)	986	11	25.34	2 223	8	99.73
SCS (direct)	2 378	[†] 2 000	25.08	9 697	[†] 2000	81.87
CDCS-primal	370	379	25.27	159	577	99.61
CDCS-dual	272	245	25.53	103	353	99.72
CDCS-hsde	208	198	25.64	54	214	99.77
		rs228		_	rs365	
	Time (s)	# Iter.	Objective	Time (s)	# Iter.	Objective
SeDuMi (high)	1 655	21	64.71	***	***	***
SeDuMi (low)	809	10	64.80	***	***	***
SCS (direct)	2 338	[†] 2000	62.06	34 497	[†] 2000	44.02
CDCS-primal	94	400	64.65	321	401	63.37
CDCS-dual	84	341	64.76	240	265	63.69
CDCS-hsde	38	165	65.02	151	175	63.75
		rs1555		_	rs1907	
	Time (s)	# Iter.	Objective	Time (s)	# Iter.	Objective
SeDuMi (high)	***	***	***	***	***	***
SeDuMi (low)	***	***	***	***	***	***
SCS (direct)	139 314	[†] 2000	34.20	50 047	[†] 2000	45.89
CDCS-primal	1 721	[†] 2000	61.22	330	349	62.87
CDCS-dual	317	317	69.54	271	252	63.30
CDCS-hsde	361	448	66.38	190	187	63.15

***: the problem could not be solved due to memory limitations.

†: maximum number of iterations reached.

Large-scale sparse SDPs: Numerical results

	rs35	rs200	rs228	rs365	rs1555	rs1907
SCS (direct)	1.188	4.847	1.169	17.250	69.590	25.240
CDCS-primal	0.944	0.258	0.224	0.715	0.828	0.833
CDCS-dual	1.064	0.263	0.232	0.774	0.791	0.920
CDCS-hsde	1.005	0.222	0.212	0.733	0.665	0.891

Average CPU time per iteration

• $20 \times, 21 \times, 26 \times$, and $75 \times$ faster than SCS, respectively, for problems rs200, rs365, rs1907, and rs1555.

- The computational benefit comes form the cone decomposition (projections onto small PSD cones)
- CDCS enables us to solve large, sparse conic problems with moderate accuracy that are beyond the reach of standard interior-point and/or other first-order methods

The conic projections in all Algorithms require $\mathcal{O}(\sum_{k=1}^{p} |\mathcal{C}_k|^3)$ flops. Complexity is dominated by the largest maximal clique!

Part II: Decomposition in sparse SOS optimization

- bridging the gap between DSOS/SDSOS optimization and SOS optimization

Checking nonnegativity and Sum-of-squares

Checking whether a given polynomial is nonnegative has applications in many areas.

 $p(x) = \sum p_{\alpha} x^{\alpha} \ge 0, \qquad \text{e.g.}, \quad p(x) = x_1^2 + 2x_1x_2 + 2x_2^2 = (x_1 + x_2)^2 + x_2^2 \ge 0.$

• Application: unconstrained polynomial optimization

$$\min_{x \in \mathbb{R}^n} p(x) \qquad \Longleftrightarrow \qquad \max_{\text{subject to}} \begin{array}{c} \gamma \\ \text{subject to} \end{array} p(x) - \gamma \ge 0.$$

• Sum-of-squares (SOS) relaxation: p(x) can be represented as a sum of finite squared polynomials $f_i(x), i = 1, ..., m$

$$p(x) = \sum_{i=1}^{m} f_i(x)^2,$$

• SDP characterization (Parrilo 2000): p(x) is SOS if and only if there exists $Q \succeq 0$,

$$p(x) = v_d(x)^T Q v_d(x).$$

where $v_d(x) = [1, x_1, x_2, \dots, x_n, x_1^2, x_1 x_2, \dots, x_n^d]^T$ is the standard monomial basis.

Harvard John A. Paulso School of Engineering and Applied Sciences

Checking nonnegativity and Sum-of-squares

Sum-of-square matrices

• Consider a symmetric matrix-valued polynomial

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) & \dots & p_{1r}(x) \\ p_{21}(x) & p_{22}(x) & \dots & p_{2r}(x) \\ \vdots & \vdots & \ddots & \vdots \\ p_{r1}(x) & p_{r2}(x) & \dots & p_{rr}(x) \end{bmatrix} \succeq 0, \forall x \in \mathbb{R}^n.$$

- Similar to the scalar case, the problem of checking whether P(x) is positive semidefinite is NP-hard in general.
- SOS relaxation: We call P(x) is an SOS matrix if

$$p(x,y) = y^T P(x)y$$
 is SOS in $[x;y]$

SDP characterization (similar to the scalar case) (Parrilo et al.): P(x) is an SOS matrix if and only if there exists Q ≥ 0, such that

$$P(x) = (I_r \otimes v_d(x))^T Q(I_r \otimes v_d(x)).$$

where \boldsymbol{Q} is called the Gram matrix.

Harvard John A. Paulson School of Engineering and Applied Sciences

SOS optimization

A general optimization problem:

• Scalar version: Consider the following real-valued SOS program

$$\min_{u} \quad w^{T}u$$

subject to $p_{0}(x) + \sum_{h=1}^{t} u_{h}p_{h}(x)$ is SOS, (1)

where $p_0(x), p_h(x), h = 1, \dots, t$ are given polynomials.

• Matrix version: Consider the following matrix-valued SOS program

$$\min_{u} \quad w^{T}u$$

subject to $P_{0}(x) + \sum_{h=1}^{t} u_{h}P_{h}(x)$ is SOS, (2)

where $P_0(x), P_h(x), h = 1, \dots, t$ are given symmetric polynomial matrices .

- Both (1) and (2) can be equivalently reformulated into SDPs;
- One fundamental problem is the poor scalability to large-scale instances, since

$$\binom{n+d}{d} = \mathcal{O}(n^d).$$

Harvard John A School of Engir and Applied Sci

Scaled-diagonally dominant SOS (SDSOS) and DSOS

A new concept of (S)DSOS by Ahmadi and Majumdar, 2017

• Diagonally dominant (dd) matrix: a symmetric matrix $A = [a_{ij}]$ is dd if

$$a_{ii} \ge \sum_{j \ne i} |a_{ij}|, \forall i = 1, \dots, n.$$

• Scaled-diagonally dominant (sdd) matrix: a symmetric matrix $A = [a_{ij}]$ is sdd if there exists a PSD diagonal matrix D, such that

DAD is dd.

- DSOS polynomials: $p(x) = v_d(x)^T Q v_d(x)$, where the Gram matrix Q is dd.
- SDSOS polynomials: $p(x) = v_d(x)^T Q v_d(x)$, where the Gram matrix Q is sdd.

LP and SOCP-based optimization (Ahmadi and Majumdar, 2017)

- Optimization over dd matrices or DSOS polynomials is a linear program (LP).
- Optimization over sdd matrices or SDSOS polynomials is a second-order cone program (SOCP).

The gap between DSOS/SDSOS and SOS

- A brief summary
 - **SOS**: $p(x) = v_d(x)^T Q v_d(x)$, where the Gram matrix Q is PSD \longrightarrow SDP
 - **SDSOS:** $p(x) = v_d(x)^T Q v_d(x)$, where the Gram matrix Q is sdd \rightarrow SOCP
 - **DSOS:** $p(x) = v_d(x)^T Q v_d(x)$, where the Gram matrix Q is dd \longrightarrow LP

Another viewpoint

- **SDP** is an optimization problem involving PSD constraints of dimension $N \times N$
- **SOCP** is an optimization problem involving PSD constraints of dimension 2×2
- LP is an optimization problem involving PSD constraints of dimension 1×1

What is missing? How about problems that involve PSD constraints of dimension $k \times k$, where $1 \le k \le N$

- One approach: factor-width k matrices (Boman, et al. 2005) \longrightarrow Not practical $\binom{n}{k} = \mathcal{O}(n^k)$
- Chordal decomposition, considering sparsity and equivalent to sparse factor-width k matrices \longrightarrow the main topic today.

ool of Engineerin

and Applied Sciences

Sparsity in SOS optimization

Sparse polynomial matrix (similar to sparse real matrix)

 $\bullet\,$ Given a graph $\mathcal{G}(\mathcal{V},\mathcal{E}),$ we define a sparse polynomial matrix P(x) where

 $p_{ij}(x) = 0$, if $(i, j) \notin \mathcal{E}^*$

• For example, for a line graph of three nodes

$$\begin{array}{cccc} 1 & & \\ \hline 1 & & \\ \hline 2 & & \\ \hline \end{array} \begin{array}{c} 3 & & P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) \\ p_{21}(x) & p_{22}(x) & p_{23}(x) \\ p_{32}(x) & p_{33}(x) \end{bmatrix}.$$

• Define a set of sparse polynomial matrices

$$\mathbb{R}_{n,2d}^{r \times r}(\mathcal{E},0) = \left\{ P(x) \in \mathbb{R}[x]_{n,2d}^{r \times r} \middle| p_{ij}(x) = p_{ji}(x) = 0, \text{ if } (i,j) \notin \mathcal{E}^* \right\}.$$

 $\bullet~\text{SOS/SDSOS/DSOS}$ matrices with a sparsity pattern $\mathcal E$

$$SOS_{n,2d}^{r}(\mathcal{E},0) = SOS_{n,2d}^{r} \cap \mathbb{R}_{n,2d}^{r \times r}(\mathcal{E},0),$$

$$SDSOS_{n,2d}^{r}(\mathcal{E},0) = SDSOS_{n,2d}^{r} \cap \mathbb{R}_{n,2d}^{r \times r}(\mathcal{E},0),$$

$$DSOS_{n,2d}^{r}(\mathcal{E},0) = DSOS_{n,2d}^{r} \cap \mathbb{R}_{n,2d}^{r \times r}(\mathcal{E},0).$$

Harvard John A. Paulson School of Engineering and Applied Sciences

Sparsity in SOS optimization

Sparsity in P(x) does not necessarily lead to sparsity in the Gram matrix Q !!

For example

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) \\ p_{21}(x) & p_{22}(x) & p_{23}(x) \\ p_{32}(x) & p_{33}(x) \end{bmatrix} = \begin{bmatrix} v(x)^T Q_{11}v(x) & v(x)^T Q_{12}v(x) & v(x)^T Q_{13}v(x) \\ v(x)^T Q_{21}v(x) & v(x)^T Q_{22}v(x) & v(x)^T Q_{23}v(x) \\ v(x)^T Q_{31}v(x) & v(x)^T Q_{32}v(x) & v(x)^T Q_{33}v(x) \end{bmatrix}$$
$$= (I_3 \otimes v(x))^T \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \end{bmatrix} (I_3 \otimes v(x))$$

• If we make a restriction that $Q_{ij} = 0$, if $p_{ij}(x) = 0$, then the Gram matrix Q has the same pattern with P(x). Now, chordal decomposition leads to

$$Q = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0}$$

• We have the same chordal decomposition for polynomial matrix P(x).

Harvard John A. Paulso School of Engineering and Applied Sciences

Sparse SOS matrix decomposition

Sparse version of SOS matrices

$$SSOS^r_{n,2d}(\mathcal{E},0) = \Biggl\{ P(x) \in SOS^r_{n,2d}(\mathcal{E},0) \, \middle| \, P(x) \text{ admits a} \Biggr\}$$

Gram matrix $Q \succeq 0$, with $Q_{ij} = 0$ when $p_{ij}(x) = 0$.

Theorem (Sparse SOS matrix decomposition)

If \mathcal{E} is chordal with a set of maximal cliques $\mathcal{C}_1, \ldots, \mathcal{C}_t$, then

$$P(x) \in SSOS_{n,2d}^{r}(\mathcal{E},0) \Leftrightarrow P(x) = \sum_{k=1}^{t} E_{k}^{T} P_{k}(x) E_{k},$$

where $P_k(x)$ is an SOS matrix of dimension $|\mathcal{C}_k| \times |\mathcal{C}_k|$.

Proof: apply the **Agler's theorem** to the sparse block matrix Q.

$$P(x) = (I_r \otimes v_d(x))^T Q (I_r \otimes v_d(x)) = (I_r \otimes v_d(x))^T \left(\sum_{k=1}^t E_{\tilde{\mathcal{C}}_k}^T Q_k E_{\tilde{\mathcal{C}}_k}\right) (I_r \otimes v_d(x))$$
$$= \sum_{k=1}^t \left[(I_r \otimes v_d(x))^T E_{\tilde{\mathcal{C}}_k}^T Q_k E_{\tilde{\mathcal{C}}_k} (I_r \otimes v_d(x)) \right] = \sum_{k=1}^t E_{\mathcal{C}_k}^T P_k(x) E_{\mathcal{C}_k},$$

¥

LP/SOCP/SDP

We have the following inclusion relationship

 $DSOS_{n,2d}^{r}(\mathcal{E},0) \subseteq SDSOS_{n,2d}^{r}(\mathcal{E},0) \subseteq SSOS_{n,2d}^{r}(\mathcal{E},0) \subseteq SOS_{n,2d}^{r}(\mathcal{E},0) \subseteq \mathcal{P}_{n,2d}^{r}(\mathcal{E},0)$

Key idea: if a matrix Q is (scaled) diagonally dominant, then it is still (scaled) diagonally dominant when replacing any off-diagonal elements with zeros.

• A brief summary (scalability):

$\mathcal{P}^r_{n,2d}(\mathcal{E},0)$	\longrightarrow	NP-hard
$DSOS^r_{n,2d}(\mathcal{E},0)$	\longrightarrow	LP (PSD cones: 1×1)
$SDSOS^{r}_{n,2d}(\mathcal{E},0)$	\longrightarrow	SOCP (PSD cones: 2×2)
$SSOS_{n,2d}^r(\mathcal{E},0)$	\longrightarrow	SDP with smaller PSD cones of $k \times k$
$SOS_{n,2d}^r(\mathcal{E},0)$	\longrightarrow	SDP with a PSD cone of $N \times N$

Solution quality: $\mathcal{P}_{dsos}, \mathcal{P}_{sdsos}$ and \mathcal{P}_{ssos} are a sequence of inner approximations with increasing accuracy to the SOS problem \mathcal{P}_{sos} , meaning that

 $f^*_{\rm dsos} \geq f^*_{\rm sdsos} \geq f^*_{\rm ssos} \geq f^*_{\rm sos},$

• Similar results can be shown for scalar sparse SOS optimization, which rely on the notion of *correlative sparsity pattern* (Waki *et al.*, 2006).

-

arvard John A. Paulson chool of Engineering ad Applied Sciences

Implementations and numerical comparison

Packages

- SOS optimization: SOSTOOLS, YALMIP
- DSOS/SDSOS optimization: SPOTLESS
- Chordal decomposition: YALMIP (we adapted the option of correlative sparsity technique)
- SDP solver: Mosek

Numerical examples and applications

- Polynomial optimization problems
- Copositive optimization
- Control application: finding Lyapunov functions

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

 $\begin{array}{ll} \min_{\gamma} & \gamma \\ \text{subject to} & P(x) + \gamma I \succeq 0, \end{array}$

where n = 2, 2d = 2, the polynomial is randomly generated. P(x) has an arrow pattern.

Dimension $r \mid$	10	20	30	40	50	60	70	80
SOS	0.30	1.33	6.64	27.3	108.1	308.7	541.3	1018.6
SSOS	0.34	0.34	0.35	0.35	0.33	0.32	0.32	0.33
SDSOS	0.47	0.63	1.09	1.29	2.67	3.70	4.40	6.02
DSOS	**	**	**	**	**	**	**	**

Table: CPU time (in seconds) required by Mosek

**: The program is infeasible.

Example 1: Polynomial optimization problems

Eigenvalue bounds on matrix polynomials

 $\begin{array}{ll} \min_{\gamma} & \gamma \\ \text{subject to} & P(x) + \gamma I \succeq 0, \end{array}$

where n = 2, 2d = 2, the polynomial is randomly generated. P(x) has an arrow pattern.

Dimension r	10	20	30	40	50	60	70	80
SOS	1.447	4.813	5.917	4.154	21.61	10.09	7.364	10.19
SSOS	1.454	4.878	5.917	4.498	21.64	12.71	7.558	11.39
SDSOS	40.1	279.3	1254.4	145.5	762.8	1521.1	1217.3	598.0
DSOS	**	**	**	**	**	**	**	**

Table: Optimal value γ

**: The program is infeasible.

Example 2: Copositive optimization

Consider the following copositive program

$$\label{eq:subject} \begin{split} \min_{\gamma} & \gamma \\ \text{subject to} & Q + \gamma I \in \mathcal{C}^n, \end{split}$$

where Q is a random symmetric matrix with a block-arrow sparsity pattern.

Numerical results

In the simulation, the block size is d=3; arrow head is h=2; we vary the number of blocks l

2	4	6	8	10	
0.45	7.34	248.9	*	*	
0.39	0.41	0.38	0.49	0.40	
0.54	1.22	4.99	11.07	32.18	
0.59	0.76	2.19	5.72	17.11	
	2 0.45 0.39 0.54 0.59	2 4 0.45 7.34 0.39 0.41 0.54 1.22 0.59 0.76	2 4 6 0.45 7.34 248.9 0.39 0.41 0.38 0.54 1.22 4.99 0.59 0.76 2.19	24680.457.34248.9*0.390.410.380.490.541.224.9911.070.590.762.195.72	2468100.457.34248.9**0.390.410.380.490.400.541.224.9911.0732.180.590.762.195.7217.11

Table: CPU time (in seconds) required by Mosek

*: Out of memory.

Example 2: Copositive optimization

Consider the following copositive program

$$\label{eq:subjective} \begin{split} \min_{\gamma} & \gamma \\ \text{subject to} & Q + \gamma I \in \mathcal{C}^n, \end{split}$$

where Q is a random symmetric matrix with a block-arrow sparsity pattern.

Numerical results

In the simulation, the block size is d=3; arrow head is h=2; we vary the number of blocks l

l 2 4 6 8 10 * SOS 4.197 * 1.137 2.836 SSOS 4.197 4.718 1.137 2.836 4.043 SDSOS 1.1844.500 3.282 4.562 5.146DSOS 7.775 15.203 2.551 6.452 12.057

Table: Optimal value γ

*: Out of memory.

Harvard John A. Paulson School of Engineering and Applied Sciences

Example 3: Finding Lyapunov functions

Control application: finding Lyapunov functions

• Consider a dynamical system with a banded pattern

$$\begin{split} \dot{x}_1 &= f_1(x_1, x_2), \qquad g_1(x) = \gamma - x_1^2 \ge 0 \\ \dot{x}_2 &= f_2(x_1, x_2, x_3), \qquad g_2(x) = \gamma - x_2^2 \ge 0 \\ \vdots \\ \dot{x}_n &= f_n(x_{n-1}, x_n), \qquad g_2(x) = \gamma - x_n^2 \ge 0 \end{split}$$

- Generate locally stable systems of degree three;
- Consider a polynomial Lyapunov function of degree two with a banded pattern

$$V(x) = V_1(x_1, x_2) + V_2(x_1, x_2, x_3) + \ldots + V_n(x_{n-1}, x_n)$$

• Then, we consider the following SOS program

Find
$$V(x), r_i(x)$$

subject to $V(x) - \epsilon(x^T x)$ is SOS
 $- \langle \nabla V(x), f(x) \rangle - \sum_{i=1}^n r_i(x)g_i(x)$ is SOS
 $r_i(x)$ is SOS, $i = 1, \dots, n$.

nd Applied Scie

Example 3: Finding Lyapunov functions

Control application: finding Lyapunov functions

$n \mid$	10	15	20	30	40	50
SOS	1.29	18.44	247.84	*	*	*
SSOS	0.55	0.68	0.71	0.83	1.04	1.17
SDSOS	0.71	1.76	4.47	32.21	85.99	257.20
DSOS	0.70	1.42	3.58	35.12	73.64	324.32

Table: CPU time (in seconds) required by Mosek

*: Out of memory.

Part III - Beyond chordal decomposition

Extension 1: Block chordal decomposition

Classical chordal decomposition:

$$\underbrace{\begin{bmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{\succeq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}}_{\succeq 0}$$

where * denotes a real scalar number.

Question: Does the decomposition still hold if * denotes a block of arbitrary size?

Theorem: Both the decomposition and completion results hold for **sparse block matrices** with a chordal pattern!

School of Engineering and Applied Sciences

Part III - Beyond chordal decomposition

Extension 1: Block chordal decomposition

Theorem: Both the decomposition and completion results hold for **sparse block matrices** with a chordal pattern!

Part III - Beyond chordal decomposition

Extension 2: PSD polynomial matrices

Question: Decomposition of PSD polynomial matrices?

$$P(x) = \begin{bmatrix} p_{11}(x) & p_{12}(x) \\ p_{21}(x) & p_{22}(x) & p_{23}(x) \\ p_{32}(x) & p_{33}(x) \end{bmatrix} \succeq 0, \forall x \in \mathbb{R}^n.$$

Restriction to SOS matrix: $P(x) \in SSOS_{n,2d}^r(\mathcal{E},0) \Leftrightarrow P(x) = \sum_{k=1} E_k^T P_k(x) E_k$, where $P_k(x)$ is an SOS matrix.

Generalization: The same chordal decomposition result holds if $P_k(x)$ is allowed to have rational function entries.

$$\underbrace{\begin{bmatrix} * & * & 0 \\ \hline * & * & * \\ \hline 0 & * & * \end{bmatrix}}_{\geq 0} = \underbrace{\begin{bmatrix} * & * & 0 \\ \hline * & * & 0 \\ \hline 0 & 0 & 0 \end{bmatrix}}_{\geq 0} + \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ \hline 0 & * & * \\ \hline 0 & * & * \end{bmatrix}}_{\geq 0}.$$

where * denotes a rational function (i.e., a ratio of two polynomials).

Part III - Beyond chordal decomposition

46/51

Extension 3: Block factor-width two matrices

Question: How to deal with dense PSD matrices with no chordal sparsity? **Answer:** One useful solution is to use an inner approximation of the PSD cone, *e.g.*, DD and SDD matrices.

• A new hierarchy of inner approximations of the PSD cone by varying the block partition.

Given three partitions $\gamma = \{k_1, \ldots, k_p\}, \beta = \{l_1, \ldots, l_p\}$ and $\alpha = \{n_1, n_2\}$, where $\sum_{i=1}^p k_i = \sum_{i=1}^q l_i = n_1 + n_2 = n$ and $\alpha \sqsupseteq \beta \sqsupseteq \gamma$, we have the following inclusion:

$$SDD = \mathcal{FW}_{1,2}^n \subseteq \mathcal{FW}_{\gamma,2}^n \subseteq \mathcal{FW}_{\beta,2}^n \subseteq \mathcal{FW}_{\alpha,2}^n = \mathbb{S}_+^n$$

Extension 3: Block factor-width two matrices

Figure: Boundary of x and y for which the 6×6 symmetric matrix $I_6 + xA + yB$ belongs to $\mathcal{FW}^6_{\alpha,2}, \mathcal{FW}^6_{\beta,2}$, and $\mathcal{FW}^6_{\gamma,2}$, where $\alpha = \{4,2\}, \beta = \{2,2,2\}, \gamma = \{1,1,1,1,1\}$.

A new method to balance a trade-off between the **computation scalability** and **solution quality**!

• More examples: Y. Zheng, A. Sootla, and A. Papachristodoulou. "Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization." arXiv:1909.11076 (2019).

Harvard John A. Paulson School of Engineering and Applied Sciences

Conclusion

Take-home message

• Message 1: Chordal decomposition: leading to sparse PSD cone decompositions

• Message 2: Sparse SDPs can be solved 'fast'

CDCS: an open-source first-order conic solver;

Download from https://github.com/OxfordControl/CDCS

• Message 3: Sparse SOS optimization can be solved 'fast': Bridging the gap between DSOS/SDSOS optimization and SOS optimization.

W

ichool of Engineerir

Conclusion

Thank you for your attention! Q & A

- Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2019). Chordal decomposition in operator-splitting methods for sparse semidefinite programs. Mathematical Programming, 1-44.
- Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2018, December). Decomposition and completion of sum-of-squares matrices. In 2018 IEEE Conference on Decision and Control (CDC) (pp. 4026-4031). IEEE.
- Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2019, July). Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials. In 2019 American Control Conference (ACC) (pp. 5513-5518). IEEE.
- Zheng, Y., Sootla, A., & Papachristodoulou, A. (2019). Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization. arXiv preprint arXiv:1909.11076.

