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Motivation
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❑ Model-free methods and data-driven control 
• Use direct policy updates; 

• Become very popular in both academia and practice, from game playing, robotics, 
and drones, etc.

DeepMind OpenAI Applications

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; 
Mania et al., 2019; Fazel et al., 2018; Recht, 2019; 



Motivation
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• Highly nontrivial even for linear dynamical systems!

DeepMind Uber running a red
Huge computation and 

Millions of samples

❑ Model-free methods and data-driven control 
• but they are often computationally expensive, sample inefficient,  

• lack non-asymptotic performance guarantees, such as sample complexity, safety, 
suboptimality, convergence etc.



This talk

Applications Sparse structures
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❑ Optimal Control

Feedback Paradigm

Feedback 
Controller

System

MeasurementControl input

Control theory: the principled use of feedback 

loops and algorithms to drive a dynamical 
system to its desired goal

d(t) w(t)

y(t)u(t) x(t)

Linear Quadratic Optimal control

• Many practical applications 

• Extensive classical results (Dynamic programming, 
Separation principle, Riccati equations, etc)

• Linear Quadratic Regulator (LQR) when the state 
𝑥𝑡 is directly observable

• LQG when only partial output 𝑦𝑡 is observed 

Major challenge: how to perform optimal 
control when the system is unknown?



Two main approaches
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❑ Model-free: Direct policy iteration

• Give a parameterization of control policies; say 
neural networks?

• Control theory already tells us many structural 
properties: Linear feedback is sufficient for LQR

Set of stabilizing controllers:

Direct policy iteration

✓ Good Landscape properties

• Connected feasible region

• Unique stationary point

• Gradient dominance

✓ Fast global convergence (exponential)

• Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; Zhang et al., 2019; 
Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others 

A fast-growing list of references

LQR as an Optimization problem



Two main approaches

Applications Sparse structures
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❑ Model-based: Sys ID + robust control

• System ID + certainty equivalent control  → adaptive control (Åström & Wittenmark, 2013). 

• Recent works → robust stability guarantees and sample complexity results, LQR problems 
(so-called system-level parameterization, Wang, Matni & Doyle, TAC, 2019)

Estimated model

Physical systems

Control inputs 𝑢𝑡
Output meas. 𝑦𝑡

Estimated model + uncertainty

✓ Dean et al., 2020; Berberich et al., 2020; Boczar et al., 2018; Tsiamis et al., 2020; 
Umenberger et al., 2019; Yiwen Lu and Yilin Mo, 2021, and many others

❑ Library-based: Fundamental lemma (Coulson et al., 2019; Berberich et al., 2019; De Persis and Tesi, 2019) 



Challenges for partially observed LQG

Applications Sparse structures
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❑ Results on model-free or model-based LQG control are much fewer

• LQG is more sophisticated than LQR

• Requires dynamical controllers

• Its landscape properties are much richer and more 
complicated than LQR

Part 1 Landscape Analysis

• The underlying technique, system-level parameterization, 
becomes non-trivial to use for the LQG case

• New techniques based on Input-output parameterization (IOP) 
(Furieri et al., 2019), are used for learning a robust LQG 
controller

Part 2 Sample complexity



Today’s talk

Part 2: Sample ComplexityPart 1 Landscape Analysis

• Zheng, Yang, Yujie Tang, and Na Li. "Analysis of the 
Optimization Landscape of Linear Quadratic Gaussian (LQG) 
Control." arXiv preprint arXiv:2102.04393 (2021). link

• Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2021, May). 
Sample complexity of linear quadratic gaussian (LQG) control 
for output feedback systems. In Learning for Dynamics and 
Control (pp. 559-570). PMLR. link

https://arxiv.org/abs/2102.04393
https://arxiv.org/abs/2011.09929


LQG Problem Setup
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Gaussian white

order of the controller

reduced-order

full-order

Minimal controller

The input-output behavior cannot be 

replicated by a lower order controller.

Plant

w(t)v(t)

dynamical controller

internal state of the controller

u(t)y(t)

*                       controllable and observable

Objective: The LQG cost

Controllable

Observable

Standard 
Assumption



Separation principle
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Gaussian white

Plant

w(t)v(t)

dynamical controller

u(t)y(t)

Solution: Kalman filter + LQR based on the estimated state

Two Riccati equations

Kalman gain

Feedback gainExplicit dependence on the dynamics

Objective: The LQG cost



LQG as an Optimization problem

Model-free Optimization formulation
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Closed-loop dynamics

Feasible region of the controller parameters 

Cost function

Solution to Lyapunov equations

Direct policy iteration

✓ Does it converge at all?
✓ Converge to which point?
✓ Convergence speed?

Landscape 
Analysis



LQG as an Optimization problem

Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected?

• If not, how many connected components can it have?

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle)

stationary points?

• How to check if a stationary point is globally optimal?



Connectivity of the feasible region
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❑ Simple observation: non-convex and unbounded

Lemma 1: the set          is non-empty, unbounded, and can be non-convex.

Example: 

Stabilize the plant, and thus belong to 

Fails to stabilize the plant, and thus outside



Connectivity of the feasible region
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❑ Main Result 1: dis-connectivity

Theorem 1: The set can be disconnected but has at most 2 connected components.

✓ Different from the connectivity of static stabilizing state-feedback controllers, 
which is always connected!

✓ Is this a negative result for gradient-based algorithms? → No



Connectivity of the feasible region
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❑ Main Result 2: dis-connectivity

Theorem 2: If         has 2 connected components, then there is a smooth bijection T between 

the 2 connected components that has the same cost function value

✓ In fact, the bijection T is defined by a similarity 
transformation (change of controller state coordinate)

Positive news: For gradient-based local search

methods, it makes no difference to search over

either connected component.



Connectivity of the feasible region

17

❑ Main Result 3: conditions for connectivity

Theorem 3: 1) is connected if there exists a reduced-order stabilizing controller.

2) The sufficient condition above becomes necessary if the plant is single-

input or single-output.

Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers          is connected.  

Example: Open-loop stable system

Routh--Hurwitz stability criterion



Connectivity of the feasible region
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❑ Main Result 3: conditions for connectivity

Example: Open-loop unstable system (SISO)

• Routh--Hurwitz stability criterion

Disconnected feasible region

• Two path-connected components



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

• Connectivity of the static stabilizing state feedback gains

Open, connected, 

possibly nonconvex

• How about the set of stabilizing dynamical controllers Change of variables for 
output feedback control is 

highly non-trivial

[Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory [Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]

Convex thus 

connected

General linear group: the set 

of invertible matrices 

(similarity transformation)

at most 2 connected components

2 connected components



LQG as an Optimization problem

Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected? No

• How many connected components can it have? Two

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle) stationary 

points?

• How to check if a stationary point is globally optimal?



LQG as an Optimization problem

Structure of Stationary Points
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❑ Simple observations

1) is a real analytic function over its domain

(smooth, infinitely differentiable)

2) has non-unique and non-isolated global optima

Similarity transformation

➢ is invariant under similarity transformations.

➢ It has many stationary points, unlike the LQR with a 
unique stationary point 



LQG as an Optimization problem

Structure of Stationary Points
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❑ Gradient computation

Lemma 1: For every                                            , we have 

where

are the unique solutions to two Lyapunov equations 

How does the set of Stationary 
Points look like?

❑ Non-unique, non-isolated

❑ Local minimum, local maximum, saddle 

points, or globally minimum? 



Structure of Stationary Points
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❑ Main Result

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict 

saddle point) or equal to zero. 

Example:

Stationary point

Cost function:

Hessian:

Indefinite with 
eigenvalues:



Structure of Stationary Points
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❑ Main Result

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point.  Furthermore, the corresponding hessian is either indefinite (strict 

saddle point) or equal to zero. 

Another example with zero Hessian All bad stationary points correspond to non-
minimal controllers



Structure of Stationary Points
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❑ Main Result

Theorem 5:
All stationary points corresponding to 

controllable and observable controllers 
are globally minimal!!

1) This stationary point is a global optimum of

2) The set of all global optima forms a manifold with 2 connected components. They 

are connected by a similarity transformation. 

Example 1 Example 2

Particularly, given a stationary point that is a minimal controller



Structure of Stationary Points
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❑ Implication

Consider gradient descent iterations

If the iterates converge to a minimal controller, then this minimal controller is a

global optimum.

Open questions:

✓ Convergence conditions?

✓ Convergence speed?

✓ Alternative model-free 
parameterization



LQR as an Optimization problem
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Connectivity of
feasible region

Stationary
points

❖ Disconnected, but at most 2 connected comp.

❖ They are almost identical to each other

❖ Non-unique, non-isolated stationary points

❖ Spurious stationary points (saddle, nonminimal 

controller)

❖ All mini. stationary points are globally optimal

Zheng, Tang, Li. 2021, link

Comparison with LQR
LQG as an Optimization problem

❖ Always connected

❖ Unique

Gradient 
Descent

❖ Gradient dominance

❖ Global fast convergence 

(like strictly convex)

❖ No gradient dominance

❖ Local convergence/speed (unknown)

❖ Many open questions

References
Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., 
IEEE TAC, 2020; Li et al., 2019; Zhang et al., 2019; Furieri et al., 
2019; Feiran Zhao & Keyou You, 2021, and many others 

https://arxiv.org/abs/2102.04393


Today’s talk

Part 2: Sample ComplexityPart 1 Landscape Analysis

• Zheng, Yang, Yujie Tang, and Na Li. "Analysis of the 
Optimization Landscape of Linear Quadratic Gaussian (LQG) 
Control." arXiv preprint arXiv:2102.04393 (2021). link

• Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2021, May). 
Sample complexity of linear quadratic gaussian (LQG) control 
for output feedback systems. In Learning for Dynamics and 
Control (pp. 559-570). PMLR. link

https://arxiv.org/abs/2102.04393
https://arxiv.org/abs/2011.09929
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System ID + Robust Control

Estimated a
dynamical model

Physical systems

Control inputs 𝑢𝑡
Output meas. 𝑦𝑡

❑ How to represent a dynamical system: space-space or frequency domain?

✓ State-feedback LQR seems easier

✓ Then use a recent tool called system-level parameterization (SLP, frequency domain technique) 
for robust control and sample complexity analysis; see Dean et al., 2020

❑ Partially observed LQG case

Natural idea:  estimate

Then, design a robust LQG controller? 

Highly Non-trivial

✓ Dean et al. 2020 works only for 
state feedback via SLP

✓ The realization of A, B, C is not 
unique!!
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Frequency domain formulation

• Unique transfer function

• State-space model

Estimate a nominal model 
as well as its uncertainty

Least-square fits a 
coarse model

High dimen. stats 
bounds the error

Design a robust 
LQG controller
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Robust LQG formulation

Nominal LQG formulation Robust LQG formulation

Key idea via Change of variables: Instead of optimizing the controller K, 
we search over the closed-loop responses

Non-convex
Convex

Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). An input–output parametrization of 
stabilizing controllers: Amidst youla and system level synthesis. IEEE Control Systems Letters, 3(4), 1014-1019.

Closed-loop 
convexity
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Robust LQG formulation

Robust LQG 
formulation

Theorem (Zheng et al., 2021): the problem above 
is equivalent to

Another upper approximation 
via Taylor expansion

→ Convex optimization
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Suboptimality guarantee

Theorem (Zheng et al., 2021): When the plant is open-loop stable, solving an SDP upper approximation of 
the robust control problem leads to a robust stabilizing LQG control with a suboptimality gap 

where                                     , and the estimation is accurate enough  

Optimality vs. Robustness

➢ Certainty equivalent controller (Mania et al., 2019 ) achieves a better sub-
optimality scaling

➢ But this method has a much stricter requirement on admissible uncertainty, and 
has no guarantee of robust stabilization performance

➢ The upper bound depends on the original plant model. Very interesting to see 
whether certain plants are intrinsically hard to control?

“The price of obtaining a faster rate for LQR is that the certainty 
equivalent controller becomes less robust to model uncertainty”



An estimated plant model
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End-to-end Sample complexity

Estimate a model and 
uncertainty level

Physical systems

Control inputs 𝑢𝑡
Output meas. 𝑦𝑡

❑ Stable system → first T finite impulse responses (Oymak and Ozay, 2019)

Markov parameters

Least-square estimator



An estimated plant model
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End-to-end Sample complexity

❑ Hinf estimation error unbound

Proposition (Zheng et al., 2021): For open-loop stable plant, with high probability, we have  

• 𝑁 is the number of samples (𝑦𝑡 , 𝑢𝑡)

• 𝑅𝑤, 𝑅𝑣, 𝑅𝑒 are some problem dependent constants

• The last term decreases exponentially to zero as the FIT length T increases 
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End-to-end Sample complexity

End-to-end Sample 
complexity:

Nominal LQG formulation SysID + Robust LQG

Suppose the true plant is FIR of order 𝑇0 and let the length 𝑇 ≥ 𝑇0. With high 
probability, the end-to-end sample complexity scales as 

• 𝑁 is the number of samples (𝑦𝑡 , 𝑢𝑡) in a single trajectory

• Robust stability: as long as the Robust LQG has a feasible solution, the 
closed-loop is guaranteed to be stable:
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Sys ID 
methods

Synthesis 
Technique

❖ Least squares

❖ Frequency domain

❖ Input-output parameterization, IOP, 

(Furieri et al., 2019)

❖ Taylor expansion

• Zheng,  Furieri,  Kamgarpour,  & 
Li, (2021, May). link

Comparison with LQR

❖ Least squares

❖ Frequency domain

❖ System-level synthesis, 

SLS (Wang et al., 2019)

❖ Taylor expansion

Sample 
Complexity

❖ both stable and unstable systems ❖ Only for open-loop stable system

References
✓ Dean et al., 2020; Berberich et al., 2020; Boczar et al., 

2018; Tsiamis et al., 2020; Umenberger et al., 2019; and 
many others

https://arxiv.org/abs/2011.09929


Conclusion



Two main takeaways

Landscape Analysis of LQG control

• Much richer and more complicated than LQR

• Disconnected, but at most 2 connected components

• Non-unique, non-isolated stationary points, strict saddle points

• Minimal stationary points are globally optimal

Sample Complexity of LQG control

• Robust LQG formulation for stability/safety guarantees

• End-to-end sample complexity is comparable to LQR

• Frequency domain design methods (SLS, IOP) are very useful for 
learning-based control

40



Join the SOC lab at UC San Diego!
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Data-driven and 
learning-based 

control

Sparse conic 
optimization

Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

Check out our webpage: https://zhengy09.github.io/soclab.html

   
   

https://zhengy09.github.io/soclab.html


Thank you for your attention!

Q & A

More details. Check out our webpage: https://zhengy09.github.io/soclab.html

https://zhengy09.github.io/soclab.html

