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Successful stories
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Boston Dynamics Open AI Waymo

Learning, Optimization, and Control are fundamental 

building blocks

Video from Nikolai Matni’s talk



Lots of failure stories
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Boston Dynamics DeepMind Uber running a red

Formal guarantees of robustness, safety, and efficiency are very 

challenging

Video from Nikolai Matni’s talk



Automatic control example
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Highway cruise control

sense
speed

Feedback
Controller

Actuator
Throttle

❑ “Simple” centralized linear control systems are well understood.

❑ “Complexity” can enter in different ways . . .

Feedback Paradigm

Feedback 
Controller

System

MeasurementControl input

Disturbances (wind, 
slope)

Control theory: the principled use of 

feedback loops and algorithms to drive 

a system to its desired goal



Complex autonomous systems

Applications Sparse structures
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❑ Complex nonlinear dynamics

• Aircraft, jet engine, robotics

Source: https://solidmechanicsproblems.wordpress.com/;
https://www.bostondynamics.com/

❑ Complex distributed systems

• Multiple subsystems & local commutation

. . .  

Distributed controller



Applications Sparse structures
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Distributed control laws Desired collective behavior

Examples of large-scale autonomous systems 

Sensor networksDrone formations Robotic networks

Transportation network Smart grid

Image Credit: Getty Images; Google Images; www.pinterest.com

Self-organization



Challenges and Overview of the SOC lab
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❑Model uncertainty

- Model might be unknown for practical systems;

- Model might be uncertain; Learning-based solutions

❑ Information constraints

- Large numbers of components;

- Subsystems or components may have dynamic coupling;

- Only local information available for control decision; 

❑ High dimensional problems

- A very large number of states and control variables;

- Require to solve large-scale optimization efficiently;

❑ Real world applications

Scalable Optimization & Control 
(SOC) Lab

. . .  

Distributed controller

Learning-based & Robust control

Distributed control

Scalable Optimization

Mixed traffic control



Scalable Optimization and Control (SOC) lab
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Data-driven and 
learning-based 

control

Sparse conic 
optimization

Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

   
   

Check out our webpage: https://zhengy09.github.io/soclab.html

https://zhengy09.github.io/soclab.html


Today’s talk 
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Part 1: Model free 
LQG control 

Part 3: Data-driven 
MPC in mixed traffic

Part 2: Model-
based LQG control 



Analysis of the Optimization Landscape of Linear 

Quadratic Gaussian (LQG) Control

Na Li
Harvard University

Yujie Tang
Harvard University

Zheng, Y., Tang, Y., & Li, N. (2021). Analysis of the optimization landscape of linear quadratic 
gaussian (LQG) control. arXiv preprint arXiv:2102.04393.



Motivation
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❑ Model-free methods and data-driven control 
• Use direct policy updates 

• Become very popular in both academia and practice, from game playing, robotics, 
and drones, etc.

DeepMind OpenAI Applications

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; 
Mania et al., 2019; Fazel et al., 2018; Recht, 2019; 



Motivation
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❑ Model-free methods and data-driven control 

Apply a control 

strategy

Accumulate 

observed data

Refine the 

control strategy

• Lack of non-asymptotic performance 
guarantees 

➢ Sample complexity

➢ Suboptimality

➢ Convergence, etc. 

❖ Highly nontrivial even for linear dynamical systems

• Directly search over a given policy class

• Directly optimize performance on the true 
system, bypassing the model estimation 
(not on an approximated model)

Opportunities Challenges



Today’s talk
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❑ Optimal Control

Feedback Paradigm

Feedback 
Controller

System

MeasurementControl input

d(t) w(t)

y(t)u(t) x(t)

Linear Quadratic Optimal control

• Many practical applications 

• Linear Quadratic Regulator (LQR) when the state 
𝑥𝑡 is directly observed

• Linear Quadratic Gaussian (LQG) control when 
only partial output 𝑦𝑡 is observed 

• Extensive classical results (Dynamic programming, 
Separation principle, Riccati equations, etc.)

Major challenge: how to perform optimal control when the system is unknown?



Model-free: Direct policy iteration
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❑ Controller parameterization

• Give a parameterization of control policies; say 
neural networks?

• Control theory already tells us many structural 
properties 

• Linear feedback is sufficient for LQR

• Set of stabilizing controllers

• A fast-growing list of references

Direct policy iteration

✓ Good Landscape properties (Fazel et al., 
2018)

• Connected feasible region

• Unique stationary point

• Gradient dominance

✓ Fast global convergence (exponential)

➢ Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; 
Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others 

LQR as an Optimization problem



Challenges for partially observed LQG

Applications Sparse structures
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❑ Results on model-free LQG control are much fewer

• LQG is more complicated than LQR

• Requires dynamical controllers

• Its landscape properties are much richer and more complicated than LQR

Our focus: Landscape Analysis of LQG

▪ Question 1: Properties of the domain (set of stabilizing 

controllers)

• convexity, connectivity, open/closed?

▪ Question 2: Properties of the accumulated cost

• convexity, differentiability, coercivity?

• set of stationary points/local minima/global minima?



LQG Problem Setup
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Gaussian white

➢ order of the controller

➢ full-order

➢ reduced-order

Plant

w(t)v(t)

dynamical controller

➢ internal state of the controller

u(t)y(t)

Minimal controller

The input-output behavior cannot be 

replicated by a lower order controller.

*                       controllable and observable

Controllable

Observable

Standard 
Assumption

Objective: The LQG cost



Separation principle
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Gaussian white

Plant

w(t)v(t)

dynamical controller

u(t)y(t)

Solution: Kalman filter for state estimation 
+ LQR based on the estimated state

Two Riccati equations

➢ Kalman gain

➢ Feedback gain

Explicit dependence on the dynamics

Objective: The LQG cost



LQG as an Optimization problem

Model-free Optimization formulation
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❑ Closed-loop dynamics

❑ Feasible region of the controller parameters 

❑ Cost function

Solution to Lyapunov equations

Direct policy iteration

✓ Does it converge at all?

✓ Converge to which point?

✓ Convergence speed?

Landscape 
Analysis

Hyland, David, and Dennis Bernstein. "The optimal projection equations for fixed-order 
dynamic compensation." IEEE Transactions on Automatic Control 29.11 (1984): 1034-1037.



Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected?

• If not, how many connected components can it have?

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle)

stationary points?

• How to check if a stationary point is globally optimal?

LQG as an Optimization problem



Connectivity of the feasible region
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❑ Simple observation: non-convex and unbounded

Stabilize the plant, and thus belong to 

Fails to stabilize the plant, and thus outside

Example

Lemma 1: the set          is non-empty, unbounded, and can be non-convex.



Connectivity of the feasible region
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❑Main Result 1: dis-connectivity

Theorem 1: The set can be disconnected but has at most 2 connected components.

✓ Different from the connectivity of static stabilizing state-feedback controllers, 
which is always connected!

✓ Is this a negative result for gradient-based algorithms? → No



Connectivity of the feasible region

22

❑Main Result 2: dis-connectivity

Theorem 2: If         has 2 connected components, then there is a smooth bijection T between 

the 2 connected components that has the same cost function value.

✓ In fact, the bijection T is defined by a similarity 
transformation (change of controller state coordinate)

Positive news: For gradient-based local search

methods, it makes no difference to search over

either connected component.



Connectivity of the feasible region
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❑Main Result 3: conditions for connectivity

Theorem 3: 1) is connected if there exists a reduced-order stabilizing controller.

2) The sufficient condition above becomes necessary if the plant is single-input or 

single-output.

Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers          is connected.  

Routh--Hurwitz stability criterion

Example: Open-loop stable system 



Connectivity of the feasible region
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❑Main Result 3: conditions for connectivity

• Routh--Hurwitz stability criterion

Disconnected feasible region

• Two path-connected components

Example: Open-loop unstable system (SISO) 



LQG as an Optimization problem

Model-free Optimization formulation
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Landscape 
Analysis

▪ Q1: Connectivity of the feasible region

• Is it connected? No

• How many connected components can it have? Two

▪ Q2: Structure of stationary points of

• Are there spurious (strictly suboptimal, saddle) stationary 

points?

• How to check if a stationary point is globally optimal?



Structure of Stationary Points

26

❑ Simple observations

Similarity transformation

1) is a real analytic function over its domain

(smooth, infinitely differentiable)

2) has non-unique and non-isolated global optima

➢ is invariant under similarity transformations.

➢ It has many stationary points, unlike the LQR with a unique 
stationary point 

LQG as an Optimization problem



Structure of Stationary Points
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❑ Gradient computation

Lemma 1: For every                                            , we have 

where 

are the unique positive semidefinite solutions to two 

Lyapunov equations. 

How does the set of Stationary 
Points look like?

❑ Non-unique, non-isolated

❑ Local minimum, local 

maximum, saddle points, 

or globally minimum? 



Structure of Stationary Points
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❑Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle 

point) or equal to zero. 

Stationary point:

➢ Cost function:

➢ Hessian:

Indefinite with 
eigenvalues:

Example:



Structure of Stationary Points
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Another example with zero Hessian

❑Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point)

or equal to zero. 

❑ Non-unique, non-

isolated

❑ Strictly suboptimal 

points; Strict saddle 

points

❑ All bad stationary points 
correspond to non-
minimal controllers

How does the set of Stationary 
Points look like?



1) This stationary point is a global optimum of

2) The set of all global optima forms a manifold with 2 connected

components. They are connected by a similarity transformation. 

Particularly, given a stationary point that is a minimal controller

Structure of Stationary Points
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❑Main Result
Theorem 5: All stationary points corresponding to controllable and 

observable controllers are globally optimum.

Example: open-loop 
unstable system

Example: open-loop 
stable system



Proof idea
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❑ Proof: all minimal stationary points are unique up to a similarity transformation

All minimal stationary points                                                   to the LQG problem are in the form of

T is an invertible matrix and  P,  S are the unique positive definite solutions to the Riccati equations

Minimal 
controller

Special case in Theorem 20.6 of Zhou et al., 1996 and 
Section II of Hyland, 1984



Structure of Stationary Points
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❑ Implication

Corollary: Consider gradient descent iterations

If the iterates converge to a minimal controller, then this minimal controller is a global optima.

Open questions:

✓ Convergence conditions?

✓ Convergence speed?

✓ Alternative model-free parameterization

Some recent papers are 

• Umenberger, J., et al. (2022). Globally Convergent Policy Search over Dynamic Filters for 
Output Estimation. arXiv preprint arXiv:2202.11659.

• Zheng, Y., Sun, Y., Fazel, M., & Li, N. (2022). Escaping High-order Saddles in Policy 
Optimization for Linear Quadratic Gaussian (LQG) Control. arXiv preprint arXiv:2204.00912.



LQR as an Optimization problem

Connectivity of
feasible region

Stationary
points

❖ Disconnected, but at most 2 connected comp.

❖ They are almost identical to each other

❖ Non-unique, non-isolated stationary points

❖ Spurious stationary points (strict saddle, 

nonminimal controller)

❖ All mini. stationary points are globally optimal

Zheng*, Tang*, Li. 2021, link (* equal contribution)

Comparison with LQR

LQG as an Optimization problem

❖ Always connected

❖ Unique

Gradient 
Descent

❖ Gradient dominance

❖ Global fast convergence 

(like strictly convex)

❖ No gradient dominance

❖ Local convergence/speed (unknown)

❖ Many open questions

References
Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 
2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 
2019; Feiran Zhao & Keyou You, 2021, and many others 33

https://arxiv.org/abs/2102.04393


Today’s talk 

Part 1: Model free 
LQG control 

Part 3: Data-driven 
MPC in mixed traffic

Part 2: Model-
based LQG control 

34



Sample complexity of linear quadratic gaussian 

(LQG) control for output feedback systems

Na Li
Harvard University

Luca Furieri
EPFL

Maryam Kamgarpour
EPFL

Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2021, May). Sample complexity of linear quadratic gaussian (LQG) 
control for output feedback systems. In Learning for Dynamics and Control (pp. 559-570). PMLR.



36

System ID + Robust Control

Estimate a
dynamical model

Physical systems

Control inputs 𝑢𝑡
Output meas. 𝑦𝑡

❑ How to represent a dynamical system: space-space or frequency domain?

✓ State-feedback LQR seems easier

✓ System-level parameterization (SLP, frequency domain technique) for robust control 
and sample complexity analysis; see Dean et al., 2020

❑ Partially observed LQG case

Natural idea:  estimate

Then, design a robust LQG controller? 

Highly Non-trivial

✓ Dean et al. 2020 works only for 
state feedback via SLP

✓ The realization of A, B, C is not 
unique!!

❑ System ID procedure
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Frequency domain formulation

❑ Unique transfer function

Estimate a nominal model 
as well as its uncertainty

Least-square fits a 
coarse model

High dimen. stats 
bounds the error

Design a robust 
LQG controller

❑ State-space model
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Robust LQG formulation

Nominal LQG formulation Robust LQG formulation

Key idea via Change of variables: Instead of optimizing the controller K, 
we search over the closed-loop responses

Non-convex
Convex

Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). An input–output parametrization of 
stabilizing controllers: Amidst youla and system level synthesis. IEEE Control Systems Letters, 3(4), 1014-1019.

Closed-loop 
convexity
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Robust LQG formulation

Robust LQG 
formulation

Theorem (Zheng et al., 2021): the problem above 
is equivalent to

Another upper approximation 
via Taylor expansion

→ Convex optimization
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Suboptimality guarantee

Theorem (Zheng et al., 2021): When the plant is open-loop stable, solving an SDP upper approximation of 
the robust control problem leads to a robust stabilizing LQG control with a suboptimality gap 

where                                     , and the estimation is accurate enough  

Optimality vs. Robustness

➢ Certainty equivalent controller (Mania et al., 2019 ) achieves a better sub-
optimality scaling

➢ Much stricter requirement on admissible uncertainty, 

➢ No guarantee of robust stabilization performance

“The price of obtaining a faster rate for LQR is that the certainty equivalent 

controller becomes less robust to model uncertainty”
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End-to-end Sample complexity

End-to-end Sample 
complexity:

Suppose the true plant is FIR of order 𝑇0 and let the length 𝑇 ≥ 𝑇0. With high 
probability, the end-to-end sample complexity scales as 

• 𝑁 is the number of samples (𝑦𝑡 , 𝑢𝑡) in a single trajectory

• Robust stability: as long as the Robust LQG has a feasible solution, the closed-
loop is guaranteed to be stable:

Nominal LQG formulation Robust LQG formulation



Sys ID 
methods

Synthesis 
Technique

❖ Least squares

❖ Frequency domain

❖ Input-output parameterization, IOP, 

(Furieri et al., 2019)

❖ Taylor expansion

• Zheng*,  Furieri*,  Kamgarpour,  & Li, 
(2021, May). Link (equal contribution)

Comparison with LQR

❖ Least squares

❖ Frequency domain

❖ System-level synthesis, 

SLS (Wang et al., 2019)

❖ Taylor expansion

Sample 
Complexity

❖ both stable and unstable systems ❖ Only for open-loop stable system

References
✓ Dean et al., 2020; Berberich et al., 2020; Boczar et al., 

2018; Tsiamis et al., 2020; Umenberger et al., 2019; and 
many others 42

https://arxiv.org/abs/2011.09929


Today’s talk 

Part 1: Model free 
LQG control 

Part 3: Data-driven 
MPC in mixed traffic

Part 2: Model-
based LQG control 

43



Data-Driven Predictive Control for Connected and 

Autonomous Vehicles in Mixed Traffic

Qing Xu
Tsinghua University

Jiawei Wang
Tsinghua University

Keqiang Li
Tsinghua University

Wang, J., Zheng, Y., Li, K., & Xu, Q. (2022). DeeP-LCC: Data-enabled predictive leading cruise control in mixed 

traffic flow. arXiv preprint arXiv:2203.10639.



Mix-Autonomy Mobility

Mixed-autonomy mobility: a traffic condition where both autonomous vehicles and 
human-driven vehicles co-exist.

• Q1: How will a small scale of autonomous vehicles change traffic dynamics?

• Q2: How to integrate a small scale of autonomous vehicles to improve traffic 
performance?

❑ A long stage of mixed-autonomy mobility

45



Benchmark Ring Road Experiment

Setting: 
22 human drivers

Instructions: 
drive at 30 km/h /following its 
preceding vehicle

Environment
Single lane
No traffic lights, 
No stop signs,
No lane changes.

1950s 2008

Sugiyama, et al.

>10,000 papers for traffic control

Traffic jams

2022

Video credits: NewScientist.com 46



Benchmark Ring Road Experiment

Setting: 
21 human drivers
+ 1 AV

Instructions: 
drive at 30km/h /following 
its preceding vehicle

Environment
Single lane
No traffic lights, 
No stop signs,
No lane changes.

1950s 2008

Sugiyama, et al.Traffic jams

20222018

Stern, et al.

>10,000 papers for traffic control

47



Mixed urban mobility
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❑Theoretical Evidence & Controller design

Sparse network 
control

• Zheng, Y., Wang, J., & Li, K. (2020). Smoothing traffic flow via control of autonomous vehicles. IEEE Internet of Things Journal, 7(5), 3882-3896.
• Wang, J., Zheng, Y., Xu, Q., Wang, J., & Li, K. (2020). Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles. IEEE 

Transactions on Intelligent Transportation Systems, 22(12), 7445-7459.

• Why does it work?                              

• Does it work in other setups (e.g., different number of HDVs, different 
human-driver behavior, open straight road scenario)?

❑ Theorem (Informal): The mixed 
traffic system is stabilizable after 
introducing a single autonomous 
vehicle;

❑ Design a distributed controller;



Data-driven Leading Cruise Control
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❑ System architecture

Wang, J., Zheng, Y., Li, K., & Xu, Q. (2022). DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow. arXiv
preprint arXiv:2203.10639.



Data-driven Leading Cruise Control
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DeeP-LCC: Data-EnablEd Predictive Leading
Cruise Control



Real experiments
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Size: 9 m × 5 m (~500 square ft )

❑ Experiment platform

Vehicle: 1.4kg, 0.2m × 0.2m × 0.13m

ROS-melodicUbuntu18.04

Operating systems

@ Tsinghua University

1950s

Ours

>10,000 papers for traffic control

Traffic jams

2022

https://youtu.be/ZZ2cWhapqpc

https://youtu.be/ZZ2cWhapqpc


Conclusion



Summary
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Landscape analysis 
of non-convex LQG 

control 

Data-driven MPC in 
mixed traffic

Robust Model-
based LQG control 



SOC lab at UC San Diego
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Data-driven and 
learning-based 

control

Sparse conic 
optimization

Scalable 
distributed control

Connected and 
autonomous 

vehicles (CAVs)

Check out our webpage: https://zhengy09.github.io/soclab.html

   
   

https://zhengy09.github.io/soclab.html


Thank you for your attention!

Q & A

Scalable Learning, Optimization, and Control for 

Autonomous Systems



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

• Connectivity of the static stabilizing state feedback gains

Open, connected, 

possibly nonconvex

• How about the set of stabilizing dynamical controllers Change of variables for 
output feedback control 

is highly non-trivial

[Gahinet and Apkarian, 1994]
[Scherer et al., IEEE TAC 1997]



Proof idea: Lifting via Change of Variables
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❑ Change of variables in state-space domain: Lyapunov theory

[Scherer et al., IEEE TAC 1997]
[Gahinet and Apkarian, 1994]

Two connected components

Convex thus 

connected

General linear group: the set 

of invertible matrices 

(similarity transformation)

at most 2 connected

components


