Scalable Learning, Optimization, and Control for Autonomous Systems

Yang Zheng

Assistant Professor, SOC Lab Department of Electrical and Computer Engineering, UC San Diego

> Seminar at Tsinghua-Berkeley Shenzhen Institute November 29, 2022

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering Scalable Optimization and Control (SOC) Lab <u>https://zhengy09.github.io/soclab.html</u>

Successful stories

Boston Dynamics

Open Al

Waymo

Learning, Optimization, and Control are fundamental building blocks

Lots of failure stories

id: 21 Actuators.

Boston Dynamics

DeepMind

Uber running a red

Formal guarantees of robustness, safety, and efficiency are very challenging

Automatic control example

- "Simple" centralized linear control systems are well understood.
- "Complexity" can enter in different ways . . .

Complex autonomous systems

Complex nonlinear dynamics

• Aircraft, jet engine, robotics

Complex distributed systems

• Multiple subsystems & local commutation

Source: https://solidmechanicsproblems.wordpress.com/; https://www.bostondynamics.com/

Examples of large-scale autonomous systems

Drone formations

Transportation network

Sensor networks

Robotic networks

Smart grid

Self-organization

Distributed control laws

Desired collective behavior

Challenges and Overview of the SOC lab

Model uncertainty Learning-based & Robust control

- Model might be unknown for practical systems;
- Model might be uncertain; Learning-based solutions

□ Information constraints → Distributed control

- Large numbers of components;
- Subsystems or components may have dynamic coupling;
- Only local information available for control decision;

□ High dimensional problems → Scalable Optimization

- A very large number of states and control variables;
- Require to solve **large-scale optimization** efficiently;

□ Real world applications → Mixed traffic control

Scalable Optimization & Control (SOC) Lab

Distributed controller

Scalable Optimization and Control (SOC) lab

Check out our webpage: https://zhengy09.github.io/soclab.html

Today's talk

Analysis of the Optimization Landscape of Linear Quadratic Gaussian (LQG) Control

Yujie Tang Harvard University

Na Li Harvard University

Zheng, Y., Tang, Y., & Li, N. (2021). Analysis of the optimization landscape of linear quadratic gaussian (LQG) control. arXiv preprint arXiv:2102.04393.

Motivation

Model-free methods and data-driven control

- Use direct policy updates
- Become very popular in both academia and practice, from game playing, robotics, and drones, etc.

DeepMind

Applications

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019; Mania et al., 2019; Fazel et al., 2018; Recht, 2019;

Motivation

Model-free methods and data-driven control

Opportunities

- Directly search over a given policy class
- Directly optimize performance on the true system, bypassing the model estimation (not on an approximated model)

Challenges

- Lack of non-asymptotic performance guarantees
 - > Sample complexity
 - Suboptimality
 - Convergence, etc.

Highly nontrivial even for linear dynamical systems

Today's talk

Optimal Control

Linear Quadratic Optimal control

$$\min_{u_1, u_2, \dots, t} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^T \left(x_t^\mathsf{T} Q x_t + u_t^\mathsf{T} R u_t \right) \right]$$
subject to
$$x_{t+1} = A x_t + B u_t + w_t$$

$$y_t = C x_t + v_t$$

- Many practical applications
- Linear Quadratic Regulator (LQR) when the state x_t is directly observed
- Linear Quadratic Gaussian (LQG) control when only partial output y_t is observed
- Extensive classical results (Dynamic programming, Separation principle, Riccati equations, etc.)

Major challenge: how to perform optimal control when the system is unknown?

Model-free: Direct policy iteration

Controller parameterization

- Give a parameterization of control policies; say
 neural networks?
- Control theory already tells us many structural properties
- Linear feedback is sufficient for LQR $u_t = K x_t$

$$\lim_{T \to \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T} \left(x_t^{\mathsf{T}} Q x_t + u_t^{\mathsf{T}} R u_t\right)\right] := J(K)$$

- Set of stabilizing controllers $K \in \mathcal{K}$
- A fast-growing list of references

LQR as an Optimization problem $\min_{K} J(K)$ $s.t. K \in \mathcal{K}$ Direct policy iterationApply a control strategyAccumulate observed data $K_{i+1} = K_i - \alpha_i \nabla J(K_i)$

control strated

- ✓ Good Landscape properties (Fazel et al., 2018)
 - Connected feasible region
 - Unique stationary point
 - Gradient dominance
- ✓ Fast global convergence (exponential)
- Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others

Challenges for partially observed LQG

Results on model-free LQG control are much fewer

- LQG is more complicated than LQR
- Requires dynamical controllers
- Its landscape properties are much richer and more complicated than LQR

Our focus: Landscape Analysis of LQG

- Question 1: Properties of the domain (set of stabilizing controllers)
 - convexity, connectivity, open/closed?
- Question 2: Properties of the accumulated cost
 - convexity, differentiability, coercivity?
 - set of stationary points/local minima/global minima?

LQG Problem Setup

Objective: The LQG cost r

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_0^T \left(x^\top Q x + u^\top R u \right) dt$$

- $\blacktriangleright \xi(t)$ internal state of the controller
- $\blacktriangleright \dim \xi(t)$ order of the controller
- $\blacktriangleright \dim \xi(t) = \dim x(t)$ full-order
- $\blacktriangleright \dim \xi(t) < \dim x(t)$ reduced-order

Minimal controller

The input-output behavior cannot be replicated by a lower order controller.

 $(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}})$ controllable and observable

Separation principle

Explicit dependence on the dynamics

Objective: The LQG cost

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_0^T (x^\top Q x + u^\top R u) \, dt$$

Solution: Kalman filter for state estimation + LQR based on the estimated state

$$\dot{\xi} = (A - BK)\xi + L(y - C\xi),$$

$$u = -K\xi.$$

Two Riccati equations

 \succ Kalman gain $L = PC^{\mathsf{T}}V^{-1}$

 $AP + PA^{\mathsf{T}} - PC^{\mathsf{T}}V^{-1}CP + W = 0,$

► Feedback gain $K = R^{-1}B^{\mathsf{T}}S$ $A^{\mathsf{T}}S + SA - SBR^{-1}B^{\mathsf{T}}S + Q = 0$

Model-free Optimization formulation

Closed-loop dynamics

$$\frac{d}{dt} \begin{bmatrix} x \\ \xi \end{bmatrix} = \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} + \begin{bmatrix} I & 0 \\ 0 & B_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix}$$
$$\begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} C & 0 \\ 0 & C_{\mathsf{K}} \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} + \begin{bmatrix} v \\ 0 \end{bmatrix}$$

□ Feasible region of the controller parameters

$$\mathcal{C}_{\text{full}} = \left\{ \mathsf{K} \mid \mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \text{ is full-order}, \\ \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \text{ is Hurwitz stable} \right\}$$

Cost function

$$\lim_{T \to +\infty} \frac{1}{T} \mathbb{E} \int_0^T (x^\top Q x + u^\top R u) \, dt$$

$$J(\mathsf{K}) = \operatorname{tr}\left(\begin{bmatrix} Q & 0\\ 0 & C_{\mathsf{K}}^{\mathsf{T}} R C_{\mathsf{K}} \end{bmatrix} X_{\mathsf{K}}\right) = \operatorname{tr}\left(\begin{bmatrix} W & 0\\ 0 & B_{\mathsf{K}} V B_{\mathsf{K}}^{\mathsf{T}} \end{bmatrix} Y_{\mathsf{K}}\right)$$

 $X_{\mathsf{K}}, Y_{\mathsf{K}}$ Solution to Lyapunov equations

LQG as an Optimization problem $\min J(K)$

s.t.
$$\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$$

Direct policy iteration $K_{i+1} = K_i - \alpha_i \nabla J(K_i)$

✓ Convergence speed?

Hyland, David, and Dennis Bernstein. "The optimal projection equations for fixed-order 18 dynamic compensation." *IEEE Transactions on Automatic Control* 29.11 (1984): 1034-1037.

Model-free Optimization formulation

<u>Landscape</u> <u>Analysis</u> LQG as an Optimization problem $\min_{\mathsf{K}} J(\mathsf{K})$ s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

- Q1: Connectivity of the feasible region $\mathcal{C}_{\mathrm{full}}$

- Is it connected?
- If not, how many connected components can it have?
- Q2: Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal, saddle) stationary points?
 - How to check if a stationary point is globally optimal?

Simple observation: non-convex and unbounded

Lemma 1: the set C_{full} is non-empty, unbounded, and can be non-convex.

Example

 $\dot{x}(t) = x(t) + u(t) + w(t)$ y(t) = x(t) + v(t) $\mathcal{C}_{\text{full}} = \left\{ \mathsf{K} = \begin{vmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{vmatrix} \in \mathbb{R}^{2 \times 2} \middle| \begin{vmatrix} 1 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{vmatrix} \text{ is stable} \right\}.$ $\mathsf{K}^{(1)} = \begin{bmatrix} 0 & 2 \\ -2 & -2 \end{bmatrix}, \qquad \mathsf{K}^{(2)} = \begin{bmatrix} 0 & -2 \\ 2 & -2 \end{bmatrix}$ Stabilize the plant, and thus belong to $\mathcal{C}_{\mathrm{full}}$ $\hat{\mathsf{K}} = \frac{1}{2} \left(\mathsf{K}^{(1)} + \mathsf{K}^{(2)} \right) = \begin{bmatrix} 0 & 0 \\ 0 & -2 \end{bmatrix}$ Fails to stabilize the plant, and thus outside $\mathcal{C}_{\mathrm{full}}$

□ Main Result 1: dis-connectivity

Theorem 1: The set C_{full} can be disconnected but has at most 2 connected components.

- ✓ Different from the connectivity of static stabilizing state-feedback controllers, which is always connected!
- \checkmark Is this a negative result for gradient-based algorithms? \rightarrow No

□ Main Result 2: dis-connectivity

Theorem 2: If C_{full} has 2 connected components, then there is a smooth bijection T between the 2 connected components that has the same cost function value.

 ✓ In fact, the bijection T is defined by a similarity transformation (change of controller state coordinate)

$$\mathscr{T}_{T}(\mathsf{K}) := \begin{bmatrix} D_{\mathsf{K}} & C_{\mathsf{K}}T^{-1} \\ TB_{\mathsf{K}} & TA_{\mathsf{K}}T^{-1} \end{bmatrix}.$$

Positive news: For gradient-based local search methods, it makes no difference to search over either connected component.

□ Main Result 3: conditions for connectivity

Theorem 3: 1) C_{full} is connected if there exists a reduced-order stabilizing controller.

 The sufficient condition above becomes necessary if the plant is single-input or single-output.

Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers C_{full} is connected.

Example: Open-loop stable system

 $\dot{x}(t) = -x(t) + u(t) + w(t)$ y(t) = x(t) + v(t)

Routh--Hurwitz stability criterion

$$\mathcal{C}_{\text{full}} = \left\{ \left. \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right| A_{\mathsf{K}} < 1, B_{\mathsf{K}} C_{\mathsf{K}} < -A_{\mathsf{K}} \right\}$$

□ Main Result 3: conditions for connectivity

Example: Open-loop unstable system (SISO)

 $\dot{x}(t) = x(t) + u(t) + w(t)$ y(t) = x(t) + v(t)

• Routh--Hurwitz stability criterion

$$\mathcal{C}_{\text{full}} = \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \left| \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \right| \text{ is stable} \right\}$$
$$= \left\{ \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \middle| A_{\mathsf{K}} < -1, B_{\mathsf{K}}C_{\mathsf{K}} < A_{\mathsf{K}} \right\}.$$

• Two path-connected components

$$\begin{aligned} \mathcal{C}_{1}^{+} &:= \left\{ \left. \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right| A_{\mathsf{K}} < -1, \ B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, \ B_{\mathsf{K}} > 0 \right\}, \\ \mathcal{C}_{1}^{-} &:= \left\{ \left. \mathsf{K} = \begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \right| A_{\mathsf{K}} < -1, \ B_{\mathsf{K}} C_{\mathsf{K}} < A_{\mathsf{K}}, \ B_{\mathsf{K}} < 0 \right\}. \end{aligned}$$

Disconnected feasible region

Model-free Optimization formulation

 $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}})$

LQG as an Optimization problem $\min_{\mathsf{K}} J(\mathsf{K})$ s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

- Q1: Connectivity of the feasible region $\, {\cal C}_{
 m full} \,$
 - Is it connected? No
 - How many connected components can it have? Two
- Q2: Structure of stationary points of J(K)
 - Are there spurious (strictly suboptimal, saddle) stationary points?
 - How to check if a stationary point is globally optimal?

Gimple observations

1) J(K) is a real analytic function over its domain (smooth, infinitely differentiable)

2) J(K) has non-unique and non-isolated global optima

 $\dot{\xi}(t) = A_{\mathsf{K}} \,\xi(t) + B_{\mathsf{K}} \,y(t)$ $u(t) = C_{\mathsf{K}} \,\xi(t)$

Similarity transformation

 $(A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \mapsto (TA_{\mathsf{K}}T^{-1}, TB_{\mathsf{K}}, C_{\mathsf{K}}T^{-1})$

 \succ J(K) is invariant under similarity transformations.

It has many stationary points, unlike the LQR with a unique stationary point

LQG as an Optimization problem min J(K)

s.t. $\mathsf{K} = (A_{\mathsf{K}}, B_{\mathsf{K}}, C_{\mathsf{K}}) \in \mathcal{C}_{\text{full}}$

Gradient computation

Lemma 1: For every $K = (A_K, B_K, C_K) \in \mathcal{C}_{full}$, we have

$$\begin{split} &\frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2\left(Y_{12}^{\mathsf{T}}X_{12} + Y_{22}X_{22}\right),\\ &\frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 2\left(Y_{22}B_{\mathsf{K}}V + Y_{22}X_{12}^{\mathsf{T}}C^{\mathsf{T}} + Y_{12}^{\mathsf{T}}X_{11}C^{\mathsf{T}}\right),\\ &\frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 2\left(RC_{\mathsf{K}}X_{22} + B^{\mathsf{T}}Y_{11}X_{12} + B^{\mathsf{T}}Y_{12}X_{22}\right), \end{split}$$

where
$$X_{\mathsf{K}} = \begin{bmatrix} X_{11} & X_{12} \\ X_{12}^{\mathsf{T}} & X_{22} \end{bmatrix}$$
, $Y_{\mathsf{K}} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{12}^{\mathsf{T}} & Y_{22} \end{bmatrix}$

are the unique positive semidefinite solutions to two Lyapunov equations.

How does the set of Stationary Points look like? $\begin{cases}
\mathsf{K} \in \mathcal{C}_{\text{full}} & \left| \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \right| \\
\frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\
\frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0,
\end{cases}$

□ Non-unique, non-isolated

Local minimum, local maximum, saddle points, or globally minimum?

□ Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable $A_{\rm K}$

$$\mathsf{K} = (A_{\mathsf{K}}, 0, 0) \in \mathcal{C}_{\mathrm{full}}$$

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point) or equal to zero.

$$\begin{array}{ll} \hline \textbf{Example:} & \dot{x}(t) = -x(t) + u(t) + w(t) & Q = 1, R = 1, V = 1, W = 1 \\ y(t) = x(t) + v(t) & \textbf{Stationary point: } \mathsf{K}^{\star} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix} \in \mathbb{R}^{2 \times 2}, & \text{with } a < 0 \\ \hline \textbf{Solution:} & J\left(\begin{bmatrix} 0 & C_{\mathsf{K}} \\ B_{\mathsf{K}} & A_{\mathsf{K}} \end{bmatrix}\right) = \frac{A_{\mathsf{K}}^2 - A_{\mathsf{K}}(1 + B_{\mathsf{K}}^2 C_{\mathsf{K}}^2) - B_{\mathsf{K}} C_{\mathsf{K}}(1 - 3B_{\mathsf{K}} C_{\mathsf{K}} + B_{\mathsf{K}}^2 C_{\mathsf{K}}^2)}{2(-1 + A_{\mathsf{K}})(A_{\mathsf{K}} + B_{\mathsf{K}} C_{\mathsf{K}})}. \\ \hline \textbf{Hessian:} & \begin{bmatrix} \frac{\partial J^2(\mathsf{K})}{\partial A_{\mathsf{K}}^2} & \frac{\partial J^2(\mathsf{K})}{\partial A_{\mathsf{K}} \partial B_{\mathsf{K}}} & \frac{\partial J^2(\mathsf{K})}{\partial A_{\mathsf{K}} \partial C_{\mathsf{K}}} \\ \frac{\partial J^2(\mathsf{K})}{\partial C_{\mathsf{K}} A_{\mathsf{K}}} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}}^2} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}} \partial C_{\mathsf{K}}} \\ \frac{\partial J^2(\mathsf{K})}{\partial C_{\mathsf{K}} A_{\mathsf{K}}} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}}^2} & \frac{\partial J^2(\mathsf{K})}{\partial B_{\mathsf{K}} \partial C_{\mathsf{K}}} \\ \end{bmatrix} \\ & \mathsf{K}^{\star} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix} & \mathsf{K}^{\star} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix}, & \begin{array}{c} \text{Indefinite with } eigenvalues: \\ 0 \text{ and } \pm \frac{1}{2(1-a)} \\ 0 \text{ and } \pm \frac{1}{2(1-a)} \\ \end{array} \right) \\ \end{array}$$

□ Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable $A_{\rm K}$

$$\mathsf{K} = (A_{\mathsf{K}}, 0, 0) \in \mathcal{C}_{\mathrm{full}}$$

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point) or equal to zero.

How does the set of Stationary Points look like?

$$\left\{ \begin{array}{l} \mathsf{K} \in \mathcal{C}_{\mathrm{full}} & \left| \begin{array}{l} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \right\}$$

Non-unique, nonisolated

Strictly suboptimal points; Strict saddle points

All bad stationary points correspond to nonminimal controllers

Another example with zero Hessian

Main Result

Theorem 5:All stationary points corresponding to controllable and
observable controllers are globally optimum.

Particularly, given a stationary point that is a **minimal** controller

- 1) This stationary point is a global optimum of J(K)
- 2) The set of all global optima forms a manifold with 2 connected components. They are connected by a similarity transformation.

$$\begin{cases} \mathsf{K} \in \mathcal{C}_{\text{full}} \mid \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{cases}$$

Example: open-loop unstable system

 $\dot{x}(t) = x(t) + u(t) + w(t)$ y(t) = x(t) + v(t)

Proof idea

Proof: all minimal stationary points are unique up to a similarity transformation

All minimal stationary points $K = (A_K, B_K, C_K) \in C_{\text{full}}$ to the LQG problem are in the form of

$$A_{\mathsf{K}} = T(A - BK - LC)T^{-1}, \qquad B_{\mathsf{K}} = -TL, \qquad C_{\mathsf{K}} = KT^{-1},$$

$$K = R^{-1}B^{\mathsf{T}}S, \ L = PC^{\mathsf{T}}V^{-1},$$

T is an invertible matrix and P, S are the unique positive definite solutions to the Riccati equations

$$\begin{cases} \left\{\mathsf{K} \in \mathcal{C}_{\mathrm{full}} \middle| \begin{array}{l} \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0, \\ \frac{\partial J(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array}\right\} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_n(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0, \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_n(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_n(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J_n(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2\left(Y_{12}^T X_{12} + Y_{22} X_{22}\right), \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \\ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2\left(Y_{22}B_{\mathsf{K}}V + Y_{22} X_{12}^{\mathsf{T}}C^{\mathsf{T}} + Y_{12}^{\mathsf{T}} X_{11}C^{\mathsf{T}}\right), \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial C_{\mathsf{K}}} = 2\left(RC_{\mathsf{K}} X_{22} + B^{\mathsf{T}} Y_{11} X_{12} + B^{\mathsf{T}} Y_{12} X_{22}\right), \end{array} \xrightarrow{\mathsf{Minimal}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial B_{\mathsf{K}}} = 0 \\ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2\left(RC_{\mathsf{K}} X_{22} + B^{\mathsf{T}} Y_{11} X_{12} + B^{\mathsf{T}} Y_{12} X_{22}\right), \end{array} \xrightarrow{\mathsf{Minimal}}} \begin{array}{l} \frac{\partial J_n(\mathsf{K})}{\partial C_{\mathsf{K}}} = 0 \\ \frac{\partial J(\mathsf{K})}{\partial A_{\mathsf{K}}} = 2\left(RC_{\mathsf{K}} X_{22} + B^{\mathsf{T}} Y_{11} X_{12} + B^{\mathsf{T}} Y_{12} X_{22}\right), \end{array}$$

□ Implication

Corollary: Consider gradient descent iterations

$$\mathsf{K}_{t+1} = \mathsf{K}_t - \alpha \nabla J(\mathsf{K}_t)$$

If the iterates converge to a minimal controller, then this minimal controller is a global optima.

Some recent papers are

- Umenberger, J., et al. (2022). Globally Convergent Policy Search over Dynamic Filters for Output Estimation. *arXiv preprint arXiv:2202.11659*.
- Zheng, Y., Sun, Y., Fazel, M., & Li, N. (2022). Escaping High-order Saddles in Policy Optimization for Linear Quadratic Gaussian (LQG) Control. arXiv preprint arXiv:2204.00912,

Comparison with LQR

	LQR as an Optimization problem	LQG as an Optimization problem
	$\begin{array}{ll} \min_{K} & J(K) \\ \text{s.t.} & K \in \mathcal{K} \end{array}$	$\min_{K} J(K)$ s.t. $K = (A_{K}, B_{K}, C_{K}) \in \mathcal{C}_{\text{full}}$
Connectivity of feasible region	Always connected	 Disconnected, but at most 2 connected comp. They are almost identical to each other
Stationary points	Unique	 Non-unique, non-isolated stationary points Spurious stationary points (strict saddle, nonminimal controller) All mini. stationary points are globally optimal
Gradient Descent	 Gradient dominance Global fast convergence (like strictly convex) 	 No gradient dominance Local convergence/speed (unknown) Many open questions
References	Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Başar, 2021; Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others	Zheng*, Tang*, Li. 2021, <u>link</u> (* equal contribution)

Today's talk

Sample complexity of linear quadratic gaussian (LQG) control for output feedback systems

Luca Furieri EPFL

Maryam Kamgarpour EPFL

Na Li Harvard University

Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2021, May). Sample complexity of linear quadratic gaussian (LQG) control for output feedback systems. In Learning for Dynamics and Control (pp. 559-570). PMLR.

System ID + Robust Control

System ID procedure

U How to represent a dynamical system: space-space or frequency domain?

✓ State-feedback LQR seems easier

 $\hat{A} + \Delta A, \quad \hat{B} + \Delta B, \qquad \|\Delta A\| \le \epsilon_A, \|\Delta B\| \le \epsilon_B,$

 System-level parameterization (SLP, frequency domain technique) for robust control and sample complexity analysis; see Dean et al., 2020

Partially observed LQG case

Natural idea: estimate $\|\hat{A} - A_{\star}\|$, $\|\hat{B} - B_{\star}\|$, $\|\hat{C} - C_{\star}\|$,

Then, design a robust LQG controller?

Highly Non-trivial

- ✓ Dean et al. 2020 works only for state feedback via SLP
- ✓ The realization of A, B, C is not unique!!

Frequency domain formulation

□ State-space model

$$x_{t+1} = A_{\star} x_t + B_{\star} u_t + B_{\star} w_t,$$

$$y_t = C_{\star} x_t + v_t.$$

Unique transfer function

$$\mathbf{G}_{\star}(z) = C_{\star}(zI - A_{\star})^{-1}B_{\star},$$

Estimate a nominal model as well as its uncertainty

$$\|\mathbf{\Delta}\|_{\infty} := \|\mathbf{G}_{\star} - \hat{\mathbf{G}}\|_{\infty} < \epsilon$$

Least-square fits a coarse model

High dimen. stats bounds the error

Design a robust LQG controller

Robust LQG formulation

Nominal LQG formulation

$$\min_{u_0, u_1, \dots} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^T \left(y_t^\mathsf{T} Q y_t + u_t^\mathsf{T} R u_t \right) \right]$$

subject to $x_{t+1} = A_\star x_t + B_\star u_t + B_\star w_t,$
 $y_t = C_\star x_t + v_t \dots$

Robust LQG formulation

$$\begin{array}{ll} \underset{\mathbf{K}}{\min} \sup_{\|\boldsymbol{\Delta}\|_{\infty} < \epsilon} & \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T} \left(y_t^{\mathsf{T}} Q y_t + u_t^{\mathsf{T}} R u_t \right) \right],\\ \text{subject to} & \mathbf{y} = (\hat{\mathbf{G}} + \boldsymbol{\Delta}) \mathbf{u} + \mathbf{v}\\ & \mathbf{u} = \mathbf{K} \mathbf{y} + \mathbf{w}, \end{array}$$

Key idea via Change of variables:

Instead of optimizing the controller K, we search over the closed-loop responses

Closed-loop convexity

Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). An input–output parametrization of stabilizing controllers: Amidst youla and system level synthesis. *IEEE Control Systems Letters*, *3*(4), 1014-1019.

Robust LQG formulation

 $\lim_{\mathbf{K}} \sup_{\|\boldsymbol{\Delta}\|_{\infty} < \epsilon} \lim_{T \to \infty} \mathbb{E} \left| \frac{1}{T} \sum_{t=0}^{T} \left(y_t^{\mathsf{T}} Q y_t + u_t^{\mathsf{T}} R u_t \right) \right|,$ **Robust LQG** formulation subject to $\mathbf{y} = (\hat{\mathbf{G}} + \boldsymbol{\Delta})\mathbf{u} + \mathbf{v}$ $\mathbf{u} = \mathbf{K}\mathbf{y} + \mathbf{w},$ **Theorem (Zheng et al., 2021):** the problem above is equivalent to $\min_{\hat{\mathbf{Y}}, \hat{\mathbf{W}}, \hat{\mathbf{U}}, \hat{\mathbf{Z}}} \sup_{\|\mathbf{\Delta}\|_{\infty} < \epsilon} \quad J(\mathbf{G}_{\star}, \mathbf{K}) = \left\| \begin{bmatrix} \hat{\mathbf{Y}}(I - \mathbf{\Delta}\hat{\mathbf{U}})^{-1} & \hat{\mathbf{Y}}(I - \mathbf{\Delta}\hat{\mathbf{U}})^{-1}(\hat{\mathbf{G}} + \mathbf{\Delta}) \\ \hat{\mathbf{U}}(I - \mathbf{\Delta}\hat{\mathbf{U}})^{-1} & (I - \hat{\mathbf{U}}\mathbf{\Delta})^{-1}\hat{\mathbf{Z}} \end{bmatrix} \right\|_{\mathcal{X}}$ subject to $\begin{bmatrix} I & -\hat{\mathbf{G}} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{Y}} & \hat{\mathbf{W}} \\ \hat{\mathbf{U}} & \hat{\mathbf{Z}} \end{bmatrix} = \begin{bmatrix} I & 0 \end{bmatrix},$ Another upper approximation $\begin{bmatrix} \hat{\mathbf{Y}} & \hat{\mathbf{W}} \\ \hat{\mathbf{U}} & \hat{\mathbf{Z}} \end{bmatrix} \begin{bmatrix} -\hat{\mathbf{G}} \\ I \end{bmatrix} = \begin{bmatrix} 0 \\ I \end{bmatrix},$ via Taylor expansion $\hat{\mathbf{Y}}, \hat{\mathbf{W}}, \hat{\mathbf{U}}, \hat{\mathbf{Z}} \in \mathcal{RH}_{\infty}, \, \|\hat{\mathbf{U}}\|_{\infty} \leq \frac{1}{\epsilon},$ Convex optimization

Suboptimality guarantee

Theorem (Zheng et al., 2021): When the plant is open-loop stable, **s**olving an SDP upper approximation of the robust control problem leads to a robust stabilizing LQG control with a suboptimality gap

$$\frac{J(\hat{\mathbf{K}}) - J_{\star}}{J_{\star}} \le 20\epsilon \|\mathbf{U}_{\star}\|_{\infty} + \mathcal{O}(\epsilon)$$

where $\|\mathbf{G}_{\star} - \hat{\mathbf{G}}\|_{\infty} < \epsilon$, and the estimation is accurate enough

Optimality vs. Robustness

 \blacktriangleright Certainty equivalent controller (Mania et al., 2019) achieves a better suboptimality scaling $\mathcal{O}(\epsilon^2)$

- > Much stricter requirement on admissible uncertainty,
- > No guarantee of robust stabilization performance

"The price of obtaining a faster rate for LQR is that the certainty equivalent controller becomes less robust to model uncertainty"

End-to-end Sample complexity

Nominal LQG formulation $\min_{u_0, u_1, \dots} \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^T \left(y_t^\mathsf{T} Q y_t + u_t^\mathsf{T} R u_t \right) \right]$ subject to $x_{t+1} = A_\star x_t + B_\star u_t + B_\star w_t,$ $y_t = C_\star x_t + v_t \dots$

$$\begin{array}{ll} \underset{\mathbf{K}}{\min} \sup_{\|\mathbf{\Delta}\|_{\infty} < \epsilon} & \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T} \left(y_t^{\mathsf{T}} Q y_t + u_t^{\mathsf{T}} R u_t \right) \right],\\ \text{subject to} & \mathbf{y} = (\hat{\mathbf{G}} + \mathbf{\Delta}) \mathbf{u} + \mathbf{v}\\ & \mathbf{u} = \mathbf{K} \mathbf{y} + \mathbf{w}, \end{array}$$

End-to-end Sample complexity:

Suppose the true plant is FIR of order T_0 and let the length $T \ge T_0$. With high probability, the end-to-end sample complexity scales as

$$\frac{J(\hat{\mathbf{K}}) - J_{\star}}{J_{\star}} \sim \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) \,,$$

- N is the number of samples (y_t, u_t) in a single trajectory
- **Robust stability**: as long as the Robust LQG has a feasible solution, the closed-loop is guaranteed to be stable:

Comparison with LQR

r	$ \begin{array}{ll} \underset{\mathbf{K}}{\min} & \underset{\ \Delta_A\ , \ \Delta_B\ < \epsilon}{\sup} & \underset{T \to \infty}{\lim} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T} \left(x_t^{T} Q x_t + u_t^{T} R u_t \right) \right] \\ \underset{\mathbf{K}}{\operatorname{subject to}} & \underset{t+1}{\sup} = (\hat{A} + \Delta A) x_t + (\hat{B} + \Delta B) u_t + v_t \\ \underset{\mathbf{U}}{\operatorname{u}} = \mathbf{K} \mathbf{x} \end{array} $	$ \begin{array}{ll} \min_{\mathbf{K}} \sup_{\ \mathbf{\Delta}\ _{\infty} < \epsilon} & \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=0}^{T} \left(y_t^{T} Q y_t + u_t^{T} R u_t \right) \right] \\ \text{subject to} & \mathbf{y} = (\hat{\mathbf{G}} + \mathbf{\Delta}) \mathbf{u} + \mathbf{v} \\ & \mathbf{u} = \mathbf{K} \mathbf{y} + \mathbf{w}, \end{array} $
Sys ID methods	Least squares	Least squares
	$\ \hat{A} - A_{\star}\ \le \epsilon_A, \ \hat{B} - B_{\star}\ \le \epsilon_B,$	$\ \mathbf{\Delta}\ _{\infty} := \ \mathbf{G}_{\star} - \hat{\mathbf{G}}\ _{\infty} < \epsilon$
Synthesis Technique	Frequency domain	Frequency domain
	System-level synthesis,	Input-output parameterization, IOP,
	SLS (Wang et al., 2019)	(Furieri et al., 2019)
	Taylor expansion	Taylor expansion
Sample Complexity	both stable and unstable systems	Only for open-loop stable system
	$\mathbf{Y} \qquad \qquad \frac{J(\hat{K}) - J_{\star}}{J_{\star}} \sim \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) ,$	$\frac{J(\hat{\mathbf{K}}) - J_{\star}}{J_{\star}} \sim \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) ,$
Reference	 ✓ Dean et al., 2020; Berberich et al., 2020; Boczar et al., 2018; Tsiamis et al., 2020; Umenberger et al., 2019; and many others 	 Zheng*, Furieri*, Kamgarpour, & Li, (2021, May). Link (equal contribution)

Today's talk

Data-Driven Predictive Control for Connected and Autonomous Vehicles in Mixed Traffic

Jiawei Wang Tsinghua University

Qing Xu Tsinghua University

Keqiang Li Tsinghua University

Wang, J., Zheng, Y., Li, K., & Xu, Q. (2022). DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow. arXiv preprint arXiv:2203.10639.

Mix-Autonomy Mobility

□ A long stage of mixed-autonomy mobility

Mixed-autonomy mobility: a traffic condition where both autonomous vehicles and human-driven vehicles co-exist.

- **Q1:** How will a small scale of autonomous vehicles change traffic dynamics?
- **Q2:** How to integrate a small scale of autonomous vehicles to improve traffic performance?

Benchmark Ring Road Experiment

Setting:

Benchmark Ring Road Experiment

Setting:

21 human drivers

+ 1 AV

Instructions:

drive at 30km/h /follow its preceding vehicle

Environment

Single lane

No traffic lights,

No stop signs,

No lane changes.

Dissipation of stop-and-go traffic waves via control of a single autonomous vehicle

Mixed urban mobility

Theoretical Evidence & Controller design

- Why does it work?
- Does it work in other setups (e.g., different number of HDVs, different human-driver behavior, open straight road scenario)?

Theorem (Informal): The mixed traffic system is stabilizable after introducing a single autonomous vehicle;
 Design a distributed controller;

minimize J(K)subject to $K \in \mathcal{C} \cap \text{Sparse}(S)$.

- Zheng, Y., Wang, J., & Li, K. (2020). Smoothing traffic flow via control of autonomous vehicles. IEEE Internet of Things Journal, 7(5), 3882-3896.
- Wang, J., Zheng, Y., Xu, Q., Wang, J., & Li, K. (2020). Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7445-7459.

Data-driven Leading Cruise Control

System architecture

Wang, J., Zheng, Y., Li, K., & Xu, Q. (2022). DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow. arXiv preprint arXiv:2203.10639.

Data-driven Leading Cruise Control

DeeP-LCC: Data-EnablEd Predictive Leading Cruise Control

$$\min_{\substack{g,u,y,\sigma_y \\ g,u,y,\sigma_y \\ g,u,y,\sigma_y \\ s.t. }} \sum_{\substack{k=t \\ E_p \\ V_p \\ U_f \\ U_f \\ F_f \\ Y_f \\ g = \begin{bmatrix} u_{\text{ini}} \\ \epsilon_{\text{ini}} \\ y_{\text{ini}} \\ u \\ \epsilon \\ y \\ \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \sigma_y \\ 0 \\ 0 \\ 0 \\ \end{bmatrix},$$

$$\text{assumption on } \epsilon,$$

$$\text{safety constraint on } u \text{ and } y.$$

Real experiments

Size: 9 m $\,\times\,$ 5 m (~500 square ft) Vehicle: 1.4kg, 0.2m \times 0.2m $\times\,$ 0.13m

Conclusion

Summary

Landscape analysis of non-convex LQG control

Robust Modelbased LQG control

Data-driven MPC in mixed traffic

SOC lab at UC San Diego

Check out our webpage: https://zhengy09.github.io/soclab.html

Scalable Learning, Optimization, and Control for Autonomous Systems

Thank you for your attention! Q&A

Proof idea: Lifting via Change of Variables

Change of variables in state-space domain: Lyapunov theory

• Connectivity of the static stabilizing state feedback gains

 $\{K \in \mathbb{R}^{m \times n} \mid A - BK \text{ is stable}\}$ $\iff \{K \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, P(A - BK)^{\mathsf{T}} + (A - BK)P \prec 0\}$ $\iff \{K \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, PA^{\mathsf{T}} - L^{\mathsf{T}}B^{\mathsf{T}} + AP - BL \prec 0, L = KP\}$ $\iff \{K = LP^{-1} \in \mathbb{R}^{m \times n} \mid \exists P \succ 0, PA^{\mathsf{T}} - L^{\mathsf{T}}B^{\mathsf{T}} + AP - BL \prec 0\}.$

Open, connected, possibly nonconvex

• How about the set of stabilizing dynamical controllers

$$\begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} \text{ is stable}$$
$$\iff \exists P \succ 0, P \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} A & BC_{\mathsf{K}} \\ B_{\mathsf{K}}C & A_{\mathsf{K}} \end{bmatrix} P \prec 0,$$

Change of variables for output feedback control is highly non-trivial

[Gahinet and Apkarian, 1994] [Scherer et al., IEEE TAC 1997]

Proof idea: Lifting via Change of Variables

Change of variables in state-space domain: Lyapunov theory

$$\Phi(\mathsf{Z}) = \begin{bmatrix} \Phi_D(\mathsf{Z}) & \Phi_C(\mathsf{Z}) \\ \Phi_B(\mathsf{Z}) & \Phi_A(\mathsf{Z}) \end{bmatrix} := \begin{bmatrix} I & 0 \\ YB & \Xi \end{bmatrix}^{-1} \begin{bmatrix} G & H \\ F & M - YAX \end{bmatrix} \begin{bmatrix} I & CX \\ 0 & \Pi \end{bmatrix}^{-1}$$

[Scherer et al., IEEE TAC 1997] [Gahinet and Apkarian, 1994]

Two connected components $GL_n^+ = \{\Pi \in \mathbb{R}^{n \times n} \mid \det \Pi > 0\},$ $GL_n^- = \{\Pi \in \mathbb{R}^{n \times n} \mid \det \Pi < 0\}.$

