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Successful stories

Boston Dynamics Waymo

Learning, Optimization, and Control are fundamental

building blocks

Video from Nikolai Matni’s talk



Lots of failure stories

Boston Dynamics DeepMind Uber running a red

Formal guarantees of robustness, safety, and efficiency are very

challenging

Video from Nikolai Matni’s talk



Automatic control example

Highway cruise control Feedback Paradigm
Disturbances (wind, &
slope) —_— / & N ' System -
Actuator ‘5 sense
Throttle ( ' speed
A
Feedback p
Control input Controller | Measurement
Feedback o
4 n
Controller Control theory: the principled use of

feedback loops and algorithms to drive
a system to its desired goal

O “Simple” centralized linear control systems are well understood.

d “Complexity” can enter in different ways . . . ,



Complex autonomous systems

(J Complex nonlinear dynamics J Complex distributed systems

* Aircraft, jet engine, robotics  Multiple subsystems & local commutation

Distributed controller

Source: https://solidmechanicsproblems.wordpress.com/;
https://www.bostondynamics.com/



Examples of Iarge-scale autonomous systems

2= -'-._ - =

e N

Sensor networks Robotic networks

i e

Transportation network Smart grid Self-organization

Distributed control laws mmm)  Desired collective behavior

Image Credit: Getty Images; Google Images; www.pinterest.com



Challenges and Overview of the SOC lab

(J Model uncertainty = Learning-based & Robust control

- Model might be unknown for practical systems;
- Model might be uncertain; Learning-based solutions

[ Information constraints =) Distributed control

- Large numbers of components;

- Subsystems or components may have dynamic coupling;
- Only local information available for control decision;

1 High dimensional problems = Scalable Optimization
- Avery large number of states and control variables;

- Require to solve large-scale optimization efficiently;

(] Real world applications = Mixed traffic control

Scalable Optimization & Control
(SOC) Lab



Scalable Optimization and Control (SOC) lab

Chordal decomposition
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Check out our webpage: https://zhengy09.github.io/soclab.html 8
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Today’s talk
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LQG control




Analysis of the Optimization Landscape of Linear
Quadratic Gaussian (LQG) Control

Yujie Tang Na Li
Harvard University Harvard University

Zheng, Y., Tang, Y., & Li, N. (2021). Analysis of the optimization landscape of linear quadratic
gaussian (LQG) control. arXiv preprint arXiv:2102.04393.



Motivation

J Model-free methods and data-driven control

* Use direct policy updates

 Become very popular in both academia and practice, from game playing, robotics,
and drones, etc.

ute gram that

mpute
.m hea(a |l'll‘ll[Jl on layer PAGE484

ALL SYS TEMS GO

Applications

DeepMind

Duan et al. 2016; Silver et al., 2017; Dean et al., 2019; Tu and Recht, 2019;

Mania et al., 2019; Fazel et al., 2018; Recht, 2019; 11



Motivation

J Model-free methods and data-driven control

Apply a control Accumulate
strategy observed data

Refine the
control strategy

Opportunities Challenges
* Directly search over a given policy class * Lack of non-asymptotic performance
* Directly optimize performance on the true guarantees

system, bypassing the model estimation » Sample complexity

(not on an approximated model) » Suboptimality

» Convergence, etc.

N/

** Highly nontrivial even for linear dynamical systems

12



Today’s talk

J Optimal Control

Feedback Paradigm
d(t) w(t)
—>u 0 System ',’}zt) e
Feedback
<

Control input Controller | Measurement

Major challenge: how to perform optimal control when the system is unknown?

Linear Quadratic Optimal control
1 T
min lim E [ = Z (:EtTQact + u;rRut)

UL, U2 y.en, T—o0 T —1

subject to x4y = Axy + Buy + wy
yr = Cy + vy

Many practical applications

Linear Quadratic Regulator (LQR) when the state
X is directly observed

Linear Quadratic Gaussian (LQG) control when
only partial output y; is observed

Extensive classical results (Dynamic programming,
Separation principle, Riccati equations, etc.)

13



Model-free: Direct policy iteration

(] Controller parameterization LQR as an Optimization problem
* Give a parameterization of control policies; say m[%n J(K)

neural networks? x t. K e K
S.t.

e Control theory already tells us many structural

properties Direct policy iteration
strategy observed data

e Linear feedback is sufficient for LQR u; = Kx;
Ki—l—l — K@ — OﬂZ'VJ(KZ')

}ij;o m % tZT; (ﬁ?tTQSUt n utTRut) = J(K) v nggd) Landscape properties (Fazel et al.,
* Connected feasible region
* Set of stabilizing controllers K € IC * Unique stationary point
* Gradient dominance
* Afast-growing list of references v’ Fast global convergence (exponential)

» Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC, 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Basar, 2021;
Furieri et al., 2019; Feiran Zhao & Keyou You, 2021, and many others 14



Challenges for partially observed LQG

(J Results on model-free LQG control are much fewer
 LQG is more complicated than LQR
e Requires dynamical controllers

* |ts landscape properties are much richer and more complicated than LQR

= Question 1: Properties of the domain (set of stabilizing |
controllers) | T~ .

« convexity, connectivity, open/closed?

o = N w =

= Question 2: Properties of the accumulated cost

« convexity, differentiability, coercivity?

+ set of stationary points/local minima/global minima?

15



LQG Problem Setup

v(t)  Gaussian white  w(t)

l !

Plant
©(t) = Az(t) + Bu(t) + w(t)
y(t) = Cx(t) + v(t)

y(t) | &€(t) = Ak &(t) + Bry(t)

u(t)

dynamical controller
K= (AK7 BK7 CK)

Standard

(A, B), (A,W1/2) Controllable

Assumption (C, A), (Ql/z,A) Observable

Objective: The LQG cost

1 T
lim —]E/ (2" Qz +u' Ru)dt

> £(t) internal state of the controller
» dim£(t) order of the controller

> dim&(t) = dim z(t) full-order

> dim&(t) < dimz(t) reduced-order

Minimal controller

The input-output behavior cannot be

replicated by a lower order controller.

*(Ak, Bk, Ck) controllable and observable

16



Separation principle

v(t)  Gaussian white  w(t)

l !

Plant

t(t) = Ax(t) + Bu(t) + w(t) f+——m
y(t) = Cx(t) + v(t)

vit) | €(t) = Ac€(t) + Bey(®) | ult

dynamical controller
K= (AK7 BK7 CK)

Explicit dependence on the dynamics

Objective: The LQG cost
1

T
lim —]E/ (2" Qz +u' Ru)dt
T—4o00 0

Solution: Kalman filter for state estimation
+ LQR based on the estimated state

§ =(A—-BK){+ L(y — C%),
u=—KE¢.

Two Riccati equations
> Kalmangain [, = PCTy !
AP+ PAT — PC'V'CP+W =0,
> Feedbackgain K — R~1BT¢Q
A'S+SA—SBR'B'S+Q=0

17



Model-free Optimization formulation

1 Closed-loop dynamics
LQG as an Optimization problem

- - - |
d |x A  BCk||x I 0] |w
— el = g.c AK: + 3 min J(K)
dt |§£] 1Bk K 1€ 0 Bk| |v K
y| _ |C 0|z LY s.t.  K=(Ak, Bk, Ck) € Crun
_u_ _0 CK f 0
[ Feasible region of the controller parameters Direct policy iteration K, 1 = K; — a;VJ(K;)
Crunl = {K ‘ K = (Ak, Bk, Ck) is full-order, Apply a control Accumulate
strategy observed data
A BCk| . :
[ BC  Ag ] is Hurwitz stable} Refine the
control strategy
1 g T T
 Cost function Tl_lgloo TE/ (z" Qr+u Ru)dl v' Does it converge at all?
0 _ . Landscape
0 ) . ) v Converge to which point? Analvsis
J(K) = tr ([0 C[{RCK] XK) = tr ([0 BKVB[E] YK) v’ Convergence speed?
Xk, Y Solution to Lyapunov equations Hyland, David, and Dennis Bernstein. "The optimal projection equations for fixed-order 13

dynamic compensation." IEEE Transactions on Automatic Control 29.11 (1984): 1034-1037.



Model-free Optimization formulation

v(t) Gaussian white w(t)

¢ !

y(t)

Plant

&(t) = Ax(t) + Bu(t) + w(t) |«

y(t) = Cx(t) +v(t)

£(t) = Ak &(t) + Bry(t)

u(t)

u(t) = Ck &(t)

dynamical controller
K = (Ak, Bk, Ck)

Landscape

Analysis

LQG as an Optimization problem

min J(K)

s.t. K=(Ak, Bk, Ck) € Ctun

= Q1: Connectivity of the feasible region Cy
Is it connected?

If not, how many connected components can it have?

= Q2: Structure of stationary points of J(K)

Are there spurious (strictly suboptimal, saddle)
stationary points?

How to check if a stationary point is globally optimal?

19



Connectivity of the feasible region

(J Simple observation: non-convex and unbounded

Lemma 1: the set Cru is non-empty, unbounded, and can be non-convex.

Example

#(t) = w(t) +u(t) + w(t) e

y(t) = x(t) + v(t)
0o C 1 Ck| .
Crull = { K= [BK AE] c R?*? [BK Aﬂ is Stable} .

K1) — { 0 2 ] , K2 = {O _2] Stabilize the plant, and thus belong to Cry1

o ——
~~.

~ 1
K = 5 (K(l) + K(Q)) = [0 ] Fails to stabilize the plant, and thus outside Crui

20



Connectivity of the feasible region

( Main Result 1: dis-connectivity

Theorem 1: The set Cry can be disconnected but has at most 2 connected components.

v’ Different from the connectivity of static stabilizing state-feedback controllers,
which is always connected!

v’ Is this a negative result for gradient-based algorithms? 2 NO

21



Connectivity of the feasible region

( Main Result 2: dis-connectivity
Theorem 2: If Cry1 has 2 connected components, then there is a smooth bijection T between

the 2 connected components that has the same cost function value.

v" In fact, the bijection T is defined by a similarity
transformation (change of controller state coordinate)

L Dk CKT_l
Ir(K) = {TBK TAKT_1] '

Positive news: For gradient-based local search

methods, it makes no difference to search over

either connected component.

22



Connectivity of the feasible region

(d Main Result 3: conditions for connectivity

Theorem 3: 1) (g, is connected if there exists a reduced-order stabilizing controller.

2) The sufficient condition above becomes necessary if the plant is single-input or
single-output.

Corollary 1: Given any open-loop stable plant, the set of stabilizing controllers Cg.p is connected.

Example: Open-loop stable system

t(t) = —x(t) + u(t) + w(t)

y(t) = a(t) + v(t)

Routh--Hurwitz stability criterion

_ _ 0 CK 2% 2
Cfull—{K— [BK AK] e R

Ak < 1, BkCk < —AK}.

23



Connectivity of the feasible region

(d Main Result 3: conditions for connectivity

Example: Open-loop unstable system (SISO)

E(t) = x(t) + u(t) + w(t)

y(t) = a(t) + v(t)

* Routh--Hurwitz stability criterion

0
Crun = {K = [BK

(e[

A

Ck
Ak

CK] = RQXZ

:| c R2X2

A BCk | .
[BKC Ay ] 18 Stable}

AK < —1, BKCK < AK} .

* Two path-connected components

[ 0

+ . _

ct = {k=[2
N [ ()

c ]R2X2

c ]R2X2

Ak < —1, Bk(Ck < AK, Bk > 0},

Ak < —1, BkCk < Ak, Bk < 0} .

Disconnected feasible region

24



Model-free Optimization formulation

v(t) Gaussian white w(t)

¢ !

y(t)

Plant
&(t) = Ax(t) + Bu(t) + w(t) |«

y(t) = Cx(t) +v(t)

£(t) = Ak &(t) + Bry(t) | ult)

u(t) = Ck &(t)

dynamical controller
K = (Ak, Bk, Ck)

Landscape

Analysis

LQG as an Optimization problem

miin J(K)

s.t. K=(Ak, Bk, Ck) € Crun

= Q1: Connectivity of the feasible region Ceu
|s it connected? NoO

How many connected components can it have? Two

= Q2: Structure of stationary points of J(K)

Are there spurious (strictly suboptimal, saddle) stationary
points?

How to check if a stationary point is globally optimal?

25



Structure of Stationary Points

(J Simple observations

1) J(K) is a real analytic function over its domain
(smooth, infinitely differentiable)

2)J(K) has non-unique and non-isolated global optima

Similarity transformation
(AK, BK, CK) > (TAKT_l, TBK, CKT_l)

> J(K) is invariant under similarity transformations.

» It has many stationary points, unlike the LQR with a unique
stationary point

LQG as an Optimization problem

mKin J(K)
s.t. K=(Ak, Bk, Ck) € Cru

26



Structure of Stationary Points

1 Gradient computation

How does the set of Stationary

Lemma 1: For every K = ( Ak, Bk, Ck) € Cga11 » We have Points look like?

d0J (K 4 0.J(K \
514(1}() =2 (Y1T2X12 + Y22X22) : 814(1K) =0,
0J(K 0J (K
a_éK) =2 (Yoo BV + Yau X LCOT + Y5 X1, CT), ¢ K € Crun 8éK) =0,
0J(K 0J (K
ac(?K) — 9 (RCkXaz + BY11 X15 + B Y12 Xan) | ) c(*K) —o,
X X Y Y;
where ¥, — 11 12 V. — { 11 12]
« [Xng Xzz] ’ “T Y Yo Q Non-unique, non-isolated
are the unique positive semidefinite solutions to two O Local minimum, local
Lyapunov equations. maximum, saddle points,

or globally minimum?




Structure of Stationary Points

(d Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable Ak
K= (4k,0,0) € Cran

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle
point) or equal to zero.

Feha () = —2(t) +ult) +w(t) Q=1,R=1,V=1W=1
y(t) = x(t) + v(?) 00

0 a

» Cost function: J([ 0 CK]) — Ai — Ax(1 + BgCg) — BxCk(1 — 3Bk Ck + BgCi)

Stationary point: K* = [ ] c R?%2, with a < 0

Bk Ag 2(—1 + AK)(AK -+ BKCK) -
- 972 (K) 972 (K) 9J2(K) Int?efmlte with
afﬁ 8AP(28BK aAgacK . 0 0 0 eigenvalues:
. 0J=(K) aJ*(K) aJ*(K) . 1
> Hessian: 5Bx Ax oB2 5B OCK = —2(1 — o) 0O 0 1}, 0 and :I:m
0J%(K)  8J%*(K) 8J?(K) 0O 1 O

| 9CkAx  9CkBx 0902 1|0 0O
0 a 28



Structure of Stationary Points

(d Main Result: existences of strict saddle points

Theorem 4: Consider any open-loop stable plant. The zero controller with any stable Ak
K= (AKa 07 0) < Cfull

is a stationary point. Furthermore, the corresponding hessian is either indefinite (strict saddle point)
or equal to zero.

Another example with zero Hessian

How does the set of Stationary d Non-unique, non-

A Ju(K 1) Points look like? isolated

0.8336}
i 0J(K) _ o) Q Strictly suboptimal

083351 0 Ak ’ points; Strict saddle

_ K oints
o q K € Crun 8(;] é ) _ 0, ¢ S

K O All bad stationary points
0.8333}
\ 0.J(K) —0 correspond to non-
004 -0.02 002 004 o \ 0Ck ") minimal controllers

29



Structure of Stationary Points

(] Main Result

LSV Al stationary points corresponding to controllable and
observable controllers are globally optimum.

Particularly, given a stationary point that is a minimal controller
1) This stationary point is a global optimum of j(K)

2) The set of all global optima forms a manifold with 2 connected
components. They are connected by a similarity transformation.

Example: open-loop
stable system

Example: open-loop
unstable system

K € Crun

= N oW ~
1 \
\

30



Proof idea

 Proof: all minimal stationary points are unique up to a similarity transformation

All minimal stationary points K = (Ak, Bk, Ck) € Craq to the LQG problem are in the form of

A =T(A—- BK — LC)T™*,

=0,

=0,

=0,

\

0

/

Minimal
controller

=2 (Yoo BV + Yoo X[,CT + Y5 X1:CT)

=92 (RCKXQQ + BTEIXIQ + BTYIQXQQ) )

, dJ(K)
0Ak
dJ (K
s K € Crun &é )
K
dJ (K)
\ dCk
9 it
dJ (K
0Bk
dJ(K)
0Ck

Bk = -TL, Ck = KT,

K=R'B'S, L=prPCTV !

T is an invertible matrix and P, S are the unique positive definite solutions to the Riccati equations

0Jn(K) _
9 Bx

ZA
9Ck
2J(K) _
9 Ak

— Bx = -TPC'V~1
— Ck =R 'BTST!
— Ak =T(A—PC'V~'C - BR'B"S)T!

Special case in Theorem 20.6 of Zhou et al., 1996 and
Section Il of Hyland, 1984

31



Structure of Stationary Points

J Implication

Corollary: Consider gradient descent iterations
Kt_|_1 = Kt — OZVJ(Kt)

If the iterates converge to a minimal controller, then this minimal controller is a global optima.

IVI(Ko)|I?

10°

1072}
1074

106

0 500 1000 1500 2000 2500

Iterations ¢

Open questions:

v Convergence conditions?

v Convergence speed?

v’ Alternative model-free parameterization

Some recent papers are

* Umenberger, J., et al. (2022). Globally Convergent Policy Search over Dynamic Filters for
Output Estimation. arXiv preprint arXiv:2202.11659.

* Zheng, Y, Sun, Y., Fazel, M., & Li, N. (2022). Escaping High-order Saddles in Policy
Optimization for Linear Quadratic Gaussian (LQG) Control. arXiv preprint arXiv:2204.00912,



Comparison with LQR

LQR as an Optimization problem LQG as an Optimization problem
min J(K) min J(K)
K K
st. K e K s.t. K= (AK, DB, CK) € Crunl
Connectivity of ’ ** Disconnected, but at most 2 connected comp.
feasible region “ Always connected % They are almost identical to each other

“* Non-unigue, non-isolated stationary points

Stationary “ Uni *» Spurious stationary points (strict saddle,
) *» Unique .
points : nonminimal controller)

«» All mini. stationary points are globally optimal

. % Gradient dominance “* No gradient dominance
Gradient “ Local y d (unk )
R ** Local convergence/speed (unknown
Descent Global fast convergence g p
(like strictly convex) “* Many open questions

Fazel et al., ICML, 2018; Malik et al., 2019; Mohammadi et al., IEEE TAC,
References 2020; Li et al., 2019; K. Zhang, B. Hu, and T. Basar, 2021; Furieri et al., Zheng*, Tang*, Li. 2021, link (* equal contribution)
2019; Feiran Zhao & Keyou You, 2021, and many others 33
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Sample complexity of linear quadratic gaussian
(LQG) control for output feedback systems

Luca Furieri Maryam Kamgarpour Na Li
EPFL EPFL Harvard University

Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2021, May). Sample complexity of linear quadratic gaussian (LQG)
control for output feedback systems. In Learning for Dynamics and Control (pp. 559-570). PMLR.



System ID + Robust Control

J System ID procedure

Physical systems

—

Control inputs u;

. » Estimate a
dynamical model

(1 How to represent a dynamical system: space-space or frequency domain?

Output meas. y;

v’ State-feedback LQR seems easier
A+ AA, B+AB, |AA[ <e€a,||AB| < e€p,

v' System-level parameterization (SLP, frequency domain technique) for robust control

and sample complexity analysis; see Dean et al., 2020 Highly Non-trivial

 Partially observed LQG case e et o1 2020 Worke bl for
IB—B,||, ||C—C.| state feedback via SLP

v' The realization of A, B, C is not
Then, design a robust LQG controller? unique!!

Natural idea: estimate ||A — A, |,




Frequency domain formulation

] State-space model
Li41 — A*xt + Byus + B*wt;
yr = Cyxy + vy

 Unique transfer function

G,(z) =C, (2] — A,) 'B,,

Estimate a nominal model
as well as its uncertainty

Al =[Gy = Gl <€

&L

3

u + 6u
' Least-square fits a
coarse model

High dimen. stats

bounds the error

Design a robust
LQG controller

RoOBUS T
OPrTIMAL
CONTROL

LINEAR
CONTROLLER
DESIGN

LIMITS OF PERFORMANCE

STEPHEN I BOYD CRANG L BARRATT

e 8 ke, AR b o S

Vs doam. e b

37



Robust LQG formulation

Nominal LQG formulation Robust LQG formulation
i = 1 &
: : 1 T T , :
BN 7D i Qut e Ru)| i S B D (v Qe Ru)|
— oo € t=0
subject to w11 = Ayxy + Byoug + Bywy, subject to y = (G +A)Ju+v
yt:C*mt—l—'vt.. u:Ky—l—W,

Key idea via Change of variables: Instead of optimizing the controller K,

we search over the closed-loop responses

du
ljp.22 u ++

_ 1 (Y,UW,Z)eC

5y 4y K=UY :
K = > C = Affine space
N Stable
y| _|Y W[ |9, Non-convex Convex
u U Z | |d,
Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). An input—output parametrization of 33

stabilizing controllers: Amidst youla and system level synthesis. I[EEE Control Systems Letters, 3(4), 1014-1019.



Robust LQG formulation

T

> () Que + uf Ruy)

t=0

1
T

—_— e -

ymin! sup lim [E
Robust LQG L I_<_1|A||oo<e T — o0

formulation

?

subject to y = (G + A)u+v
u= Ky + w,

Theorem (Zheng et al., 2021): the problem above
is equivalent to

~

_____ Y(I-AU)"! YU -AU) G
I~ TN su JG,K=||[A A -
l_‘i’_,VY,t;Lz:nAnfq (G0 K) Ul - AU)™! (I-UA)~!
: L [Y W
bject t — A ~ | =11 0
subject to |1 —G| [U Z] [ ],
Another upper approximation Y W|[-G] [0
via Taylor expansion v zZ|| 1| |I]’
R 1

- Convex optimization

+ A)

~

|

Ho

39



Suboptimality guarantee

Theorem (Zheng et al., 2021): When the plant is open-loop stable, solving an SDP upper approximation of
the robust control problem leads to a robust stabilizing LQG control with a suboptimality gap
J(K) —
Jx

where |G, — G’”OO < €, and the estimation is accurate enough

s < 20U, |loe + O(6)

Optimality vs. Robustness

» Certainty equivalent controller (Mania et al., 2019 ) achieves a better sub-
optimality scaling O(€?)

» Much stricter requirement on admissible uncertainty,

» No guarantee of robust stabilization performance

“The price of obtaining a faster rate for LQR is that the certainty equivalent

controller becomes less robust to model uncertainty”

40



End-to-end Sample complexity

Nominal LQG formulation Robust LQG formulation
1 T { T
1 1 T T . .
| ; (9 Qe + vy Br) Gy L E | 3" (7 Que + uj Ruy) |,
- oo € t=0

subject to x4y = A,x + Bouy + Bowy, subject to y = (G + A)u+v

u=Ky+w,

End-to-end Sample Suppose the true plant is FIR of order Ty and let the length T = T,. With high
complexity: probability, the end-to-end sample complexity scales as

Btoo(h)

e N is the number of samples (y;, u;) in a single trajectory

yt:C*QUt—l—'Ut..

* Robust stability: as long as the Robust LQG has a feasible solution, the closed-
loop is guaranteed to be stable:

41



Comparison with LQR

Ly ' lim E i (WTQ Ruy)
min sup lim E | — x; Quy + u, Ru Sl el 1m o Ye QYr + uy Ly
K |aallapll<e T | T tzzg( ¢ Que + Uy ) IAl<e T—oo | T t=0
subject to zy41 = (A + AA)z; + (B + AB)u; + vy subject to y = (G + Au+v
u = Kx u=Ky+w,
Sys ID < Least squares < Least squares )
methods |A—A,|| <ea,l||B— B, < es, [Alloe == [|Gx — Glloc <€
“* Frequency domain “* Frequency domain
Synthesis % System-level synthesis, “* Input-output parameterization, IOP,
Technique SLS (Wang et al., 2019) (Furieri et al., 2019)
“» Taylor expansion “» Taylor expansion
S | ** both stable and unstable systems ** Only for open-loop stable system
ample A 3
; J(K) — Ji 1 J(K) - J, 1
Complexity ~0(—), ~0| — ).
J VN Sy VN
v" Deanetal., 2020; Berberich et al., 2020; Boczar et al., o A :
REferenCES 2018; Tsiamis et al., 2020; Umenberger et al., 2019; and Zheng*' Furlerl*, Kamgarpour, & Li,

many others

(2021, May). Link (equal contribution)
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https://arxiv.org/abs/2011.09929

Today’s talk
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Data-Driven Predictive Control for Connected and
Autonomous Vehicles in Mixed Traffic

Jiawei Wang Qing Xu Keqgiang Li
Tsinghua University Tsinghua University Tsinghua University

Wang, J., Zheng, Y., Li, K., & Xu, Q. (2022). DeeP-LCC: Data-enabled predictive leading cruise control in mixed
traffic flow. arXiv preprint arXiv:2203.10639.



Mix-Autonomy Mobility

A long stage of mixed-autonomy mobility

_*‘_‘“y"'}"'““\

f"_' Cloud

/ \

Mixed-autonomy mobility: a traffic condition where both autonomous vehicles and
human-driven vehicles co-exist.

* Q1: How will a small scale of autonomous vehicles change traffic dynamics?

* Q2: How to integrate a small scale of autonomous vehicles to improve traffic
performance?
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Benchmark Ring Road Experiment

Traffic Jams Sugiyama, et al.
| ; =
1950s >10,000 papers for traffic control 2008 2022

Setting:

22 human drivers _—
-

e : - -
H . il = - =
Instructions: B = Traffic Jam without Bottleneck
drive at 30 km/h /following its s _
preceding vehicle Experimental evidence
Environment for the physical mechanism of forming a jam
Single lane Yuki Sugivama, Minoru Fukul, Macoto Kikuchl
No traffic Iights Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinan

Shin-ichi Tadaki and Satoshl Yukawa

No stop signs,
No lane changes. Movie 1

Video credits: NewScientist.com
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Benchmark Ring Road Experiment

Traffic jams Sugiyama, et al.  Stern, et al.

1 | | 1
| I i —

1950s >10,000 papers for traffic control 2008 2018 2022

Setting:
21 human drivers

R Dissipation of stop-and-go traffic

drive at 30km/h /follow  wgves via control of a single

its preceding vehicle

Environment autonomous vehicle

Single lane
No traffic lights,
No stop signs,

No lane changes. ILLINOIS m_]TGERS TEMPLE A\, THE UNIVERSITY

UNIVERSITY OF ARIZONA 47




Mixed urban mobility

(J Theoretical Evidence & Controller design

 Why does it work?

* Does it work in other setups (e.g., different number of HDVs, different
human-driver behavior, open straight road scenario)?

f*Q‘wQ O Theorem (Informal): The mixed

| - L traffic system is stabilizable after

Mogion Sparse network / ot N introducing a single autonomous

Direction co nt rOI /‘ \v Ve h I ‘ | e;
, . Driving Node . . . .
OB CAV 7 C{,\) O Uncontrollad Node Cj) O Design a distributed controller;
® O minimize J(K)
\ o / ,
@ . /0 subject to K € C N Sparse(.5).

N N
O g ©
S ult)

* Zheng, Y., Wang, J., & Li, K. (2020). Smoothing traffic flow via control of autonomous vehicles. IEEE Internet of Things Journal, 7(5), 3882-3896.

* Wang, J., Zheng, Y., Xu, Q., Wang, J., & Li, K. (2020). Controllability analysis and optimal control of mixed traffic flow with human-driven and autonomous vehicles. IEEE
Transactions on Intelligent Transportation Systems, 22(12), 7445-7459.
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Data-driven Leading Cruise Control

J System architecture

Collected Data Hankel Matrix

60 (Offline) Data Collection (Online) Predictive Control

= P k i ] — &
S = N Velocity Error | Past o S
~ 2 : T Spacing Error : = 2
;‘.’"' - I | - ! ,'_'_. -
b i & Control Input | S =
; el L I = ?._. :
2 oS
=

=

Unknown HDVs CAV Unknown HDVs CAV Unknown HDVs Head Vehicle

Wang, J., Zheng, Y., Li, K., & Xu, Q. (2022). DeeP-LCC: Data-enabled predictive leading cruise control in mixed traffic flow. arXiv

preprint arXiv:2203.10639. 4o



Data-driven Leading Cruise Control

DeeP-LCC: Data-EnablEd Predictive Leading

Cruise Control z
t+N—1 g
: 2 2 2 2 g
cmin 0 (gl + )3 ) + A llgls + Ay lloy :
y Wy YUy L—t
(Up | Uini | 0 (a) All HDVs
E, €ini 0
25 25
s.t. SU/,YP g = y;n + O(-)y ’ Z 90 | By 1
f k=) \ = X \
gl || |o R S bR ST
_Y}-_ | y | _0_ émr \a \/ \J :glgr \, \ \/
assumption oL e 510 20 30 xio CJm 20 30 :;n
safety constraint on u and y. £ 18 tls
(b) MPC (¢) DeeP-LCC
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Real experiments

1 Experiment platform Traffic jams
= |
e < 1950s >10,000 papers for traffic control

Size:9m X 5m (~500 square ft )
Vehicle: 1.4kg, 0.2m X 0.2m X 0.13m

Operating systems

ubuntu

Ubuntu 18.04.5 LTS

Ubuntul8.04 ROS-melodic

@ Tsinghua University  https://youtu.be/ZZ2cWhapgpc



https://youtu.be/ZZ2cWhapqpc

Conclusion



Summary

Landscape analysis Robust Model- Data-driven MPC in
of non-convex LQG based LQG control mixed traffic
control
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i
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I 13
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SOC lab at UC San Diego

@

Data-driven and
learning-based
control

Sparse conic
optimization

Sparse network

Scalable
distributed control

Check out our webpage: https://zhengy09.github.io/soclab.html

) SOC
"’ Lab

Connected and
autonomous
vehicles (CAVs)
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https://zhengy09.github.io/soclab.html

Scalable Learning, Optimization, and Control for
Autonomous Systems

Thank you for your attention!

Q&A



Proof idea: Lifting via Change of Variables

(1 Change of variables in state-space domain: Lyapunov theory
* Connectivity of the static stabilizing state feedback gains
{K € R™"*" | A— BK is stable} /
— {K ¢ R™" |3P > 0,P(A— BK)" +(A— BK)P < 0}

o —
~~.

— {K e R™" 3P~ 0,PA" —L"B" + AP - BL <0,L = KP}
Open, connected,

ossibly nonconvex
e [K=LP ' eR™"|3P»0,PAT — LTBT + AP — BL <0}, POV

 How about the set of stabilizing dynamical controllers

Change of variables for

A BCk]| . ol ou'tpu.t feedback c.o.ntrol
BkC  Ayx | 2P is highly non-trivial

A BC’K] i 4 { A BCk [Gahinet and Apkarian, 1994]

«— 3JP =0, P [BKC A BeC  Ax ] P <0, [Scherer et al., IEEE TAC 1997]
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Proof idea: Lifting via Change of Variables

(1 Change of variables in state-space domain: Lyapunov theory

d(Z) = ®p(Z) Pc(4)) _| I 0 G H I ox] ! [Scherer et al., IEEE TAC 1997]
B (I)B(Z) q)A(Z) o . [Gahinet and Apkarian, 1994]

YB = F M-YAX| |0 II
mmmmmmmmmmmmmmmmeememes ) e
LS X G_ L surjective l___?_fll_ll___l Two connected components
at most 2 connected GLI = {II € R™" | detII > 0},
— / components ‘=N | }
QL = {IT € R™™ | detTI < 0}.

General linear group: the set
Convex thus of invertible matrices
connected (similarity transformation)

F = {(X,Y,M,H,F)]X,Y eS", M e R"™*™" HecR"P FecR™"™,

X Il [AX+BF A4 ] [AX+BF 4 T<O
I Y|7™Y| M YA+ HC M  YA+HC



