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1. SDPs with Chordal Sparsity

 Standard Primal-dual Semidefinite Programs (SDPs)

Dual

• Applications: control theory, power systems, polynomial optimization, combinatorics, 
operations research, etc.

Optimal power flow problem
(e.g., by dropping a rank constraint)

Control of a networked system 
(e.g., via Lyapunov theory)

Picture sources: http://scholar.princeton.edu/ghall/home
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1. SDPs with Chordal Sparsity

 Standard Primal-dual Semidefinite Programs (SDPs)

Dual

• Interior-point solvers: SeDuMi, SDPA, SDPT3 (suitable for small and medium-sized 
problems); Modelling package: YALMIP, CVX; 

• Nonlinear SDPs: using penalty methods; PENNON (PENLAB), Michal Kocvara and Michael 
Stingl, 2003;

• Large-scale cases: it is important to exploit the inherent structure of the instances (De 
Klerk, 2010):

➢ Low Rank

➢ Algebraic Symmetry

➢ Chordal Sparsity:

✓ Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010;

✓ First-order methods: Madani et al., 2015; Sun, Andersen, and Vandenberghe, 2014.



5

1. SDPs with Chordal Sparsity

 Sparsity Pattern of Matrices

𝕊𝑛 ℰ, 0 = ȁ𝑋 ∈ 𝕊𝑛 𝑋𝑖𝑗 = 0, ∀ 𝑖, 𝑗 ∉ ℰ

𝕊+
𝑛 ℰ, 0 = ȁ𝑋 ∈ 𝕊𝑛 ℰ, 0 𝑋 ≥ 0

• Sparse matrices

𝕊𝑛 ℰ, ? = the set of 𝑛 × 𝑛 partial symmetric 

matrices with elements defined on ℰ.

𝕊+
𝑛 ℰ, ? = ȁ𝑋 ∈ 𝕊𝑛 ℰ, ? ∃𝑀 ≥ 0,𝑀𝑖𝑗 = 𝑋𝑖𝑗 , ∀ 𝑖, 𝑗 ∈ ℰ

𝕊+
𝑛 ℰ, ? and 𝕊+

𝑛 ℰ, 0 are dual cones of each other.

Dual



Chordal extension
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1. SDPs with Chordal Sparsity

 Chordal Graph

A graph G is chordal if every cycle of length at 
least four has a chord. 

• Any non-chordal graph can be chordal 
extended;

A chordal graph can be decomposed into its

maximal cliques 𝒞 = 𝒞1, 𝒞2, … , 𝒞𝑝 .

• Cliques in a graph are maximal complete

subgraphs
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1. SDPs with Chordal Sparsity

 Clique Decomposition

Given a choral graph 𝒢 = 𝒱, ℰ with a set of maximal cliques 𝒞1, 𝒞2, … , 𝒞𝑝

Grone’s Theorem:

𝑋 ∈ 𝕊+
𝑛 ℰ, ? if and only if 𝑋 𝒞𝑘 ≥ 0, 𝑘 = 1,… , 𝑝.

𝑋 ∈ 𝕊+
𝑛 ℰ, ?

𝑋 𝒞1 ≥ 0

𝑋 𝒞2 ≥ 0

𝑋 𝒞3 ≥ 0i.e., matrix X is PSD 
completable
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1. SDPs with Chordal Sparsity

 Clique Decomposition

Given a choral graph 𝒢 = 𝒱, ℰ with a set of maximal cliques 𝒞1, 𝒞2, … , 𝒞𝑝

Agler’s Theorem:

𝑋 ∈ 𝕊+
𝑛 ℰ, 0 if and only if there exists 𝑀𝑘 ∈ 𝕊+

𝑛 𝒞𝑘 such that 𝑋 = σ𝑘=1
𝑝

𝑀𝑘 .

𝑋 ∈ 𝕊+
𝑛 ℰ, 0 𝑀1 ∈ 𝕊+

𝑛 𝒞1 𝑀2 ∈ 𝕊+
𝑛 𝒞2 𝑀3 ∈ 𝕊+

𝑛 𝒞3

𝕊+
𝑛 ℰ, ?

 Sparse Cone Decomposition (chordal)

𝕊+
𝑛 ℰ, 0

Dual

Grone’s Theorem Agler’s Theorem
Dual

Topics in this talk

✓ ADMM for primal and dual SDPs;

✓ ADMM for the homogeneous 
self-dual embedding;

✓ CDCS: Cone Decomposition Conic 
Solver.
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1. SDPs with Chordal Sparsity

 Alternating Direction Method of Multipliers (ADMM)

 Augmented Lagrangian

 ADMM steps

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via 
the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 3(1), 1-122.

Iterations of ADMM:

a) An x-minimization step

b) A y-minimization step

c) A dual variable update
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2. ADMM for Primal and Dual Sparse SDPs

 Aggregate sparsity pattern of matrices

Primal Dual

A union of patterns 
of 𝐶, 𝐴1 , 𝐴2

Patterns of feasible 
solutions

Cone replacement

Chordal Decomposition
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2. ADMM for Primal and Dual Sparse SDPs

 Cone Decomposition of Sparse SDPs

Dual

Primal Dual

Cone (chordal) 
Decomposition

✓ A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;
✓ Our idea: introduce additional variables to decouple the coupling constraints.

Aggregate sparsity pattern ℰ
is union of patterns of 𝐶, 

𝐴1, . . . , 𝐴m
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2. ADMM for Primal and Dual Sparse SDPs

 ADMM for primal SDPs

Consensus

• Reformulate using indicator functions

• Augmented Lagrangian

• Regroup the variables

Function: 𝑔 𝑧

Function: 𝑓 𝑥
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2. ADMM for Primal and Dual Sparse SDPs

 ADMM for primal SDPs

• 1) Minimization over block X

• 2) Minimization over block Y

• 3) Update multipliers

Projections onto small 
PSD cones; Can be 
computed in parallel.

QP with linear constraint 
(Projections onto a linear 
subspace)

Consensus
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2. ADMM for Primal and Dual Sparse SDPs

 ADMM for dual SDPs

Consensus

• Reformulate using indicator functions

• Augmented Lagrangian

ADMM steps in the dual form are scaled versions of those in the primal form ! 

✓ QP with linear constraints

✓ Projections in parallel
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2. ADMM for Primal and Dual Sparse SDPs

 The Big Picture

The duality between the primal and dual SDP is inherited by the decomposed 
problems by virtue of the duality between Grone’s and Agler’s theorems.

𝕊+
𝑛 ℰ, ? 𝕊+

𝑛 ℰ, 0
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3. ADMM for the Homogenous Self-dual Embedding

 KKT condition

Primal Dual

• Notational simplicity 

• KKT conditions

➢ Primal feasible

➢ Dual feasible

➢ Zero-duality gap



19

3. ADMM for the Homogenous Self-dual Embedding

 The Homogeneous Self-dual Embedding

𝜏, 𝜅: two non-negative and 
complementary variables 

• Notational simplicity 

• Feasibility problem 

✓ The big sparse PSD cone has 
already been equivalently 
replaced by a set of coupled 
small PSD cones;
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3. ADMM for the Homogenous Self-dual Embedding

 ADMM algorithm

[1] O’Donoghue, B., Chu, E., and Parikh, Nealand Boyd, S. (2016b). Conic optimization via operator splitting and 
homogeneous self-dual embedding. Journal of Optimization Theory and Applications, 169(3), 1042– 1068

• ADMM steps (similar to the solver SCS [1])

Q is highly structured and sparse

Projection onto a subspace

Projection onto cones (smaller dimension)

✓ Block elimination can be applied here to 
speed up the projection greatly;

✓ Then, the per-iteration cost is the same as 
applying a splitting method to the primal or 
dual alone.
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4. CDCS: Cone Decomposition Conic Solver

 CDCS

• An open source MATLAB solver for partially decomposable conic programs;

• CDCS supports constraints on the following cones:

✓ Free variables

✓ non-negative orthant

✓ second-order cone

✓ the positive semidefinite cone.

• Input-output format is in accordance with SeDuMi;

• Works with latest Yalmip release.

Download from https://github.com/OxfordControl/CDCS

[x,y,z,info] = cdcs(At,b,c,K,opts);

Syntax:
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4. CDCS: Cone Decomposition Conic Solver

 Random SDPs with block-arrow pattern

• Block size: d,
• Number of Blocks: l
• Arrow head: h
• Number of constraints: m

Numerical Comparison

• SeDuMi (interior-point solver)

• SCS (first-order solver)

• sparseCoLO (preprocessor)
+SeDuMi

𝜖tol = 10−3CDCS and SCS

Numerical Results
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4. CDCS: Cone Decomposition Conic Solver

 Benchmark problems in SDPLIB [2]

Three sets of benchmark problems in SDPLIB (Borchers, 1999):

1) Four small and medium-sized SDPs ( theta1, theta2, qap5 and qap9);

2) Four large-scale sparse SDPs (maxG11, maxG32, qpG11 and qpG51);

3) Two infeasible SDPs (infp1 and infd1).

[2] Borchers, Brian. "SDPLIB 1.2, a library of semidefinite programming test problems." Optimization Methods 

and Software 11.1-4 (1999): 683-690.
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4. CDCS: Cone Decomposition Conic Solver

 Result: small and medium-sized instances
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4. CDCS: Cone Decomposition Conic Solver

 Result: large-sparse instances

• maxG32: original cone size 2000; after chordal decomposition, maximal size 60;
• qpG11: original cone size 1600; after chordal decomposition, maximal size 24;   
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4. CDCS: Cone Decomposition Conic Solver

 Result: Infeasible instances
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4. CDCS: Cone Decomposition Conic Solver

 Result: CPU time per iteration

✓ Work with smaller semidefinite cones for large-scale sparse problems 

large-scale 
and sparse 

small and 
medium size 

• Our codes are currently written in MATLAB 

• SCS is implemented in C. 
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5. Conclusion

 Summary

Dual

• Large-scale and sparse instances

Modelling 
Sparsity

Fast 
Computation

Chordal graphs, leading to sparse PSD cone decompositions 
(Grone’s and Agler’s theorems);

ADMM, dealing with the small and coupled cone constraints 
(Alternating projections onto a linear subspace and small cones)
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5. Conclusion

 Summary

• Introduced a conversion framework for sparse SDPs

• Developed efficient ADMM algorithms

✓ Primal and dual standard form;
✓ The homogeneous self-dual embedding; 

• CDCS: Download from https://github.com/OxfordControl/CDCS

 Ongoing work

• Develop ADMM algorithms for sparse SDPs arising in Sum-of-Squares (SOS).

• Applications in networked systems and power systems.

suitable for first-order methods;



Thank you for your attention!
Q & A
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