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Introduction: Chordal graphs and Matrix
decomposition
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Matrix decomposition and chordal graphs

Matrix decomposition:

@ A simple example

3 1 0 3 1 0 0 O
A=1|1 1 1| =11 05 0|+1]|0 05 1
0 1 3 0 0 O 0 1

=0 =0 =0

* 0 * x 0 0 0 O

* *[ =[x x 0O+ [0 % =%

0 * 0 0 O 0 * =«
=0 =0 =0

where * denotes a real scalar number (or block matrix).
Benefits:
@ Reduce computational complexity, and thus improve efficiency! (3 x 3 — 2 x 2)
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Matrix decomposition and chordal graphs

Matrix decomposition:

@ Many other patterns admit similar decompositions, e.g.

(a) (b) (o)
. (3)

@ They can be commonly characterized by chordal graphs.
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Chordal graphs

Chordal graphs: An undirected graph G(V, ) is called chordal if every cycle of length
greater than three has a chord. J

)
N
-G @ O0S950
\, \'

() (b)

Notation: (Vandenberghe & Andersen, 2014)
@ Chordal extension: Any non-chordal graph can be chordal extended;
@ Maximal clique: A clique is a set of nodes that induces a complete subgraph;

@ Clique decomposition: A chordal graph G(V, £) can be decomposed into a set of
maximal cliques {C1,C2,...,Ct}.
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Clique decomposition

Chordal graphs: An undirected graph G(V, €) is called chordal if every cycle of length
greater than three has a chord. J

@ @
N
e‘?o a‘g'o

Clique decomposition:

=

A
=
e
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Sparse matrices

Sparse positive semidefinite (PSD) matrices
§"(€,0) ={X € 8" | Xy = X = 0,Y(3,j) ¢ £},
S1(€,0) = {X €5"(&,0) | X = 0}
Positive semidefinite completable matrices
S™(€,?7) ={X €S" | Xij = Xji, are given if (i,]) € £},
ST(E,?) ={X eS"(&,?) | IM =0, M;; = X5, V(i,j) €E}.

S (€,0) and S’} (€,7) are dual to each other. )
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Two matrix decomposition theorems

Clique decomposition for PSD completable matrices (Grone, et al., 1984)

Let G(V, &) be a chordal graph with maximal cliques {C1,Ca,...,Cp}. Then,

X eSt(E,7) & Ee, XEL, eS!I% k=1,...,p

OO
/ X1 X2 7

] X1 Xao Xos| €S3(E,7)

j:/ 7?7 Xz Xas
L .
= X1 X2

AN Fz: }

Y

0
X3z Xaz3
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Two matrix decomposition theorems

Clique decomposition for PSD matrices (Agler, Helton, McCullough, & Rodman, 1988;
Griewank and Toint, 1984)

Let G(V, E) be a chordal graph with maximal cliques {C1,Ca,...,Cp}. Then,

P
Z €SL(E,0) & Z = E ZiEc,, Zx € SIT¥
k=1

Sparse Cone Decomposition

duality

duality
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Control, machine learning, relaxation of QCQP, fluid dynamics, and beyond

A growing number of applications

Area

Topic

References

Control

Machine learning

Relaxation of
QCQP and POPs

Others

Linear system analysis
Decentralized control
Nonlinear system analysis

Model predictive control

Verification of neural networks

Lipschitz constant estimation
Training of support vector machine
Geometric perception & coarsening
Covariance selection

Subspace clustering

Sensor network locations
Max-Cut problem
Optimal power flow (OPF)

State estimation in power systems

Fluid dynamics

Partial differential equations
Robust quadratic optimization
Binary signal recovery

Solving polynomial systems

Other problems

Andersen et al. (2014b); Deroo et al. (2015); Mason & Pa-
pachristodoulou (2014); Pakazad et al. (2017b); Zheng et al. (2018¢c)
Deroo et al. (2014); Heinke et al. (2020); Zheng et al. (2020);

Zheng et al. (2018d)

Schlosser & Korda (2020); Tacchi et al. (2019a); Zheng et al.

(2019a); Mason (2015, Chapter 5)

Ahmadi et al. (2019); Hansson & Pakazad (2018)
Batten et al. (2021); Dvijotham et al. (2020); Newton & Pa-

pachristodoulou (2021): Zhang (2020)

Chen et al. (2020b); Latorre et al. (2020)

Andersen & Vandenberghe (2010)

Chen et al. (2020a); Liu et al. (2019); Yang & Carlone (2020)
Dahl et al. (2008); Zhang et al. (2018)

Miller et al. (2019a)

Jing et al. (2019); Kim et al. (2009); Nie (2009)

Andersen et al. (2010a); Garstka et al. (2019); Zheng et al. (2020)
Andersen et al. (2014a); Dall’Anese et al. (2013);
Jiang (2017); Molzahn & Hiskens (2014); Molzahn et al. (2013)
Weng et al. (2013); Zhang et al. (2017); Zhu & Giannakis (2014)

Arslan et al. (2021); Fantuzzi et al. (2018)
Mevissen (2010); Mevissen et al. (2008, 2011, 2009)

Andersen et al. (2010b)
Fosson & Abuabiah (2019)

Cifuentes & Parrilo (2016, 2017); Li et al. (2021); Mou et al.

(2021); Tacchi et al. (2019b)

Baltean-Lugojan et al. (2019); Jeyakumar et al. (2016); Madani
et al. (2017b); Pakazad et al. (2017a); Yang & Deng (2020)

@ Zheng, Fantuzzi, & Papachristodoulou, (2021). Chordal and factor-width decompositions for scalable

semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.

UC SanDiego

JACOBS SCHOOL OF ENGINEERING

Introduction: Chordal graphs and Matrix decomposition

12/47



This talk

[r———

Annual Reviews in Control E
e Bomepage: s e oot

Vision e »
Chordal and f dth ==
polynomial optimization

Yang Zhens ', Giovanni Fantuzzi, Antonis Papachristodovlou

Two survey
papers

S

ARTICLE INFO ABsTRACT

(37 pages with 21 figures)

@ Part I: Decomposition in sparse semidefinite optimization
— Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal
decomposition in operator-splitting methods for sparse semidefinite programs. Mathematical
Programming, 180(1), 489-532.
@ Part Il: Decomposition in polynomial matrix inequalities (PMls)
— Zheng, Y., & Fantuzzi, G. (2023). Sum-of-squares chordal decomposition of polynomial matrix

inequalities. Mathematical Programming, 197(1), 71-108.
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https://arxiv.org/abs/1707.05058
https://arxiv.org/abs/1707.05058
https://arxiv.org/abs/2007.11410
https://arxiv.org/abs/2007.11410

Part I: Decomposition in sparse semidefinite

optimization



Semidefinite programs (SDPs)

max (b,y)
min (C, X) wZ .
subject to  (A4;, X) =b;,i =1,...,m, subject to Z—l—ZAiyi:C,
X = 0. i=1
Z = 0.

where X > 0 means X is positive semidefinite.

@ Applications: Control theory, fluid dynamics, polynomial optimization, etc.
@ Interior-point solvers: SeDuMi, SDPA, SDPT3, MOSEK (suitable for small and
medium-sized problems); Modelling package: YALMIP, CVX, etc.
@ Large-scale cases: it is important to exploit the inherent structures
— Low rank;

— Algebraic symmetry;
— Chordal sparsity
@ Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Burer 2003;
Andersen et al., 2010.

o First-order methods: Madani et al., 2015; Sun, Andersen, and Vandenberghe,
2014.
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Aggregate sparsity pattern of matrices

1 0 O 2 1 0 1 0 O * 0
c=10 1 o, Ai=]1 1 0|, Aa=1]0 1 1| = |« *
0 0 1 0 0 2 0 1 2 0 *
Primal SDP Dual SDP
min (C, X)
subject to (A1, X) = by Ig?,azx (b,y)
(A2, X) = b2 subject to Y1 A1 +y2A2+Z =C,
X = 0. Z = 0.
* % 7 Patterns of feasible * % 0
X e |* * solutions Z € |x *x %
?7 % % 0 *
X € Si (£,7) ‘ Cone replacement ‘ 7 c Si (£,0)

Apply the clique decomposition on S? (£,7?) and S3 (£,0)

@ Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010; Madani et al., 2015; Sun,
Andersen, and Vandenberghe, 2014.
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Cone decomposition

of sparse SDPs

Primal SDP Dual SDP
max (b, y)
min (C, X) m
subject to (A;, X)=b;,i=1,...,m subject to Z%Ai +2Z=C,
i=1
X =
Cone replacement
X eSt(&,7) (Assuming an aggregate Z € S}(E,0)
sparsity pattern &)
U 4
max (b, y)
min (C, X) v, Z
s.t. <A7,,X>:bz,7,:1,,m

Ee, XEl =0,k=1,...,p|

m P
s.t. ZylAl + Z Egk ZIcEWC;c = C:
=1 k=1

| Zv = 0,k=1,...,p]

@ A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;

@ Our idea: consensus variables = decouple the coupling constraints;

UC SanDiego
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Decomposed SDPs for operator-splitting algorithms

Primal decomposed SDP Dual decomposed SDP
b
min (C, X) y,rgli}‘(/k by
X, X . »
s.t. <AZ,X>:bZ, i:l,...,m, s.t. ZAzyl—FZEngkEck :C’7
i=1 k=1
Xy =Ec, XE¢, ,k=1,...,p,
‘Zkka:(k k:17"'5p7
Xeeslel k=1,...p
kS Sy P Zes k=1,...p.

@ A set of slack consensus variables has been introduced;

@ The slack variables allow one to separate the conic and the affine constraints when using
operator-splitting algorithms = fast iterations:

projection on affine space
+ parallel projections on multiple small PSD cones
Sl =1
dL - g = cpooo y P

UC SanDiego
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ADMM for primal and dual decomposed SDPs

Equivalence between the primal and dual cases

@ ADMM steps in the dual form are scaled versions of those in the primal form.

duality
Primal SDP Dual SDP
Grone's Agler's
theorem theorem
duality
Decomposed Decomposed
Primal SDP Dual SDP
ADMM ADMM
Scaling

Algorithm 1 Algorithm 2

@ Extension to the homogeneous self-dual embedding exists.

Both algorithms only require conic projections onto small PSD cones. Complexity
depends on the largest maximal cliques, instead of the original dimension! J
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Comparison with other first-order algorithms

Key difference: How to decouple the coupling constraints

Table 1: Comparison of first-order algorithms for solving SDPs. “Chordal Sparsity”: whether the algorithm exploits chordal
sparsity; “SDP Type”: the types of SDP problems the algorithm considers; “Algorithm”: the underlying first-order algorithm;
“infeas./unbounded”: whether the algorithm can detect infeasible or unbounded cas

Solver”: whether the code is open-source.

Reference Chordal Sparsity SDP Type Algorithm Infeas./ Unbounded Solver
Wen et al. (2010) X (3.2) ADMM X X
Zhao et al. (2010) X (3.2) Augm. Lagrang. X SDPNAL
O’Donoghue et al. (2016) X (3.1)-(3.2) ADMM v SCS
Yurtsever et al. (2021) X (3.1)! SketchyCGAL X CGAL
Lu et al. (2007) v (3.1) Mirror-Prox X X
Lam et al. (2012) v OPF? Primal-dual X X
Dall’Anese et al. (2013) v OPF? ADMM X X
Sun et al. (2014) v Special® Gradient proj. X X
Sun & Vandenberghe (2015) v (3.1)-(3.2) Spingarn X X
Kalbat & Lavaei (2015) v Special* ADMM X X
Madani et al. (2017a) v General® ADMM X X
Zheng et al. (2020) v (3.1)-(3.2) ADMM v CDCS
Garstka et al. (2019) v Quad. SDP® ADMM v COSMO

Note: 1. It requires an explicit trace constraint on X; 2. Special SDPs from the optimal power flow (OPF) problem; 3. Special SDPs from
the matrix nearness problem; 4. Special SDPs with decoupled affine constraints; 5. General SDPs with inequality constraints; 6. A dual
SDP (3.2) with a quadratic objective function.
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CDCS

Cone decomposition conic solver
@ An open source MATLAB solver for sparse conic programs (Julia interface);
@ CDCS supports constraints on the following cones:
— Free variables
— non-negative orthant
— second-order cone
the positive semidefinite cone.

Input-output format: SeDuMi; Interface via YALMIP, SOSTOOLS.
Syntax: [x,y,z,info] = cdcs(At,b,c,K,opts);

Download from https://github.com/0xfordControl/CDCS )

Numerical comparison
@ SeDuMi (interior-point solver): default parameters, and low-accuracy solution 1073
@ SCS (first-order solver)
@ CDCS and SCS: stopping condition 1072 (max. iterations 2000)

@ All simulations were run on a PC with a 2.8 GHz Intel Core i7 CPU and 8GB of
RAM.
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https://github.com/OxfordControl/CDCS

Instances from Andersen, Dahl, Vandenberghe, 2010

Large-scale sparse SDPs

rs35 rs200 rs228 rs365 rs1555 rs1907
Original cone size, n 2003 3025 1919 4704 7479 5357
Affine constraints, m 200 200 200 200 200 200
Number of cliques, p 588 1635 783 1244 6912 611
Maximum clique size 418 102 92 322 187 285
Minimum clique size 5 4 3 6 2 7
. g“llh : .-: \
i 3 N
rs35 rs200 rs228
N~ —
N
rs365 - rs1555 rs1907
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Large-scale sparse SDPs: Numerical results

rs35 rs200
Time (s) 7 lter. Objective Time (s) # Iter. Objective
SeDuMi (high) 1391 17 25.33 4451 17 99.74
SeDuMi (low) 986 11 25.34 2223 8 99.73
SCS (direct) 2378 2000 25.08 9697 2000 81.87
CDCS-primal 370 379 25.27 159 577 99.61
CDCS-dual 272 245 25.53 103 353 99.72
CDCS-hsde 208 198 25.64 54 214 99.77
rs228 rs365
Time (s) # lter. Objective Time (s) # Iter. Objective
SeDuMi (high) 1655 21 64.71 Hokok Hkk Hkk
SeDuMi (low) 809 10 64.80 Hoxk kK Hhk
SCS (direct) 2338 12000 62.06 34497 2000 44.02
CDCS-primal 94 400 64.65 321 401 63.37
CDCS-dual 84 341 64.76 240 265 63.69
CDCS-hsde 38 165 65.02 151 175 63.75
rs1555 rs1907
_ Time (s) 7 lter. Objective Time (s) # lter. Objective
SeDuMi (hlgh) *kk koK k kK k * k% koK k kK k
SeDuMi (low) S *okk *okk Kook *okk *okk
SCS (direct) 139314 2000 34.20 50047 2000 45.89
CDCS-primal 1721 2000 61.22 330 349 62.87
CDCS-dual 317 317 69.54 271 252 63.30
CDCS-hsde 361 448 66.38 190 187 63.15

*%*. the problem could not be solved due to memory limitations.
: maximum number of iterations reached.
UCSzInﬂ]lego
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Large-scale sparse SDPs: Numerical results

Average CPU time per iteration

rs35 rs200 rs228 rs365 rs1555 rs1907

SCS (direct) 1.188 4.847 1.169 17.250 69.590 25.240
CDCS-primal 0.944 0.258 0.224 0.715 0.828 0.833
CDCS-dual 1.064 0.263 0.232 0.774 0.791 0.920
CDCS-hsde 1.005 0.222 0.212 0.733 0.665 0.891

@ 20x,21x,26x, and 75x faster than SCS, respectively, for problems rs200, rs365,
rs1907, and rs1555.

@ The computational benefit comes form the cone decomposition (projections onto
small PSD cones)

@ CDCS enables us to solve large, sparse conic problems with moderate accuracy that
are beyond the reach of standard interior-point and/or other first-order methods

The conic projections in all Algorithms require O(>°7_, |Cx|?) flops. Complexity is
dominated by the largest maximal clique! J
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Part 1l: Decomposition in PSD polynomial matrices

— sparsity-exploiting versions of the Hilbert-Artin, Reznick, Putinar, and
Putinar-Vasilescu Positivstellensatze.



Positive (semi)-definite polynomial matrices

@ Recall the simple example

3 1 0 3 1 0 0 0 O
A=1|1 1 1| =1 05 0|+1[0 05 1
0 1 3 0 0 O 0o 1 3

=0 =0 =0

@ How about positive (semi)-definite polynomial matrices?

p11(z)  pi2(z) 0
P(z) = |pa1(z) p22(®) pas(z)| =0, Vrek

®_@_@ 0 pa2(x) pss(x)

K=R"or,K={z€R"|gi(z) >0,i=1,...,m}

@ Point-wise: the decomposition still holds, but can it be represented by polynomials
or even better, by SOS matrices?

* % 0 * % 0 0 0 O
* ok x| =[x x Of+ [0 % x|, Ve e K
0 * = 0 0 O 0 * =

=0 =0 =0
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Naive extension does not work

Negative result
There exists a polynomial matrix P(z) with chordal sparsity G that is strictly positive
definite for all x € R™, but cannot be decomposed with positive semidefinite polynomial

matrices Sk(x).

@ Example:
E+1422 z+22 0 T 1 T T 1
P(z) = z + x? k + 222 x — 2?2 =z =z 1 = —x|+kls
0 z—22 k41422 1 —x

@ It is not difficult to show that

a(z) b(z) 0 0 o0 0
P(x)= |blz) c(z) O]+ [0 d(z) e(z)],
0 0 O 0 e(x) f(x)

fails to exist when 0 < k < 2.
@ P(x) is strictly positive definite if 0 < k < 2.
UCSan Diego Part Il - Decomposition in PSD polynomial matrices
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Sum-of-squares (SOS) matrices

@ Consider a symmetric matrix-valued polynomial
pu(z) pia(@) ... pie(z)
p21(®) pa2(x) ... por(x)
Pl@)=1] . : _ .| =0,vz eR".
ri(x)  pra(z) .. pre()

The problem of checking whether P(z) is positive semidefinite is NP-hard in
general (even with r = 1,d = 4).

@ SOS representation: We call P(z) is an SOS matrix if
p(z,y) =y P(z)y is SOS in [x; ]

A polynomial g(z) is SOS if it can be written as g(z) = > | fi(z)*.

@ SDP characterization (Parrilo et al.): P(x) is an SOS matrix if and only if there
exists @ > 0, such that

P(z) = (I ® va(2)) QI ® va()).

where @ is called the Gram matrix, v4(x) is the standard monomial basis.
UC SanDiego
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Hilbert—Artin theorem

Sparse matrix version of the Hilbert—Artin theorem

Let P(x) be an m X m positive semidefinite polynomial matrix whose sparsity graph is
chordal and has maximal cliques Ci,...,C:. There exist an SOS polynomial o(z) and
SOS matrices Sk(x) of size |Cx| X |Ck| such that

o(z)P(z) = > E¢, Sk(x)Ec, .

k=1

@ Example: o(z) = 1 + k 4 22 suffices for the previous example

E+1+422 x + z? 0

1+ 2)%2?
P(z) = 2 (A +2)7a”
(z) T+w TR
0 0
0 0 0
2 2 N2.2
+ 1o E* 4+ k+3kz* + (1 —x)°x v o2
14k + 22
0 z —x? E+1422

@ PSD polynomial matrices are equivalent to SOS matrices when n = 1.
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Reznick’s Positivstellensatz

Sparse matrix version of Reznick's Positivstellensatz

Let P(z) be an m X m homogeneous polynomial matrix whose sparsity graph is chordal
and has maximal cliques Ci,...,C;. If P is strictly positive definite on R™ \ {0}, there
exist an integer v > 0 and homogeneous SOS matrices Si(z) of size |C| X |Cx| such that

||| P(x) ZEcksk z)Ec, -
k=1

@ De-homogenization: If P is strictly positive definite on R™ and its highest-degree
homogeneous part 3, _o, Paz® is strictly positive definite on R™ \ {0}, then, we
have

(1+ [|=[I*) ZEckSk z)Ee,,.

where v > 0 is an integer and Si(z) are SOS matrices of size |Cx| X |Ck].
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Reznick’s Positivstellensatz

@ Non-trivial example: Let ¢(z) = 275 + z}x3 — 32323 + 1 be the Motzkin
polynomial, and

0.01(1 + 2% +25) + q(z)  —0.01z, 0
P(x) = —0.01z4 x84 a§ +1 —o
0 —x2 2+ 28+ 1

@ P(z) is is strictly positive definite on R?, but is not SOS (since
e(1+ 25 4+ 25) 4 g(x) is not SOS unless ¢ > 0.01006 [Laurent 2009, Example 6.25]).

@ Our theorem guarantees the following decomposition exists
(1 + l2|*)" P(x) = E¢, S (x)Ee, + E¢,Sa(z)Ec,.

@ |t suffices to use v = 1 and SOS matrices

_[a+lzl®g@) o] | 14zl [1+af+25 —an
Sl(x)’[ 0 o] T 100 — 10023 | °
— 2% + 2§ + 25 —x2

—T2 1+a:(f+a:g

Soa) = (14 [l2]?) [1

UC SanDiego
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Putinar’s Positivstellensatz
Consider P(z) > 0,Vz € K with K = {x € R" | g;(x) > 0,i =1,...,m}, and
o0(z) + g1(z)o1(2) + -+ + gg(z)og(z) = 1° — ||=||%.

Sparse matrix version of Putinar’'s Positivstellensatz

let P(z) be a polynomial matrix whose sparsity graph is chordal and has maximal cliques
Ci,...,Ce. If P is strictly positive definite on K (satisfying the Archimedean condition),
there exist SOS matrices S (x) of size |Cx| X |Ck| such that

ZECk (Sok +Zgg >Ec,C

@ Example: Consider K = {x ¢ R? : g1(z) :=1— 2% >0, go(x) := 2} — 23 > 0},

and
14222 — 2} 1+ x1x2 — X5 0
P(z):= |1 + 122 — s 3+ 422 — 3432 203wy — xr2 — 225
0 2a3xe — x1x2 — 205 1+ 23 + 2303 — i
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Putinar’s Positivstellensatz

Semeeaool

@ It guarantees the following decomposition holds for some SOS matrices S; ; ()

P(z) =) E¢, [Sox(2) + 91(2)S1,k(2) + g2(x) S0 ()] Ec,

@ Possible choices are

Soa(x) = Iz + [ﬁj Lo 2] Sia(z) = [mll] [z2 1]
Soa(z) = I + [_36;2] [on —a2] Sya(z) = [52] 2 =]
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Application to robust semidefinite optimization

Consider a robust SDP program

B*:= inf b\
AERL

‘
subject to  P(xz,\) := Py(x) — Z Pi(z)\i =0 VzeKk,
i=1

B, := inf Bb'A

’ A, Sj,k:
subject to o (x) Z E¢, (50 k() + Zga )Eck7

Sj,kez'zf;;‘ Vi=0,...,q, Vk=1,...,¢,

Convergence guarantees

@ K is compact and satisfies the Archimedean condition, under some technical
conditions, we fix o(x) = 1 and B}, — B™ from above as d — co.

@ K =R™: under some technical conditions, we fix o(z) = 1 + ||z||* and B}, — B*
from above as v — oo.
UC SanDiego
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Proof ideas: Hilbert—Artin theorem

Diagonalization with no fill-ins

If P(x) is an m x m symmetric polynomial matrix with chordal sparsity graph, there
exist an m X m permutation matrix 7', an invertible m x m lower-triangular polynomial
matrix L(z), and polynomials b(z), di(z), ..., dm(z) such that

b*(x) TP(z)T" = L(z)Diag (di (), ..., dm(z)) L(z)".

Moreover, L has no fill-in in the sense that L 4+ L' has the same sparsity as TP1".

B A N

Figure: Decomposition follows by combining columns.

Figure from Prof. Lieven Vandenberghe's talk.
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Proof ideas: Putinar’s theorem

Scherer and Ho, 2006

Let K be a compact semialgebraic set that satisfies the Archimedean condition. If an
m X m symmetric polynomial matrix P(z) is strictly positive definite on K, there exist
m x m SOS matrices So, ..., Sq such that

P(z) = +ZS

@ Weierstrass polynomial approximation theorem + the above version of Putinar's
Positivstellensatz

a(z) b(x)" 0
P(z) = |b(x) U(z) V(x)
0 V() W()
a(x) b(x)" 0 0 0 0
= |b(z) H(z)+2I 0|+ |0 U(x)—H(z)—2I V()
0 0 0 0 Viz)" W (z)
=0,Vzek =0,Vzek
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Experiment 1: global PMI

Define a set

Fo={ eR?: P,(z,\) =0 VzeR*.

Poripeh s '
)\1(131(132 )\21‘2;—21'3 A2fgl’34 9 5
)\2.’B2.’B3 )\2.1'3 ;- 2.1'1 )\12}'1333 4 -
P (x )\)_ )\11’1.’,173 )\2.1‘1 + T )\2501562
w b - bl
Aoz Noxh + 25

L Xiz3z2 Aozt + 2]

@ Define two hierarchies of subsets of F,,, indexed by a nonnegative integer v, as

Do = {NER”: ||z||* Pu(z, ) is SOS},
3w—1

Sw,y — {)\ c RQ . ||x||2VPw(.’E,>\) = Z E(-jrkSk(.T)ECk,Sk(.T) is SOS}
k=1

@ We always have
Sw,l/ g Dw,u g -Fw
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Experiment 1: global PMI

V:14 = 11:24 =
v=2 v=3
3 3
2 2
1 1
AL AL
-1 0 1 -1 0 1
(@) (b)

Figure: Inner approximations of the set F, obtained with SOS optimization. (a) Sets
D, obtained using the standard SOS constraint; (b) Sets Sz, obtained using the
sparse SOS constraint. The numerical results suggest Sz2,3 = D22 = Fo.
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Experiment 1: global PMI

We consider
B* = iI)l\f )\2 — 10)\1

subject to A € Fy,

Table: Upper bounds Bg,,, on the optimal value B* and CPU time (seconds) by MOSEK

Standard SOS Sparse SOS

v=1 v=2 v=3 v=2 v=3 v=4
w t Bd,,, t Bd,u t Bd,u t Bd,u t Bd,u t Bd,,,
5 12 868 25 -936 69 -936 0.58 -897 0.72 -9.36 1.29 -9.36
10 407 -833 886 -9.09 2910 -9.09 1.65 -8.72 0.82 -9.09 2.08 -9.09
15 2090 -826 oomM OOM OOM OOM 276 -8.68 1.13 -9.04 2.79 -9.04
20 oOM OOM OOM OOM OOM OOM 324 -8.66 154 -9.02 470 -9.02
25 oOM OOM OOM OOM OOM OOM 285 -8.66 194 -9.02 459 -9.02
30 ooM OOM OOM OOM OOM OOM 238 -8.65 240 -9.01 550 -9.01
35 ooM OOM OOM OOM OOM OOM 266 -8.65 3.25 -9.01 6.17 -9.01
40 ooM OOM OOM OOM oOOM oOoM 3.07 -8.65 3.14 -9.01 8.48 -9.01
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Experiment 2: Local PMI

By, .4 i= max / s24(z) dx
K

s2q(x)

subject to  P(x) — s2qa(z)] =0 Vz e K.
@ Set approximation: P = {z € R" | P(z) = 0} C K
@ the unit disk: X = {r € R?: 1 — 2} — 23 > 0} and
P(x) = (1 — 2} —23) I + (21 + 2122 — 23)A + (20722 — 2120 — 223) B,

A, B with chordal sparsity graphs, zero diagonal elements, and other entries from
the uniform distribution on (0, 1).

(a) m =20 (b) m=25 (c) m =30 (d) m =35 (e) m =40
Figure: Chordal sparsity patterns for the polynomial matrix P(z).
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Experiment 2: Local PMI

m=15d=2 m=20,d=2 m=25d=2 m=230,d= m=235d=2 m=40,d=2

T2
(=}

m=15,d=3 m=30,d=3 m=235d=3

m=15d=4 m=20,d=4 m=25d=4 m=30,d=4 m=35d=4 m=40,d=4

Figure: The real boundary of P: a solid black line. Standard SOS: blue solid boundary
and blue shading; the sparsity-exploiting SOS: red solid boundary, no shading.

UCSan Diego Part Il - Decomposition in PSD polynomial matrices 41/47

JACOBS SCHOOL OF ENGINEERING



Experiment 2: Local PMI

Table: Lower bounds and CPU time (seconds, by Mosek) using the standard SOS and
the sparsity-exploiting SOS. The asymptotic value B;, ., was found by integrating the
minimum eigenvalue function of P over the unit disk .

Standard SOS Sparse SOS
d=2 d=3 d=14 d=2 d=3 d=14
m 1 d b mad ¢ d ol t ot md Brco

15 3.7 -2.07 248 -150 95.1 -1.36 0.95 -2.10 0.97 -1.52 1.94 —1.?;7 -1.15
20 13.3 -1.51 96.5 -1.03 375 -0.92 0.69 -1.58 1.06 -1.07 2.12 -0.95 -0.75
25 38.1 -2.47 326 -1.85 1308-1.64 0.95-250 1.28 -1.87 3.04 -1.66 -1.41
30 136 -2.13 963 -1.54 4031-1.41 0.75-221 135 -158 3.14 -1.43 -1.21
35 219 -2.46 2210-1.82 oom ooM 0.77 -2.51 151 -1.84 3.01 -1.65 -1.40
40 550 -2.22 5465-1.59 oom oom 1.03 -2.24 2.07 -1.59 5.62 -1.47 -1.25
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Experiment 2: Local PMI

Table: Lower bounds B73°; on the asymptotic value Bj5 o = —1.153 for m = 15,
calculated using the sparsity-exploiting SOS with v = 0 and the standard SOS. The CPU
time (¢, seconds) to compute these bounds using MOSEK is also reported.

| d 6 8 10 12 14
sos 1957 —1.219 -1.199 -1.195 —1.191
15,d
Sparse SOS ‘ ¢ 13.3 851  309.3 8183 2149
s 1252 —1.216 0OM  OOM  OOM
15,d
Standard SOS ‘ . 1133 8250  oOM OOM OOM
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Conclusion



Take-home message

@ Message 1: Chordal decomposition: leading to sparse PSD cone decompositions

@ Message 2: Sparse SDPs can be solved ’fast’

min (¢, )

st. Az =0b, ,
(a0 =Hez| k=1,....p, o(x)P(x) = kz_jl EJ, Si(z)Ee, .
zp € Sk, k=1,...,p, B

CDCS: an open-source first-order conic solver;

Download from https://github.com/0xfordControl/CDCS )

@ Message 3: Sparse robust SDPs can be solved 'fast’: the Hilbert-Artin, Reznick,
Putinar, and Putinar-Vasilescu Positivstellensatze.
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https://github.com/OxfordControl/CDCS

Future work

Decomposition and completion of polynomial matrices
Moment interpretation of the PSD polynomial decomposition results
Combining matrix decomposition with other structures

Blending application-driven modeling with optimization

Efficient software for modern computers

[Er—————
Annual Reviews in Control
ot bomapage: i s o ot el
Vision article

L)
Chordal and f dth ===
polynomi

ARTICLE INFO ABSTRACT

(37 pages with 21 figures)
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Thank you for your attention!

Q&A

@ Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal
decomposition in operator-splitting methods for sparse semidefinite programs. Mathematical
Programming, 1-44.

@ Zheng, Y., Fantuzzi, G., & Papachristodoulou, A. (2021). Chordal and factor-width decompositions for
scalable semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.

@ Zheng, Y., & Fantuzzi, G. (2023). Sum-of-squares chordal decomposition of polynomial matrix
inequalities. Mathematical Programming, 197(1), 71-108.
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https://arxiv.org/abs/2007.11410
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