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Introduction: Chordal graphs and Matrix
decomposition

⇒



Matrix decomposition and chordal graphs

Matrix decomposition:

A simple example

A =

3 1 0
1 1 1
0 1 3


︸ ︷︷ ︸

⪰0

=

3 1 0
1 0.5 0
0 0 0


︸ ︷︷ ︸

⪰0

+

0 0 0
0 0.5 1
0 1 3


︸ ︷︷ ︸

⪰0

This is true for any PSD matrix with such pattern, i.e., sparse cone decomposition∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

⪰0

=

∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

⪰0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

⪰0

where ∗ denotes a real scalar number (or block matrix).

Benefits:

Reduce computational complexity, and thus improve efficiency! (3× 3 → 2× 2)

Introduction: Chordal graphs and Matrix decomposition 5/47



Matrix decomposition and chordal graphs

Matrix decomposition:

Many other patterns admit similar decompositions, e.g.

(a) (b) (c)

(d) (e) (f)

They can be commonly characterized by chordal graphs.
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Chordal graphs

Chordal graphs: An undirected graph G(V, E) is called chordal if every cycle of length
greater than three has a chord.

Notation: (Vandenberghe & Andersen, 2014)

Chordal extension: Any non-chordal graph can be chordal extended;

Maximal clique: A clique is a set of nodes that induces a complete subgraph;

Clique decomposition: A chordal graph G(V, E) can be decomposed into a set of
maximal cliques {C1, C2, . . . , Ct}.
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Clique decomposition

Chordal graphs: An undirected graph G(V, E) is called chordal if every cycle of length
greater than three has a chord.

Clique decomposition:

⇒

Introduction: Chordal graphs and Matrix decomposition 8/47



Sparse matrices

Sparse positive semidefinite (PSD) matrices

Sn(E , 0) = {X ∈ Sn | Xij = Xji = 0, ∀(i, j) /∈ E},
Sn
+(E , 0) = {X ∈ Sn(E , 0) | X ⪰ 0}.

Positive semidefinite completable matrices

Sn(E , ?) = {X ∈ Sn | Xij = Xji, are given if (i, j) ∈ E},
Sn
+(E , ?) = {X ∈ Sn(E , ?) | ∃M ⪰ 0,Mij = Xij , ∀(i, j)∈E}.

Sn
+(E , 0) and Sn

+(E , ?) are dual to each other.
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Two matrix decomposition theorems

Clique decomposition for PSD completable matrices (Grone, et al., 1984)

Let G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Cp}. Then,

X ∈ Sn
+(E , ?) ⇔ ECkXET

Ck
∈ S|Ck|

+ , k = 1, . . . , p.

1 2 3X11 X12 ?
X21 X22 X23

? X32 X33

 ∈ S3
+(E , ?)

⇕[
X11 X12

X21 X22

]
⪰ 0[

X22 X23

X32 X33

]
⪰ 0
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Two matrix decomposition theorems

Clique decomposition for PSD matrices (Agler, Helton, McCullough, & Rodman, 1988;

Griewank and Toint, 1984)

Let G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Cp}. Then,

Z ∈ Sn
+(E , 0) ⇔ Z =

p∑
k=1

ET
Ck
ZkECk , Zk ∈ S|Ck|

+

Sparse Cone Decomposition

Sn+(E, ?) Sn+(E, 0)

Grone’s theorem Agler’s theorem

duality

duality

Introduction: Chordal graphs and Matrix decomposition 11/47



A growing number of applications

Control, machine learning, relaxation of QCQP, fluid dynamics, and beyond

Zheng, Fantuzzi, & Papachristodoulou, (2021). Chordal and factor-width decompositions for scalable

semidefinite and polynomial optimization. Annual Reviews in Control, 52, 243-279.
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This talk

Two survey
papers

(37 pages with 21 figures) temp

Part I: Decomposition in sparse semidefinite optimization

– Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., & Wynn, A. (2020). Chordal

decomposition in operator-splitting methods for sparse semidefinite programs. Mathematical

Programming, 180(1), 489-532.

Part II: Decomposition in polynomial matrix inequalities (PMIs)

– Zheng, Y., & Fantuzzi, G. (2023). Sum-of-squares chordal decomposition of polynomial matrix

inequalities. Mathematical Programming, 197(1), 71-108.
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Part I: Decomposition in sparse semidefinite

optimization



Semidefinite programs (SDPs)

min ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

X ⪰ 0.

max
y, Z

⟨b, y⟩

subject to Z +

m∑
i=1

Ai yi = C,

Z ⪰ 0.

where X ⪰ 0 means X is positive semidefinite.

Applications: Control theory, fluid dynamics, polynomial optimization, etc.

Interior-point solvers: SeDuMi, SDPA, SDPT3, MOSEK (suitable for small and
medium-sized problems); Modelling package: YALMIP, CVX, etc.

Large-scale cases: it is important to exploit the inherent structures

– Low rank;

– Algebraic symmetry;

– Chordal sparsity
Second-order methods: Fukuda et al., 2001; Nakata et al., 2003; Burer 2003;
Andersen et al., 2010.
First-order methods: Madani et al., 2015; Sun, Andersen, and Vandenberghe,
2014.
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Aggregate sparsity pattern of matrices

C =

1 0 0
0 1 0
0 0 1

 , A1 =

2 1 0
1 1 0
0 0 2

 , A2 =

1 0 0
0 1 1
0 1 2

 =⇒

∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


Primal SDP Dual SDP

min ⟨C,X⟩
subject to ⟨A1, X⟩ = b1

⟨A2, X⟩ = b2

X ⪰ 0.

max
y, Z

⟨b, y⟩

subject to y1A1 + y2A2 + Z = C,

Z ⪰ 0.

X ∈

∗ ∗ ?
∗ ∗ ∗
? ∗ ∗

 Patterns of feasible

solutions Z ∈

∗ ∗ 0
∗ ∗ ∗
0 ∗ ∗


X ∈ S3

+(E , ?) Cone replacement Z ∈ S3
+(E , 0)

Apply the clique decomposition on S3
+(E , ?) and S3

+(E , 0)
Fukuda et al., 2001; Nakata et al., 2003; Andersen et al., 2010; Madani et al., 2015; Sun,
Andersen, and Vandenberghe, 2014.
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Cone decomposition of sparse SDPs

Primal SDP Dual SDP

min ⟨C,X⟩
subject to ⟨Ai, X⟩ = bi, i = 1, . . . ,m

X ⪰ 0 .

max
y, Z

⟨b, y⟩

subject to
m∑
i=1

yiAi + Z = C,

Z ⪰ 0 .

X ∈ Sn
+(E , ?)

Cone replacement

(Assuming an aggregate
sparsity pattern E)

Z ∈ Sn
+(E , 0)

⇓ ⇓

min ⟨C,X⟩
s.t. ⟨Ai, X⟩ = bi, i = 1, . . . ,m

ECkXET
Ck

⪰ 0, k = 1, . . . , p .

max
y, Z

⟨b, y⟩

s.t.
m∑
i=1

yiAi +

p∑
k=1

ET
Ck
ZkECk = C,

Zk ⪰ 0, k = 1, . . . , p

A big sparse PSD cone is equivalently replaced by a set of coupled small PSD cones;

Our idea: consensus variables ⇒ decouple the coupling constraints;
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Decomposed SDPs for operator-splitting algorithms

Primal decomposed SDP Dual decomposed SDP

min
X,Xk

⟨C,X⟩

s.t. ⟨Ai, X⟩ = bi, i = 1, . . . ,m,

Xk = ECkXET
Ck
, k = 1, . . . , p,

Xk ∈ S|Ck|
+ , k = 1, . . . , p.

max
y,Zk,Vk

⟨b, y⟩

s.t.
m∑
i=1

Ai yi +

p∑
k=1

ET
Ck
VkECk = C,

Zk − Vk = 0, k = 1, . . . , p,

Zk ∈ S|Ck|
+ , k = 1, . . . , p.

A set of slack consensus variables has been introduced;

The slack variables allow one to separate the conic and the affine constraints when using
operator-splitting algorithms ⇒ fast iterations:

projection on affine space
+ parallel projections on multiple small PSD cones

S|Ck|
+ , k = 1, . . . , p
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ADMM for primal and dual decomposed SDPs

Equivalence between the primal and dual cases

ADMM steps in the dual form are scaled versions of those in the primal form.

Primal SDP Dual SDP

Decomposed
Primal SDP

Decomposed
Dual SDP

Algorithm 1 Algorithm 2

duality

duality

Scaling

Grone’s
theorem

Agler’s
theorem

ADMM ADMM

Extension to the homogeneous self-dual embedding exists.

Both algorithms only require conic projections onto small PSD cones. Complexity
depends on the largest maximal cliques, instead of the original dimension!
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Comparison with other first-order algorithms

Key difference: How to decouple the coupling constraints
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CDCS

Cone decomposition conic solver

An open source MATLAB solver for sparse conic programs (Julia interface);

CDCS supports constraints on the following cones:

– Free variables
– non-negative orthant
– second-order cone
– the positive semidefinite cone.

Input-output format: SeDuMi; Interface via YALMIP, SOSTOOLS.

Syntax: [x,y,z,info] = cdcs(At,b,c,K,opts);

Download from https://github.com/OxfordControl/CDCS

Numerical comparison

SeDuMi (interior-point solver): default parameters, and low-accuracy solution 10−3

SCS (first-order solver)

CDCS and SCS: stopping condition 10−3 (max. iterations 2000)

All simulations were run on a PC with a 2.8 GHz Intel Core i7 CPU and 8GB of
RAM.
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Large-scale sparse SDPs

Instances from Andersen, Dahl, Vandenberghe, 2010

rs35 rs200 rs228 rs365 rs1555 rs1907

Original cone size, n 2003 3025 1919 4704 7479 5357
Affine constraints, m 200 200 200 200 200 200
Number of cliques, p 588 1635 783 1244 6912 611
Maximum clique size 418 102 92 322 187 285
Minimum clique size 5 4 3 6 2 7

rs35 rs200 rs228

rs365 rs1555 rs1907
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Large-scale sparse SDPs: Numerical results

rs35 rs200

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 1 391 17 25.33 4 451 17 99.74
SeDuMi (low) 986 11 25.34 2 223 8 99.73

SCS (direct) 2 378 †2 000 25.08 9 697 †2 000 81.87
CDCS-primal 370 379 25.27 159 577 99.61
CDCS-dual 272 245 25.53 103 353 99.72
CDCS-hsde 208 198 25.64 54 214 99.77

rs228 rs365

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) 1 655 21 64.71 *** *** ***
SeDuMi (low) 809 10 64.80 *** *** ***

SCS (direct) 2 338 †2 000 62.06 34 497 †2 000 44.02
CDCS-primal 94 400 64.65 321 401 63.37
CDCS-dual 84 341 64.76 240 265 63.69
CDCS-hsde 38 165 65.02 151 175 63.75

rs1555 rs1907

Time (s) # Iter. Objective Time (s) # Iter. Objective

SeDuMi (high) *** *** *** *** *** ***
SeDuMi (low) *** *** *** *** *** ***

SCS (direct) 139 314 †2 000 34.20 50 047 †2 000 45.89

CDCS-primal 1 721 †2 000 61.22 330 349 62.87
CDCS-dual 317 317 69.54 271 252 63.30
CDCS-hsde 361 448 66.38 190 187 63.15

***: the problem could not be solved due to memory limitations.
†: maximum number of iterations reached.
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Large-scale sparse SDPs: Numerical results

Average CPU time per iteration

rs35 rs200 rs228 rs365 rs1555 rs1907

SCS (direct) 1.188 4.847 1.169 17.250 69.590 25.240
CDCS-primal 0.944 0.258 0.224 0.715 0.828 0.833
CDCS-dual 1.064 0.263 0.232 0.774 0.791 0.920
CDCS-hsde 1.005 0.222 0.212 0.733 0.665 0.891

20×, 21×, 26×, and 75× faster than SCS, respectively, for problems rs200, rs365,
rs1907, and rs1555.

The computational benefit comes form the cone decomposition (projections onto
small PSD cones)

CDCS enables us to solve large, sparse conic problems with moderate accuracy that
are beyond the reach of standard interior-point and/or other first-order methods

The conic projections in all Algorithms require O(
∑p

k=1 |Ck|3) flops. Complexity is
dominated by the largest maximal clique!
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Part II: Decomposition in PSD polynomial matrices

— sparsity-exploiting versions of the Hilbert-Artin, Reznick, Putinar, and

Putinar-Vasilescu Positivstellensätze.



Positive (semi)-definite polynomial matrices

Recall the simple example

A =

3 1 0
1 1 1
0 1 3


︸ ︷︷ ︸

⪰0

=

3 1 0
1 0.5 0
0 0 0


︸ ︷︷ ︸

⪰0

+

0 0 0
0 0.5 1
0 1 3


︸ ︷︷ ︸

⪰0

How about positive (semi)-definite polynomial matrices?

1 2 3

P (x) =

p11(x) p12(x) 0
p21(x) p22(x) p23(x)

0 p32(x) p33(x)

 ⪰ 0, ∀x ∈ K

K = Rn, or,K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . ,m}

Point-wise: the decomposition still holds, but can it be represented by polynomials
or even better, by SOS matrices?∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

⪰0

=

∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

⪰0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

⪰0

, ∀x ∈ K
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Naive extension does not work

Negative result

There exists a polynomial matrix P (x) with chordal sparsity G that is strictly positive
definite for all x ∈ Rn, but cannot be decomposed with positive semidefinite polynomial
matrices Sk(x).

Example:

P (x) =

k + 1 + x2 x+ x2 0
x+ x2 k + 2x2 x− x2

0 x− x2 k + 1 + x2

 =

x 1
x x
1 −x

[
x x 1
1 x −x

]
+ kI3

It is not difficult to show that

P (x) =

a(x) b(x) 0
b(x) c(x) 0
0 0 0


︸ ︷︷ ︸

⪰0

+

0 0 0
0 d(x) e(x)
0 e(x) f(x)


︸ ︷︷ ︸

⪰0

,

fails to exist when 0 ≤ k < 2 .

P (x) is strictly positive definite if 0 < k < 2.
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Sum-of-squares (SOS) matrices

Consider a symmetric matrix-valued polynomial

P (x) =


p11(x) p12(x) . . . p1r(x)
p21(x) p22(x) . . . p2r(x)

...
...

. . .
...

pr1(x) pr2(x) . . . prr(x)

 ⪰ 0,∀x ∈ Rn.

The problem of checking whether P (x) is positive semidefinite is NP-hard in
general (even with r = 1, d = 4).

SOS representation: We call P (x) is an SOS matrix if

p(x, y) = yTP (x)y is SOS in [x; y]

A polynomial q(x) is SOS if it can be written as q(x) =
∑m

i=1 fi(x)
2.

SDP characterization (Parrilo et al.): P (x) is an SOS matrix if and only if there
exists Q ⪰ 0, such that

P (x) = (Ir ⊗ vd(x))
TQ(Ir ⊗ vd(x)).

where Q is called the Gram matrix, vd(x) is the standard monomial basis.
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Hilbert–Artin theorem

Sparse matrix version of the Hilbert–Artin theorem

Let P (x) be an m×m positive semidefinite polynomial matrix whose sparsity graph is
chordal and has maximal cliques C1, . . . , Ct. There exist an SOS polynomial σ(x) and
SOS matrices Sk(x) of size |Ck| × |Ck| such that

σ(x)P (x) =

t∑
k=1

ET
Ck
Sk(x)ECk .

Example: σ(x) = 1 + k + x2 suffices for the previous example

P (x) =


k + 1 + x2 x+ x2 0

x+ x2 (1 + x)2x2

1 + k + x2
0

0 0 0



+


0 0 0

0
k2 + k + 3kx2 + (1− x)2x2

1 + k + x2
x− x2

0 x− x2 k + 1 + x2


PSD polynomial matrices are equivalent to SOS matrices when n = 1.
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Reznick’s Positivstellensatz

Sparse matrix version of Reznick’s Positivstellensatz

Let P (x) be an m×m homogeneous polynomial matrix whose sparsity graph is chordal
and has maximal cliques C1, . . . , Ct. If P is strictly positive definite on Rn \ {0}, there
exist an integer ν ≥ 0 and homogeneous SOS matrices Sk(x) of size |Ck| × |Ck| such that

∥x∥2νP (x) =

t∑
k=1

ET
Ck
Sk(x)ECk .

De-homogenization: If P is strictly positive definite on Rn and its highest-degree
homogeneous part

∑
|α|=2d Pαx

α is strictly positive definite on Rn \ {0}, then, we
have

(1 + ∥x∥2)νP (x) =
t∑

k=1

ET
Ck
Sk(x)ECk .

where ν ≥ 0 is an integer and Sk(x) are SOS matrices of size |Ck| × |Ck|.
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Reznick’s Positivstellensatz

Non-trivial example: Let q(x) = x2
1x

4
2 + x4

1x
2
2 − 3x2

1x
2
2 + 1 be the Motzkin

polynomial, and

P (x) =

0.01(1 + x6
1 + x6

2) + q(x) −0.01x1 0
−0.01x1 x6

1 + x6
2 + 1 −x2

0 −x2 x6
1 + x6

2 + 1

 .

P (x) is is strictly positive definite on R2, but is not SOS (since
ε(1+x6

1 +x6
2)+ q(x) is not SOS unless ε ≳ 0.01006 [Laurent 2009, Example 6.25]).

Our theorem guarantees the following decomposition exists

(1 + ∥x∥2)νP (x) = ET
C1
S1(x)EC1 + ET

C2
S2(x)EC2 .

It suffices to use ν = 1 and SOS matrices

S1(x) =

[
(1 + ∥x∥2)q(x) 0

0 0

]
+

1 + ∥x∥2

100

[
1 + x6

1 + x6
2 −x1

−x1 100x2
1

]
,

S2(x) = (1 + ∥x∥2)
[
1− x2

1 + x6
1 + x6

2 −x2

−x2 1 + x6
1 + x6

2

]
.
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Putinar’s Positivstellensatz

Consider P (x) ≻ 0, ∀x ∈ K with K = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . ,m}, and

σ0(x) + g1(x)σ1(x) + · · ·+ gq(x)σq(x) = r2 − ∥x∥2.

Sparse matrix version of Putinar’s Positivstellensatz

let P (x) be a polynomial matrix whose sparsity graph is chordal and has maximal cliques
C1, . . . , Ct. If P is strictly positive definite on K (satisfying the Archimedean condition),
there exist SOS matrices Sj,k(x) of size |Ck| × |Ck| such that

P (x) =
t∑

k=1

ET
Ck

(
S0,k(x) +

q∑
j=1

gj(x)Sj,k(x)

)
ECk .

Example: Consider K = {x ∈ R2 : g1(x) := 1− x2
1 ≥ 0, g2(x) := x2

1 − x2
2 ≥ 0},

and

P (x) :=

 1 + 2x2
1 − x4

1 x1 + x1x2 − x3
1 0

x1 + x1x2 − x3
1 3 + 4x2

1 − 3x2
2 2x2

1x2 − x1x2 − 2x3
2

0 2x2
1x2 − x1x2 − 2x3

2 1 + x2
2 + x2

1x
2
2 − x4

2


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Putinar’s Positivstellensatz

−2 −1 0 1 2
−2

−1

0

1

2

P � 0

P � 0

x1

x
2

It guarantees the following decomposition holds for some SOS matrices Si,j(x)

P (x) =

2∑
k=1

ET
Ck

[S0,k(x) + g1(x)S1,k(x) + g2(x)S2,k(x)]ECk

Possible choices are

S0,1(x) = I2 +

[
x1

x2

] [
x1 x2

]
S1,1(x) =

[
x1

1

] [
x1 1

]
S0,2(x) = I2 +

[
x1

−x2

] [
x1 −x2

]
S2,2(x) =

[
2
x2

] [
2 x2

]
.
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Application to robust semidefinite optimization

Consider a robust SDP program

B∗ := inf
λ∈Rℓ

bTλ

subject to P (x, λ) := P0(x)−
ℓ∑

i=1

Pi(x)λi ⪰ 0 ∀x ∈ K,

B∗
d,ν := inf

λ, Sj,k

bTλ

subject to σ(x)νP (x, λ) =
t∑

k=1

ET
Ck

(
S0,k(x) +

m∑
j=1

gj(x)Sj,k(x)

)
ECk ,

Sj,k ∈ Σ
|Ck|
2dj

∀j = 0, . . . , q, ∀k = 1, . . . , t,

Convergence guarantees

K is compact and satisfies the Archimedean condition, under some technical
conditions, we fix σ(x) = 1 and B∗

d,0 → B∗ from above as d → ∞.

K ≡ Rn: under some technical conditions, we fix σ(x) = 1 + ∥x∥2 and B∗
d,ν → B∗

from above as ν → ∞.
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Proof ideas: Hilbert–Artin theorem

Diagonalization with no fill-ins

If P (x) is an m×m symmetric polynomial matrix with chordal sparsity graph, there
exist an m×m permutation matrix T , an invertible m×m lower-triangular polynomial
matrix L(x), and polynomials b(x), d1(x), . . . , dm(x) such that

b4(x)TP (x)TT = L(x)Diag (d1(x), . . . , dm(x))L(x)T.

Moreover, L has no fill-in in the sense that L+ LT has the same sparsity as TPTT.

Figure: Decomposition follows by combining columns.

Figure from Prof. Lieven Vandenberghe’s talk.
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Proof ideas: Putinar’s theorem

Scherer and Ho, 2006
Let K be a compact semialgebraic set that satisfies the Archimedean condition. If an
m×m symmetric polynomial matrix P (x) is strictly positive definite on K, there exist
m×m SOS matrices S0, . . . , Sq such that

P (x) = S0(x) +

q∑
i=1

Si(x)gi(x).

Weierstrass polynomial approximation theorem + the above version of Putinar’s
Positivstellensatz

P (x) =

a(x) b(x)T 0
b(x) U(x) V (x)
0 V (x) W (x)


=

a(x) b(x)T 0
b(x) H(x) + 2εI 0
0 0 0


︸ ︷︷ ︸

⪰0,∀x∈K

+

0 0 0
0 U(x)−H(x)− 2εI V (x)

0 V (x)T W (x)


︸ ︷︷ ︸

⪰0,∀x∈K

.
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Experiment 1: global PMI

Define a set
Fω = {λ ∈ R2 : Pω(x, λ) ⪰ 0 ∀x ∈ R3}.

Pω(x, λ)=



λ2x
4
1 + x4

2 λ1x
2
1x

2
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. . .
. . .

. . . λix
2
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λix
2
2x

2
3 λ2x

4
3 + x4

1


,

Define two hierarchies of subsets of Fω, indexed by a nonnegative integer ν, as

Dω,ν :=
{
λ ∈ R2 : ∥x∥2νPω(x, λ) is SOS

}
,

Sω,ν :=

{
λ ∈ R2 : ∥x∥2νPω(x, λ) =

3ω−1∑
k=1

ET
Ck
Sk(x)ECk , Sk(x) is SOS

}
.

We always have
Sω,ν ⊆ Dω,ν ⊆ Fω
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Experiment 1: global PMI

(a) (b)

Figure: Inner approximations of the set F2 obtained with SOS optimization. (a) Sets
D2,ν obtained using the standard SOS constraint; (b) Sets S2,ν obtained using the
sparse SOS constraint. The numerical results suggest S2,3 = D2,2 = F2.
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Experiment 1: global PMI

We consider
B∗ := inf

λ
λ2 − 10λ1

subject to λ ∈ Fω

Table: Upper bounds Bd,ν on the optimal value B∗ and CPU time (seconds) by MOSEK

Standard SOS Sparse SOS

ν = 1 ν = 2 ν = 3 ν = 2 ν = 3 ν = 4

ω t Bd,ν t Bd,ν t Bd,ν t Bd,ν t Bd,ν t Bd,ν

5 12 -8.68 25 -9.36 69 -9.36 0.58 -8.97 0.72 -9.36 1.29 -9.36

10 407 -8.33 886 -9.09 2910 -9.09 1.65 -8.72 0.82 -9.09 2.08 -9.09

15 2090 -8.26 oom oom oom oom 2.76 -8.68 1.13 -9.04 2.79 -9.04

20 oom oom oom oom oom oom 3.24 -8.66 1.54 -9.02 4.70 -9.02

25 oom oom oom oom oom oom 2.85 -8.66 1.94 -9.02 4.59 -9.02

30 oom oom oom oom oom oom 2.38 -8.65 2.40 -9.01 5.50 -9.01

35 oom oom oom oom oom oom 2.66 -8.65 3.25 -9.01 6.17 -9.01

40 oom oom oom oom oom oom 3.07 -8.65 3.14 -9.01 8.48 -9.01
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Experiment 2: Local PMI

B∗
m,d := max

s2d(x)

∫
K
s2d(x) dx

subject to P (x)− s2d(x)I ⪰ 0 ∀x ∈ K.

Set approximation: P = {x ∈ Rn | P (x) ⪰ 0} ⊂ K
the unit disk: K = {x ∈ R2 : 1− x2

1 − x2
2 ≥ 0} and

P (x) = (1− x2
1 − x2

2)Im + (x1 + x1x2 − x3
1)A+ (2x2

1x2 − x1x2 − 2x3
2)B,

A,B with chordal sparsity graphs, zero diagonal elements, and other entries from
the uniform distribution on (0, 1).

(a) m = 20 (b) m = 25 (c) m = 30 (d) m = 35 (e) m = 40

Figure: Chordal sparsity patterns for the polynomial matrix P (x).
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Experiment 2: Local PMI

Figure: The real boundary of P: a solid black line. Standard SOS: blue solid boundary
and blue shading; the sparsity-exploiting SOS: red solid boundary, no shading.
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Experiment 2: Local PMI

Table: Lower bounds and CPU time (seconds, by Mosek) using the standard SOS and
the sparsity-exploiting SOS. The asymptotic value B∗

m,∞ was found by integrating the
minimum eigenvalue function of P over the unit disk K.

Standard SOS Sparse SOS

d = 2 d = 3 d = 4 d = 2 d = 3 d = 4

m t Bsos
m,d t Bsos

m,d t Bsos
m,d t Bsos

m,d t Bsos
m,d t Bsos

m,d B∗
m,∞

15 3.7 -2.07 24.8 -1.50 95.1 -1.36 0.95 -2.10 0.97 -1.52 1.94 -1.37 -1.15

20 13.3 -1.51 96.5 -1.03 375 -0.92 0.69 -1.58 1.06 -1.07 2.12 -0.95 -0.75

25 38.1 -2.47 326 -1.85 1308 -1.64 0.95 -2.50 1.28 -1.87 3.04 -1.66 -1.41

30 136 -2.13 963 -1.54 4031 -1.41 0.75 -2.21 1.35 -1.58 3.14 -1.43 -1.21

35 219 -2.46 2210 -1.82 oom oom 0.77 -2.51 1.51 -1.84 3.01 -1.65 -1.40

40 550 -2.22 5465 -1.59 oom oom 1.03 -2.24 2.07 -1.59 5.62 -1.47 -1.25
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Experiment 2: Local PMI

Table: Lower bounds Bsos
15,d on the asymptotic value B∗

15,∞ = −1.153 for m = 15,
calculated using the sparsity-exploiting SOS with ν = 0 and the standard SOS. The CPU
time (t, seconds) to compute these bounds using MOSEK is also reported.

d 6 8 10 12 14

Sparse SOS
Bsos

15,d −1.257 −1.219 −1.199 −1.195 −1.191
t 13.3 85.1 309.3 818.3 2149

Standard SOS
Bsos

15,d −1.252 −1.216 oom oom oom
t 1133 8250 oom oom oom
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Conclusion



Take-home message

Message 1: Chordal decomposition: leading to sparse PSD cone decompositions

⇒

Message 2: Sparse SDPs can be solved ’fast’

min
x,xk

⟨c, x⟩

s.t. Ax = b,

xk = Hkx , k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p,

σ(x)P (x) =
t∑

k=1

ET
Ck

Sk(x)ECk
.

CDCS: an open-source first-order conic solver;

Download from https://github.com/OxfordControl/CDCS

Message 3: Sparse robust SDPs can be solved ’fast’: the Hilbert-Artin, Reznick,
Putinar, and Putinar-Vasilescu Positivstellensätze.
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Future work

Decomposition and completion of polynomial matrices

Moment interpretation of the PSD polynomial decomposition results

Combining matrix decomposition with other structures

Blending application-driven modeling with optimization

Efficient software for modern computers

(37 pages with 21 figures) temp
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Thank you for your attention!
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