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Introduction: Stability and non-convexity



Stability and non-convexity: static case

Main question: How to represent the set of stabilizing controllers?

Consider the (centralized) static case with a static state feedback controller u = Kx

ẋ = Ax+Bu

Define the set of stabilizing controllers as

C1 = {K | A+BK is stable.}

The C1 is not convex.

Fortunately, we have a convex representation for the set C1

A+BK is stable⇔ ∃X � 0, (A+BK)X +X(A+BK)T ≺ 0

CX,Y = {X,Y | X � 0, AX +BY +XAT + Y TBT ≺ 0}

A convex representation of the set of the stabilizing controllers

C1 = {Y X−1 | (X,Y ) ∈ CX,Y }
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Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

A difficult problem: the set of stabilizing distributed controllers

Ĉ1 = {K ∈ S | A+BK is stable} Ĉ1 ⊆ C1

Even finding one feasible point or verifying whether Ĉ1 is empty is nontrivial;

The dynamic case

Consider the (centralized) case of dynamic controllers u = Ky (detectable and
stabilizable)

ẋ(t) = Ax(t) +B1w(t) +B2u(t),

z(t) = C1x(t) +D11w(t) +D12u(t),

y(t) = C2x(t) +D21w(t) +D22u(t).

Represent the system in the frequency domain via transfer function matrices.[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
,

where Pij = Ci(sI −A)−1Bj +Dij .
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Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

Figure: Linear fractional interconnection of P and K

First, define the stability of the closed-loop system.

Consider a state-space realization of the output feedback controller u = Ky

ẋk = Akxk +Bky

u = Ckxk +Dky

Definition: the interconnected system is internally stable if (x, xk) is asymptotically
stable, i.e., (x, xk) goes to zero for any initial conditions when w = 0.

A state-space condition: the following matrix is stable

Â =

[
A 0
0 Ak

]
+

[
B 0
0 Bk

] [
I −Dk

−D I

]−1 [
0 Ck

C 0

]
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Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

Do we have a condition in frequency domain?

Figure: Linear fractional interconnection of P and K

A standard notion of stabilization is given as follows:

K stabilizes G, if and only if the four transfer matrices from v1, v2 to u, y are stable.[
y
u

]
=

[
(I − GK)−1 (I − GK)−1G

K(I − GK)−1 (I −KG)−1

] [
v1

v2

]
.
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Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

Define a set of stabilizing controllers

CG = {K internally stabilizes G}.

This set can be equivalently represented by

CG =

{
K
∣∣ [ (I − GK)−1 (I − GK)−1G

K(I − GK)−1 (I −KG)−1

]
∈ RH∞

}
.

CG =

{
K
∣∣ Â =

[
A 0
0 Ak

]
+

[
B 0
0 Bk

] [
I −Dk

−D I

]−1 [
0 Ck

C 0

]
is stable

}
.

Optimal controller synthesis (including LQR, LQG, H2, H∞ etc.)

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

Both the cost function and feasible region are non-convex in controller K.
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Closed-loop convexity: Parameterization of
stabilizing controllers

⇒



Parameterization: Youla

A classical result to parameterize CG is Youla, based on a notion of doubly co-prime
factorization.

Zhou, Kemin, John Comstock Doyle, and Keith Glover. Robust and optimal control. Vol.

40. New Jersey: Prentice hall, 1996.

A collection of stable transfer functions, Ul,Vl,Nl,Ml,Ur,Vr,Nr,Mr is called a doubly
co-prime factorization of G if

G = NrM−1
r = M−1

l Nl

and [
Ul −Vl

−Nl Ml

] [
Mr Vr

Nr Ur

]
= I.

Define the following affine space

C2 = {(S,T) | S = Vr −MrQ,T = Ur −NrQ, ∀ Q ∈ RH∞},

where Q is called the Youla parameter. It is clear that C2 is a convex set in (S,T).

Closed-loop convexity: Parameterization of stabilizing controllers 11/33



Parameterization: Youla

The set of stabilizing controllers is defined by

CG = {K stabilizes G}

=

{
K
∣∣ [(I − GK)−1 (I − GK)−1G

K(I − GK) (I −KG)

]
∈ RH∞

}
.

Youla Parameterization: it is known that

CG = {K = ST−1 | (S,T) ∈ C2}

= {K = (Vr −MrQ)(Ur −NrQ)−1 | Q ∈ RH∞}

Optimal controller synthesis

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞,

It is an equivalent change of variables K = (Vr −MrQ)(Ur −NrQ)−1 that allows
for convexification.
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Parameterization: System-level Synthesis (SLS)

A recent result to parameterize CG is the so-called System-level synthesis (SLS).

Wang, Y. S., Matni, N., & Doyle, J. C. (2019). A system level approach to controller
synthesis. IEEE Transactions on Automatic Control.

Wang, Y. S., Matni, N., & Doyle, J. C. (2017, May). System level parameterizations,
constraints and synthesis. In 2017 American Control Conference (ACC) (pp. 1308-1315).
IEEE. (Best paper award)

One key observation is still an equivalent change of variables, based on the following
observations:

The stability of the following system with controller u = Ky

ẋ(t) = Ax(t) +B2u(t) + δx(t),

y(t) = C2x(t) + δy(t).

is equivalent to the stability of the following closed-loop transfer functions[
x
u

]
=

[
R N
M L

] [
δx
δy

]
,
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Parameterization: System-level Synthesis (SLS)

The closed-loop responses R,M,N,L are in the following affine space[
sI −A −B2

] [R N
M L

]
=
[
I 0

]
, (1a)[

R N
M L

] [
sI −A
−C2

]
=

[
I
0

]
, (1b)

R,M,N ∈ 1

s
RH∞, L ∈ RH∞. (1c)

System-level Parameterization: it is shown that (Wang et al., 2019)

CG = {K = L−MR−1N | R,M,N,L are in the affine space (1a)-(1c)}

Optimal controller synthesis

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

min
R,M,N,L

∥∥∥∥[C1 D12
] [R N

M L

] [
B1

D21

]
+D22

∥∥∥∥
subject to (1a)− (1c).

It is an equivalent change of variables K = L−MR−1N that allows for
convexification.
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Parameterization: input-output parameterization (IOP)

Another recent result to parameterize CG is the so-called input-output parameterization.

Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). An Input-Output
Parametrization of Stabilizing Controllers: amidst Youla and System Level Synthesis. IEEE
Control Systems Letters.

Our observation is still an equivalent change of variables, based on the classical result

K stabilizes G, if and only if the four transfer matrices from v1, v2 to u, y are stable.[
y
u

]
=

[
(I − GK)−1 (I − GK)−1G

K(I − GK)−1 (I −KG)−1

] [
v1

v2

]
.

Key idea: Treat the closed-loop responses as individual variables that satisfy certain
constraints

X = (I − GK)−1

Y = K(I − GK)−1

W = (I − GK)−1G

Z = (I −KG)−1
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Parameterization: input-output parameterization (IOP)

The closed-loop responses X,Y,W,Z are in the following affine space[
I −G

] [X W
Y Z

]
=
[
I 0

]
, (2a)[

X W
Y Z

] [
−G
I

]
=

[
0
I

]
, (2b)

X,Y,W,Z ∈ RH∞. (2c)

Input-output parameterization: the set of stabilizing controllers can be represented as

CG = {K = YX−1 | X,Y,W,Z are in the affine space (2a)-(2c)}.

Optimal controller synthesis

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

min
X,Y,W,Z

‖P11 + P12YP21‖

subject to (2a)− (2c).

It is an equivalent change of variables K = YX−1 that allows for convexification.
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Explicit equivalence among Youla, SLS, and IOP
— any convex SLS can be equivalently reformulated into a convex problem in Youla or

IOP; vice versa

Youla

SLS IOP

affi
ne

affi
ne

affine



Youla ⇔ IOP

Let Ur,Vr,Ul,Vl,Mr,Ml,Nr,Nl be any doubly-coprime factorization of G. We have

1 For any Q ∈ RH∞, the following transfer matrices

X = (Ur −NrQ)Ml ,

Y = (Vr −MrQ)Ml ,

W = (Ur −NrQ)Nl ,

Z = I + (Vr −MrQ)Nl ,

belong to (2a)-(2c) and are such that YX−1 = (Vr −MrQ)(Ur −NrQ)−1.

2 For any (X,Y,W,Z) in (2a)-(2c), the transfer matrix

Q = VlXUr −UlYUr − VlWVr + UlZVr − VlUr ,

is such that Q ∈ RH∞ and (Vr −MrQ)(Ur −NrQ)−1 = YX−1.

Interpretation: Ax = b: {x0 +Av | v is any solution to Av = 0}[
X W
Y Z

]
=

[
UrMl UrNl

VlMl I + VrNl

]
+

[
Nr

Mr

] [
Q Q
Q Q

] [
Ml

Nl

]
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IOP ⇔ SLS

For any R,M,N,L satisfying the affine space (1a)-(1c), the transfer matrices

X = C2N + I,

Y = L,

W = C2RB2,

Z = MB2 + I,

belong to (2a)-(2c) and are such that

L−MR−1N = YX−1.

The affine relationship can written into[
X W
Y Z

]
=

[
C2

I

] [
R N
M L

] [
B2

I

]
+

[
I 0
0 I

]
.

This affine transformation is in general not invertible, but considering the
achievability conditions, an explicit converse transformation can be found as well.
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IOP ⇔ SLS

For any X,Y,W,Z satisfying the affine space (2a)-(2c), the transfer matrices

R = (sI −A)−1 + (sI −A)−1B2YC2(sI −A)−1,

M = YC2(sI −A)−1,

N = (sI −A)−1B2Y,

L = Y,

belong to the affine subspace (1a)-(1c) and are such that

YX−1 = L−MR−1N.

Explicit equivalence among Youla, SLS, and IOP 20/33



Youla ⇔ SLS

Let Ur,Vr,Ul,Vl,Mr,Ml,Nr,Nl be any doubly-coprime factorization of G. We have

1 For any Q ∈ RH∞, the following transfer matrices

R = (sI −A)−1 + (sI −A)−1B2(Vr −MrQ)MlC2(sI −A)−1

M = (Vr −MrQ)MlC2(sI −A)−1,

N = (sI −A)−1B2(Vr −MrQ)Ml,

L = (Vr −MrQ)Ml,

belong to the affine subspace (1a)-(1c) and are such that

L−MR−1N = (Vr −MrQ)(Ur −NrQ)−1.

2 For any (R,M,N,L) in the affine subspace (1a)-(1c), the transfer matrix

Q = VlC2NUr −UlLUr − VlC2RB2Vr + UlMB2Vr + UlVr

is such that Q ∈ RH∞ and

(Vr −MrQ)(Ur −NrQ)−1 = L−MR−1N.
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Youla ⇔ SLS ⇔ IOP

Convex system-level synthesis: which is claimed to be the largest known class of
convex distributed optimal control problems (Wang et al., 2019)

min
R,M,N,L

g(R,M,N,L)

subject to (1a)− (1c),[
R N
M L

]
∈ S.

This is clearly equivalent to a convex problem in Youla,

min
Q

g1(Q)

subject to

[
f1(Q) f3(Q)
f2(Q) f4(Q)

]
∈ S.

which is also equivalent to a convex problem in input-output parameterization

min
X,Y,W,Z

ĝ1(Y)

subject to (2a)− (2c)[
f̂1(Y) f̂3(Y)

f̂2(Y) f̂4(Y)

]
∈ S.
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Distributed control

Formulating the problem of distributed control seems to be problem dependent:

A classical formulation is

min
K

‖P11 + P12K(I − GK)−1P21‖

subject to K internally stabilizes G.

K ∈ S

which is non-convex in K no matter what sparsity constraint S is.

A recent advertised formulation is the convex system-level synthesis

min
R,M,N,L

g(R,M,N,L)

subject to (1a)− (1c),[
R N
M L

]
∈ Ŝ.

which is convex, as long as g(·) is convex and Ŝ is a subspace constraint.

These two formulations are not directly comparable!

They can coincide with each other when S is quadratic invariant (QI) w.r.t. G.
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Quadratic invariance (QI)

Youla

min
Q

‖T11 + T12QT21‖

subject to Q ∈ RH∞,

(Vr −MrQ)(Ur −NrQ)−1 ∈ S

(Vr −MrQ)Ml ∈ S

IOP

min
X,Y,W,Z

‖P11 + P12YP21‖

subject to (2a)− (2c).

YX−1 ∈ S

Y ∈ S

SLS

min
R,M,N,L

∥∥∥∥[C1 D12

] [R N
M L

] [
B1

D21

]∥∥∥∥
subject to (1a)− (1c)

L−MR−1N ∈ S.

L ∈ S

If S is QI with respect to G, the the nonlinear constraint can be equivalently replaced by
the linear constraint on the right column.
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Other Convex Parameterizations



Convex parameterizations using closed-loop responses

Consider a discrete-time system

x[t+ 1] = Ax[t] +Bu[t] + δx[t],

y[t] = Cx[t] + δy[t],

and a dynamic controller
u = Ky + δu.

Define the set of stabilizing controllers

Cstab := {K | K internally stabilizes G}.

We can write the closed-loop responses from (δx, δy, δu) to (x,y,u) asx
y
u

 =

Φxx Φxy Φxu

Φyx Φyy Φyu

Φux Φuy Φuu

δxδy
δu

 ,
A classical result K ∈ Cstab if and only if([

δy
δu

]
→
[
y
u

])
:=

[
Φyy Φyu

Φuy Φuu

]
∈ RH∞.
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Convex parameterizations using closed-loop responses

When choosing two disturbances and two outputs, we have in total
(
3
2

)
×
(
3
2

)
= 9

choices, i.e., ([
δx
δy

]
→
[
x
y

])
,

([
δx
δy

]
→
[
y
u

])
,

([
δx
δy

]
→
[
x
u

])
,([

δy
δu

]
→
[
x
y

])
,

([
δy
δu

]
→
[
y
u

])
,

([
δy
δu

]
→
[
x
u

])
,([

δx
δu

]
→
[
x
y

])
,

([
δx
δu

]
→
[
y
u

])
,

([
δx
δu

]
→
[
x
u

])
.

Under the assumption of stabilizablity and detectablity, we have

K internally stabilizes G if and only if one of the groups of four transfer functions
highlighted in black is stable.

Stability of any other group of 4 closed-loop responses is not sufficient for internal
stability.

([
δy
δu

]
→
[
y
u

])
∈ RH∞ is classical and used in IOP;

([
δx
δy

]
→
[
x
u

])
∈ RH∞ is

used in the system-level-synthesis.
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Convex parameterizations using closed-loop responses

Case 1: [
y
u

]
=

[
Φyx Φyy

Φux Φuy

] [
δx
δy

]
.

1 For any K ∈ Cstab, the resulting closed-loop responses Φyx,Φux,Φyy,Φuy are in
the following affine subspace

[
I −G

] [Φyx Φyy

Φux Φuy

]
=
[
C(zI −A)−1 I

]
,[

Φyx Φyy

Φux Φuy

] [
zI −A
−C

]
= 0,

Φyx,Φux,Φyy,Φuy ∈ RH∞.

(3)

2 For any transfer matrices Φyx,Φux,Φyy,Φuy satisfying (3), K = ΦuyΦ−1
yy ∈ Cstab.

Case 2 corresponds to the System-level synthesis;

Case 3 corresponds to the Input-output parameterization.
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Convex parameterizations using closed-loop responses

Case 4: [
x
u

]
=

[
Φxy Φxu

Φuy Φuu

] [
δy
δu

]
.

1 For any K ∈ Cstab, the resulting closed-loop responses Φxy,Φuy,Φxu,Φuu are in
the following affine subspace

[
zI −A −B

] [Φxy Φxu

Φuy Φuu

]
= 0[

Φxy Φxu

Φuy Φuu

] [
−G
I

]
=

[
(zI −A)−1B

I

]
.

Φxy,Φuy,Φxu,Φuu ∈ RH∞,

(4)

2 For any transfer matrices Φxy,Φuy,Φxu,Φuu satisfying (4), K = Φ−1
uuΦuy ∈ Cstab.
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Conclusion



Take-home message

Message 1: Closed-loop convexity. For many controller synthesis problems, one
should really consider the convexity in closed-loop form.

⇒

Message 2: Youla ⇔ System-level sythesis (SLS) ⇔ Input-output
parameterization. Any convex SLS is also convex in Youla or IOP, and vice versa.

Youla

SLS IOP

affi
ne

affi
ne

affine

Message 3: Distributed Optimal control. The two formulations are problem
dependent, and the existence of QI can make them coincide with each other.
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Topics beyond this talk

Numerical computation: even though problems are convex, they are often in
infinite dimensional space, and a state-space solution is non-trivial. The FIR
approximation in discrete-time is one practical choice.

Controller realization and distributed implementation: Wang et al., 2019

Scalable computation:

Wang, Y. S., Matni, N., & Doyle, J. C. (2018). Separable and localized system-level

synthesis for large-scale systems. IEEE Transactions on Automatic Control, 63(12),

4234-4249.

Robust versions and their applications in learning-based control

Dean, S., Mania, H., Matni, N., Recht, B., & Tu, S. (2017). On the sample complexity of

the linear quadratic regulator. arXiv preprint arXiv:1710.01688.
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Thank you for your attention!

Q & A

Zheng, Y., Furieri, L., Papachristodoulou, A., Li, N., & Kamgarpour, M. (2019). On the equivalence of
Youla, System-level and Input-output parameterizations. arXiv preprint arXiv:1907.06256.

Furieri, L., Zheng, Y., Papachristodoulou, A., & Kamgarpour, M. (2019). An Input-Output
Parametrization of Stabilizing Controllers: amidst Youla and System Level Synthesis. IEEE Control
Systems Letters.

Zheng, Y., Furieri, L., Kamgarpour, M., & Li, N. (2019). On the Parameterization of Stabilizing
Controllers using Closed-loop Responses. arXiv preprint arXiv:1909.12346.

Wang, Y. S., Matni, N., & Doyle, J. C. (2019). A system level approach to controller synthesis. IEEE
Transactions on Automatic Control.

Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control (Vol. 40, p. 146). New Jersey:
Prentice hall.

Boyd, S. P., & Barratt, C. H. (1991). Linear controller design: limits of performance (pp. 98-99).
Englewood Cliffs, NJ: Prentice Hall.
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