Convex Parameterization of Stabilizing Controllers and Its Application to Distributed Control

Yang Zheng

Postdoc at SEAS and CGBC, Harvard University

Group seminar at the University of Oxford Dec 2, 2019

Acknowledgements

Outline

(1) Introduction: Stability and non-convexity
(2) Closed-loop convexity: Parameterization of stabilizing controllers
(3) Explicit equivalence among Youla, SLS, and IOP
(4) Other convex parameterizations
(5) Conclusion

Introduction: Stability and non-convexity

Stability and non-convexity: static case

Main question: How to represent the set of stabilizing controllers?

- Consider the (centralized) static case with a static state feedback controller $u=K x$

$$
\dot{x}=A x+B u
$$

- Define the set of stabilizing controllers as

$$
\mathcal{C}_{1}=\{K \mid A+B K \text { is stable. }\}
$$

- The \mathcal{C}_{1} is not convex.
- Fortunately, we have a convex representation for the set \mathcal{C}_{1}

$$
\begin{gathered}
A+B K \text { is stable } \Leftrightarrow \exists X \succ 0,(A+B K) X+X(A+B K)^{T} \prec 0 \\
\qquad \mathcal{C}_{X, Y}=\left\{X, Y \mid X \succ 0, A X+B Y+X A^{T}+Y^{T} B^{T} \prec 0\right\}
\end{gathered}
$$

- A convex representation of the set of the stabilizing controllers

$$
\mathcal{C}_{1}=\left\{Y X^{-1} \mid(X, Y) \in \mathcal{C}_{X, Y}\right\}
$$

Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

A difficult problem: the set of stabilizing distributed controllers

$$
\hat{\mathcal{C}}_{1}=\{K \in \mathcal{S} \mid A+B K \text { is stable }\} \quad \hat{\mathcal{C}}_{1} \subseteq \mathcal{C}_{1}
$$

- Even finding one feasible point or verifying whether $\hat{\mathcal{C}}_{1}$ is empty is nontrivial;

The dynamic case

- Consider the (centralized) case of dynamic controllers $u=\mathbf{K} y$ (detectable and stabilizable)

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B_{1} w(t)+B_{2} u(t), \\
z(t) & =C_{1} x(t)+D_{11} w(t)+D_{12} u(t), \\
y(t) & =C_{2} x(t)+D_{21} w(t)+D_{22} u(t) .
\end{aligned}
$$

- Represent the system in the frequency domain via transfer function matrices.

$$
\left[\begin{array}{l}
\mathbf{z} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]\left[\begin{array}{l}
\mathbf{w} \\
\mathbf{u}
\end{array}\right],
$$

where $\mathbf{P}_{i j}=C_{i}(s I-A)^{-1} B_{j}+D_{i j}$.

Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

Figure: Linear fractional interconnection of \mathbf{P} and \mathbf{K}

- First, define the stability of the closed-loop system.
- Consider a state-space realization of the output feedback controller $u=\mathbf{K} y$

$$
\begin{aligned}
\dot{x}_{k} & =A_{k} x_{k}+B_{k} y \\
u & =C_{k} x_{k}+D_{k} y
\end{aligned}
$$

- Definition: the interconnected system is internally stable if $\left(x, x_{k}\right)$ is asymptotically stable, i.e., $\left(x, x_{k}\right)$ goes to zero for any initial conditions when $w=0$.

A state-space condition: the following matrix is stable

$$
\hat{A}=\left[\begin{array}{cc}
A & 0 \\
0 & A_{k}
\end{array}\right]+\left[\begin{array}{cc}
B & 0 \\
0 & B_{k}
\end{array}\right]\left[\begin{array}{cc}
I & -D_{k} \\
-D & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & C_{k} \\
C & 0
\end{array}\right]
$$

Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

Do we have a condition in frequency domain?

Figure: Linear fractional interconnection of \mathbf{P} and \mathbf{K}
A standard notion of stabilization is given as follows:

- K stabilizes \mathbf{G}, if and only if the four transfer matrices from v_{1}, v_{2} to u, y are stable.

$$
\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u}
\end{array}\right]=\left[\begin{array}{cc}
(I-\mathbf{G K})^{-1} & (I-\mathbf{G K})^{-1} \mathbf{G} \\
\mathbf{K}(I-\mathbf{G K})^{-1} & (I-\mathbf{K G})^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2}
\end{array}\right] .
$$

Stability and non-convexity: dynamic case

Main question: How to represent the set of stabilizing controllers?

- Define a set of stabilizing controllers

$$
\mathcal{C}_{\mathbf{G}}=\{\mathbf{K} \text { internally stabilizes } \mathbf{G}\} .
$$

- This set can be equivalently represented by

$$
\begin{gathered}
\mathcal{C}_{\mathbf{G}}=\left\{\mathbf{K} \left\lvert\,\left[\begin{array}{cc}
(I-\mathbf{G K})^{-1} & (I-\mathbf{G K})^{-1} \mathbf{G} \\
\mathbf{K}(I-\mathbf{G K})^{-1} & (I-\mathbf{K} \mathbf{G})^{-1}
\end{array}\right] \in \mathcal{R} \mathcal{H}_{\infty}\right.\right\} . \\
\mathcal{C}_{\mathbf{G}}=\left\{\mathbf{K} \left\lvert\, \hat{A}=\left[\begin{array}{cc}
A & 0 \\
0 & A_{k}
\end{array}\right]+\left[\begin{array}{cc}
B & 0 \\
0 & B_{k}
\end{array}\right]\left[\begin{array}{cc}
I & -D_{k} \\
-D & I
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & C_{k} \\
C & 0
\end{array}\right]\right. \text { is stable }\right\} .
\end{gathered}
$$

Optimal controller synthesis (including LQR, LQG, $\mathcal{H}_{2}, \mathcal{H}_{\infty}$ etc.)

$$
\begin{aligned}
\min _{\mathbf{K}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}(I-\mathbf{G K})^{-1} \mathbf{P}_{21}\right\| \\
\text { subject to } & \mathbf{K} \text { internally stabilizes } \mathbf{G} .
\end{aligned}
$$

- Both the cost function and feasible region are non-convex in controller K.

Closed-loop convexity: Parameterization of stabilizing controllers

Parameterization: Youla

A classical result to parameterize $\mathcal{C}_{\mathbf{G}}$ is Youla, based on a notion of doubly co-prime factorization.

- Zhou, Kemin, John Comstock Doyle, and Keith Glover. Robust and optimal control. Vol. 40. New Jersey: Prentice hall, 1996.

A collection of stable transfer functions, $\mathbf{U}_{l}, \mathbf{V}_{l}, \mathbf{N}_{l}, \mathbf{M}_{l}, \mathbf{U}_{r}, \mathbf{V}_{r}, \mathbf{N}_{r}, \mathbf{M}_{r}$ is called a doubly co-prime factorization of \mathbf{G} if

$$
\mathbf{G}=\mathbf{N}_{r} \mathbf{M}_{r}^{-1}=\mathbf{M}_{l}^{-1} \mathbf{N}_{l}
$$

and

$$
\left[\begin{array}{cc}
\mathbf{U}_{l} & -\mathbf{V}_{l} \\
-\mathbf{N}_{l} & \mathbf{M}_{l}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{M}_{r} & \mathbf{V}_{r} \\
\mathbf{N}_{r} & \mathbf{U}_{r}
\end{array}\right]=I
$$

- Define the following affine space

$$
\mathcal{C}_{2}=\left\{(\mathbf{S}, \mathbf{T}) \mid \mathbf{S}=\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}, \mathbf{T}=\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}, \forall \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}\right\}
$$

where \mathbf{Q} is called the Youla parameter. It is clear that \mathcal{C}_{2} is a convex set in (\mathbf{S}, \mathbf{T}).

Parameterization: Youla

The set of stabilizing controllers is defined by

$$
\begin{aligned}
\mathcal{C}_{\mathbf{G}} & =\{\mathbf{K} \text { stabilizes } \mathbf{G}\} \\
& =\left\{\mathbf{K} \left\lvert\,\left[\begin{array}{cc}
(I-\mathbf{G K})^{-1} & (I-\mathbf{G K})^{-1} \mathbf{G} \\
\mathbf{K}(I-\mathbf{G K}) & (I-\mathbf{K G})
\end{array}\right] \in \mathcal{R} \mathcal{H}_{\infty}\right.\right\} .
\end{aligned}
$$

Youla Parameterization: it is known that

$$
\begin{aligned}
\mathcal{C}_{\mathbf{G}} & =\left\{\mathbf{K}=\mathbf{S T}^{-1} \mid(\mathbf{S}, \mathbf{T}) \in \mathcal{C}_{2}\right\} \\
& =\left\{\mathbf{K}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1} \mid \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}\right\}
\end{aligned}
$$

Optimal controller synthesis

$$
\begin{array}{ll|l}
\min _{\mathbf{K}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}(I-\mathbf{G K})^{-1} \mathbf{P}_{21}\right\| & \min _{\mathbf{Q}} \\
\text { ct to } & \left\|\mathbf{T}_{11}+\mathbf{T}_{12} \mathbf{Q} \mathbf{T}_{21}\right\| \\
\text { s internally stabilizes } \mathbf{G} . & \text { subject to } & \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty},
\end{array}
$$

- It is an equivalent change of variables $\mathbf{K}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}$ that allows for convexification.

Parameterization: System-level Synthesis (SLS)

A recent result to parameterize $\mathcal{C}_{\mathbf{G}}$ is the so-called System-level synthesis (SLS).

- Wang, Y. S., Matni, N., \& Doyle, J. C. (2019). A system level approach to controller synthesis. IEEE Transactions on Automatic Control.
- Wang, Y. S., Matni, N., \& Doyle, J. C. (2017, May). System level parameterizations, constraints and synthesis. In 2017 American Control Conference (ACC) (pp. 1308-1315). IEEE. (Best paper award)

One key observation is still an equivalent change of variables, based on the following observations:

- The stability of the following system with controller $u=\mathbf{K} y$

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B_{2} u(t)+\delta_{x}(t) \\
y(t) & =C_{2} x(t)+\delta_{y}(t)
\end{aligned}
$$

is equivalent to the stability of the following closed-loop transfer functions

$$
\left[\begin{array}{l}
x \\
u
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{l}
\delta_{x} \\
\delta_{y}
\end{array}\right]
$$

Parameterization: System-level Synthesis (SLS)

The closed-loop responses $\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}$ are in the following affine space

$$
\begin{align*}
& {\left[s I-A \quad-B_{2}\right]\left[\begin{array}{ll}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right],} \tag{1a}\\
& {\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{c}
s I-A \\
-C_{2}
\end{array}\right]=\left[\begin{array}{l}
I \\
0
\end{array}\right],} \tag{1b}\\
& \mathbf{R}, \mathbf{M}, \mathbf{N} \in \frac{1}{s} \mathcal{R} \mathcal{H}_{\infty}, \quad \mathbf{L} \in \mathcal{R} \mathcal{H}_{\infty} . \tag{1c}
\end{align*}
$$

System-level Parameterization: it is shown that (Wang et al., 2019)

$$
\mathcal{C}_{\mathbf{G}}=\left\{\mathbf{K}=\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N} \mid \mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L} \text { are in the affine space (1a)-(1c) }\right\}
$$

Optimal controller synthesis

$$
\begin{array}{rl|rl}
\min _{\mathbf{K}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}(I-\mathbf{G K})^{-1} \mathbf{P}_{21}\right\| & \min _{\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}}\left\|\left[\begin{array}{ll}
C_{1} & D_{12}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
D_{21}
\end{array}\right]+D_{22}\right\| \\
\text { subject to } & \mathbf{K} \text { internally stabilizes } \mathbf{G} . & \text { subject to } & (1 \mathrm{a})-(1 \mathrm{c}) .
\end{array}
$$

- It is an equivalent change of variables $\mathbf{K}=\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N}$ that allows for convexification.

Parameterization: input-output parameterization (IOP)

Another recent result to parameterize $\mathcal{C}_{\mathbf{G}}$ is the so-called input-output parameterization.

- Furieri, L., Zheng, Y., Papachristodoulou, A., \& Kamgarpour, M. (2019). An Input-Output Parametrization of Stabilizing Controllers: amidst Youla and System Level Synthesis. IEEE Control Systems Letters.

Our observation is still an equivalent change of variables, based on the classical result

- K stabilizes \mathbf{G}, if and only if the four transfer matrices from v_{1}, v_{2} to u, y are stable.

$$
\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u}
\end{array}\right]=\left[\begin{array}{cc}
(I-\mathbf{G K})^{-1} & (I-\mathbf{G K})^{-1} \mathbf{G} \\
\mathbf{K}(I-\mathbf{G K})^{-1} & (I-\mathbf{K} \mathbf{G})^{-1}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2}
\end{array}\right] .
$$

Key idea: Treat the closed-loop responses as individual variables that satisfy certain constraints

$$
\begin{aligned}
\mathbf{X} & =(I-\mathbf{G K})^{-1} \\
\mathbf{Y} & =\mathbf{K}(I-\mathbf{G K})^{-1} \\
\mathbf{W} & =(I-\mathbf{G K})^{-1} \mathbf{G} \\
\mathbf{Z} & =(I-\mathbf{K} \mathbf{G})^{-1}
\end{aligned}
$$

Parameterization: input-output parameterization (IOP)

The closed-loop responses $\mathbf{X}, \mathbf{Y}, \mathbf{W}, \mathbf{Z}$ are in the following affine space

$$
\begin{align*}
& {\left[\begin{array}{ll}
I & -\mathbf{G}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{X} & \mathbf{W} \\
\mathbf{Y} & \mathbf{Z}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right],} \tag{2a}\\
& {\left[\begin{array}{cc}
\mathbf{X} & \mathbf{W} \\
\mathbf{Y} & \mathbf{Z}
\end{array}\right]\left[\begin{array}{c}
-\mathbf{G} \\
I
\end{array}\right]=\left[\begin{array}{l}
0 \\
I
\end{array}\right],} \tag{2b}\\
& \mathbf{X}, \mathbf{Y}, \mathbf{W}, \mathbf{Z} \in \mathcal{R} \mathcal{H}_{\infty} . \tag{2c}
\end{align*}
$$

Input-output parameterization: the set of stabilizing controllers can be represented as

$$
\mathcal{C}_{\mathbf{G}}=\left\{\mathbf{K}=\mathbf{Y} \mathbf{X}^{-1} \mid \mathbf{X}, \mathbf{Y}, \mathbf{W}, \mathbf{Z} \text { are in the affine space (2a)-(2c) }\right\} .
$$

Optimal controller synthesis

$$
\begin{array}{ll|rl}
\min _{\mathbf{K}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}(I-\mathbf{G K})^{-1} \mathbf{P}_{21}\right\| & \min _{\mathbf{x}, \mathbf{Y}, \mathbf{W}, \mathbf{Z}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{Y} \mathbf{P}_{21}\right\| \\
\text { ect to } & \mathbf{K} \text { internally stabilizes } \mathbf{G} . & \text { subject to } & (2 \mathrm{a})-(2 \mathbf{c})
\end{array}
$$

- It is an equivalent change of variables $\mathbf{K}=\mathbf{Y} \mathbf{X}^{-1}$ that allows for convexification.

Explicit equivalence among Youla, SLS, and IOP

- any convex SLS can be equivalently reformulated into a convex problem in Youla or IOP; vice versa

Youla \Leftrightarrow IOP

Let $\mathbf{U}_{r}, \mathbf{V}_{r}, \mathbf{U}_{l}, \mathbf{V}_{l}, \mathbf{M}_{r}, \mathbf{M}_{l}, \mathbf{N}_{r}, \mathbf{N}_{l}$ be any doubly-coprime factorization of \mathbf{G}. We have
(1) For any $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$, the following transfer matrices

$$
\begin{aligned}
& \mathbf{X}=\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \\
& \mathbf{Y}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \\
& \mathbf{W}=\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right) \mathbf{N}_{l} \\
& \mathbf{Z}=I+\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{N}_{l},
\end{aligned}
$$

belong to (2a)-(2c) and are such that $\mathbf{Y} \mathbf{X}^{-1}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}$.
(2) For any $(\mathbf{X}, \mathbf{Y}, \mathbf{W}, \mathbf{Z})$ in (2a)-(2c), the transfer matrix

$$
\mathbf{Q}=\mathbf{V}_{l} \mathbf{X} \mathbf{U}_{r}-\mathbf{U}_{l} \mathbf{Y} \mathbf{U}_{r}-\mathbf{V}_{l} \mathbf{W} \mathbf{V}_{r}+\mathbf{U}_{l} \mathbf{Z} \mathbf{V}_{r}-\mathbf{V}_{l} \mathbf{U}_{r}
$$

is such that $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$ and $\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}=\mathbf{Y} \mathbf{X}^{-1}$.

- Interpretation: $A x=b:\left\{x_{0}+A v \mid v\right.$ is any solution to $\left.A v=0\right\}$

$$
\left[\begin{array}{cc}
\mathbf{X} & \mathbf{W} \\
\mathbf{Y} & \mathbf{Z}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{U}_{r} \mathbf{M}_{l} & \mathbf{U}_{r} \mathbf{N}_{l} \\
\mathbf{V}_{l} \mathbf{M}_{l} & I+\mathbf{V}_{r} \mathbf{N}_{l}
\end{array}\right]+\left[\begin{array}{ll}
\mathbf{N}_{r} & \\
& \mathbf{M}_{r}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{Q} & \mathbf{Q} \\
\mathbf{Q} & \mathbf{Q}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{M}_{l} & \\
& \mathbf{N}_{l}
\end{array}\right]
$$

IOP \Leftrightarrow SLS

For any $\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}$ satisfying the affine space (1a)-(1c), the transfer matrices

$$
\begin{aligned}
\mathbf{X} & =C_{2} \mathbf{N}+I, \\
\mathbf{Y} & =\mathbf{L}, \\
\mathbf{W} & =C_{2} \mathbf{R} B_{2}, \\
\mathbf{Z} & =\mathbf{M} B_{2}+I,
\end{aligned}
$$

belong to (2a)-(2c) and are such that

$$
\mathbf{L}-\mathbf{M} \mathbf{R}^{-1} \mathbf{N}=\mathbf{Y} \mathbf{X}^{-1}
$$

- The affine relationship can written into

$$
\left[\begin{array}{ll}
\mathbf{X} & \mathbf{W} \\
\mathbf{Y} & \mathbf{Z}
\end{array}\right]=\left[\begin{array}{ll}
C_{2} & \\
& I
\end{array}\right]\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right]\left[\begin{array}{ll}
& B_{2} \\
I &
\end{array}\right]+\left[\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right] .
$$

- This affine transformation is in general not invertible, but considering the achievability conditions, an explicit converse transformation can be found as well.

IOP \Leftrightarrow SLS

For any $\mathbf{X}, \mathbf{Y}, \mathbf{W}, \mathbf{Z}$ satisfying the affine space (2a)-(2c), the transfer matrices

$$
\begin{aligned}
\mathbf{R} & =(s I-A)^{-1}+(s I-A)^{-1} B_{2} \mathbf{Y} C_{2}(s I-A)^{-1} \\
\mathbf{M} & =\mathbf{Y} C_{2}(s I-A)^{-1} \\
\mathbf{N} & =(s I-A)^{-1} B_{2} \mathbf{Y} \\
\mathbf{L} & =\mathbf{Y}
\end{aligned}
$$

belong to the affine subspace (1a)-(1c) and are such that

$$
\mathbf{Y} \mathbf{X}^{-1}=\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N} .
$$

Youla \Leftrightarrow SLS

Let $\mathbf{U}_{r}, \mathbf{V}_{r}, \mathbf{U}_{l}, \mathbf{V}_{l}, \mathbf{M}_{r}, \mathbf{M}_{l}, \mathbf{N}_{r}, \mathbf{N}_{l}$ be any doubly-coprime factorization of \mathbf{G}. We have
(1) For any $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$, the following transfer matrices

$$
\begin{aligned}
\mathbf{R} & =(s I-A)^{-1}+(s I-A)^{-1} B_{2}\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} C_{2}(s I-A)^{-1} \\
\mathbf{M} & =\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} C_{2}(s I-A)^{-1} \\
\mathbf{N} & =(s I-A)^{-1} B_{2}\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \\
\mathbf{L} & =\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l}
\end{aligned}
$$

belong to the affine subspace (1a)-(1c) and are such that

$$
\mathbf{L}-\mathbf{M R}^{-1} \mathbf{N}=\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}
$$

(2) For any ($\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}$) in the affine subspace (1a)-(1c), the transfer matrix

$$
\mathbf{Q}=\mathbf{V}_{l} C_{2} \mathbf{N} \mathbf{U}_{r}-\mathbf{U}_{l} \mathbf{L} \mathbf{U}_{r}-\mathbf{V}_{l} C_{2} \mathbf{R} B_{2} \mathbf{V}_{r}+\mathbf{U}_{l} \mathbf{M} B_{2} \mathbf{V}_{r}+\mathbf{U}_{l} \mathbf{V}_{r}
$$

is such that $\mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}$ and

$$
\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1}=\mathbf{L}-\mathbf{M} \mathbf{R}^{-1} \mathbf{N}
$$

Youla \Leftrightarrow SLS \Leftrightarrow IOP

Convex system-level synthesis: which is claimed to be the largest known class of convex distributed optimal control problems (Wang et al., 2019)

$$
\begin{array}{rl}
\min _{\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}} & g(\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}) \\
\text { subject to } & (1 \mathrm{a})-(1 \mathrm{c}), \\
& {\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right] \in \mathcal{S} .}
\end{array}
$$

- This is clearly equivalent to a convex problem in Youla,

$$
\begin{aligned}
\min _{\mathbf{Q}} & g_{1}(\mathbf{Q}) \\
\text { subject to } & {\left[\begin{array}{ll}
f_{1}(\mathbf{Q}) & f_{3}(\mathbf{Q}) \\
f_{2}(\mathbf{Q}) & f_{4}(\mathbf{Q})
\end{array}\right] \in \mathcal{S} . }
\end{aligned}
$$

- which is also equivalent to a convex problem in input-output parameterization

$$
\begin{aligned}
\min _{\mathbf{x}, \mathbf{Y}, \mathbf{W}, \mathbf{z}} & \hat{g}_{1}(\mathbf{Y}) \\
\text { subject to } & (2 \mathrm{a})-(2 \mathrm{c}) \\
& {\left[\begin{array}{ll}
\hat{f}_{1}(\mathbf{Y}) & \hat{f}_{3}(\mathbf{Y}) \\
\hat{f}_{2}(\mathbf{Y}) & \hat{f}_{4}(\mathbf{Y})
\end{array}\right] \in \mathcal{S} . }
\end{aligned}
$$

Distributed control

Formulating the problem of distributed control seems to be problem dependent:

- A classical formulation is

$$
\begin{aligned}
\min _{\mathbf{K}} & \left\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{K}(I-\mathbf{G K})^{-1} \mathbf{P}_{21}\right\| \\
\text { subject to } & \mathbf{K} \text { internally stabilizes } \mathbf{G} . \\
& \mathbf{K} \in \mathcal{S}
\end{aligned}
$$

which is non-convex in K no matter what sparsity constraint \mathcal{S} is.

- A recent advertised formulation is the convex system-level synthesis

$$
\begin{array}{rl}
\min _{\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}} & g(\mathbf{R}, \mathbf{M}, \mathbf{N}, \mathbf{L}) \\
\text { subject to } & (1 \mathrm{a})-(1 \mathrm{c}), \\
& {\left[\begin{array}{cc}
\mathbf{R} & \mathbf{N} \\
\mathbf{M} & \mathbf{L}
\end{array}\right] \in \hat{\mathcal{S}} .}
\end{array}
$$

which is convex, as long as $g(\cdot)$ is convex and $\hat{\mathcal{S}}$ is a subspace constraint.

- These two formulations are not directly comparable!
- They can coincide with each other when \mathcal{S} is quadratic invariant (QI) w.r.t. G.

Quadratic invariance (QI)

Youla	$\begin{aligned} \min _{\mathbf{Q}} & \left\\|\mathbf{T}_{11}+\mathbf{T}_{12} \mathbf{Q} \mathbf{T}_{21}\right\\| \\ \text { subject to } & \mathbf{Q} \in \mathcal{R} \mathcal{H}_{\infty}, \\ & \left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right)\left(\mathbf{U}_{r}-\mathbf{N}_{r} \mathbf{Q}\right)^{-1} \in \mathcal{S} \end{aligned}$	$\left(\mathbf{V}_{r}-\mathbf{M}_{r} \mathbf{Q}\right) \mathbf{M}_{l} \in \mathcal{S}$
IOP	$\begin{array}{ll} \min _{\mathbf{x}, \mathbf{Y}, \mathbf{Z}, \mathbf{Z}} & \left\\|\mathbf{P}_{11}+\mathbf{P}_{12} \mathbf{Y} \mathbf{P}_{21}\right\\| \\ \text { subject to } & (2 \mathrm{a})-(2 \mathrm{c}) . \\ & \mathbf{Y X}^{-1} \in \mathcal{S} \end{array}$	$\mathbf{Y} \in \mathcal{S}$
SLS	$\begin{aligned} \min _{\mathbf{R}, \mathbf{M}, \mathrm{N}, \mathbf{L}} & \left\\|\left[\begin{array}{ll} C_{1} & D_{12} \end{array}\right]\left[\begin{array}{ll} \mathbf{R} & \mathbf{N} \\ \mathbf{M} & \mathbf{L} \end{array}\right]\left[\begin{array}{c} B_{1} \\ D_{21} \end{array}\right]\right\\| \\ \text { subject to } & (1 \mathrm{a})-(1 \mathrm{c}) \\ & \mathbf{L}-\mathbf{M R}^{-1} \mathbf{N} \in \mathcal{S} . \end{aligned}$	$\mathbf{L} \in \mathcal{S}$

If \mathbf{S} is Q I with respect to \mathbf{G}, the the nonlinear constraint can be equivalently replaced by the linear constraint on the right column.

Other Convex Parameterizations

Convex parameterizations using closed-loop responses

Consider a discrete-time system

$$
\begin{aligned}
x[t+1] & =A x[t]+B u[t]+\delta_{x}[t], \\
y[t] & =C x[t]+\delta_{y}[t],
\end{aligned}
$$

and a dynamic controller

$$
\mathbf{u}=\mathbf{K} \mathbf{y}+\delta_{u}
$$

- Define the set of stabilizing controllers

$$
\mathcal{C}_{\text {stab }}:=\{\mathbf{K} \mid \mathbf{K} \text { internally stabilizes } \mathbf{G}\} .
$$

- We can write the closed-loop responses from $\left(\delta_{x}, \delta_{y}, \delta_{u}\right)$ to $(\mathbf{x}, \mathbf{y}, \mathbf{u})$ as

$$
\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y} \\
\mathbf{u}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{\Phi}_{x x} & \boldsymbol{\Phi}_{x y} & \boldsymbol{\Phi}_{x u} \\
\mathbf{\Phi}_{y x} & \mathbf{\Phi}_{y y} & \boldsymbol{\Phi}_{y u} \\
\mathbf{\Phi}_{u x} & \mathbf{\Phi}_{u y} & \mathbf{\Phi}_{u u}
\end{array}\right]\left[\begin{array}{c}
\delta_{x} \\
\delta_{y} \\
\delta_{u}
\end{array}\right]
$$

- A classical result $\mathbf{K} \in \mathcal{C}_{\text {stab }}$ if and only if

$$
\left(\left[\begin{array}{l}
\delta_{y} \\
\delta_{u}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u}
\end{array}\right]\right):=\left[\begin{array}{ll}
\mathbf{\Phi}_{y y} & \mathbf{\Phi}_{y u} \\
\mathbf{\Phi}_{u y} & \mathbf{\Phi}_{u u}
\end{array}\right] \in \mathcal{R} \mathcal{H}_{\infty}
$$

Convex parameterizations using closed-loop responses

When choosing two disturbances and two outputs, we have in total $\binom{3}{2} \times\binom{ 3}{2}=9$ choices, i.e.,

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
\delta_{x} \\
\delta_{y}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]\right),\left(\left[\begin{array}{l}
\delta_{x} \\
\delta_{y}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u}
\end{array}\right]\right),\left(\left[\begin{array}{l}
\delta_{x} \\
\delta_{y}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{u}
\end{array}\right]\right) \\
& \left(\left[\begin{array}{l}
\delta_{y} \\
\delta_{u}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]\right),\left(\left[\begin{array}{l}
\delta_{y} \\
\delta_{u}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u}
\end{array}\right]\right),\left(\left[\begin{array}{l}
\delta_{y} \\
\delta_{u}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{u}
\end{array}\right]\right) \\
& \left(\left[\begin{array}{l}
\delta_{x} \\
\delta_{u}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]\right),\left(\left[\begin{array}{l}
\delta_{x} \\
\delta_{u}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u}
\end{array}\right]\right),\left(\left[\begin{array}{l}
\delta_{x} \\
\delta_{u}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{u}
\end{array}\right]\right) .
\end{aligned}
$$

Under the assumption of stabilizablity and detectablity, we have

- K internally stabilizes \mathbf{G} if and only if one of the groups of four transfer functions highlighted in black is stable.
- Stability of any other group of 4 closed-loop responses is not sufficient for internal stability.
- $\left(\left[\begin{array}{l}\delta_{y} \\ \delta_{u}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathbf{y} \\ \mathbf{u}\end{array}\right]\right) \in \mathcal{R} \mathcal{H}_{\infty}$ is classical and used in IOP; $\left(\left[\begin{array}{l}\delta_{x} \\ \delta_{y}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathbf{x} \\ \mathbf{u}\end{array}\right]\right) \in \mathcal{R H} \mathcal{H}_{\infty}$ is used in the system-level-synthesis.

Convex parameterizations using closed-loop responses

Case 1:

$$
\left[\begin{array}{c}
\mathbf{y} \\
\mathbf{u}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{\Phi}_{y x} & \mathbf{\Phi}_{y y} \\
\mathbf{\Phi}_{u x} & \mathbf{\Phi}_{u y}
\end{array}\right]\left[\begin{array}{l}
\delta_{x} \\
\delta_{y}
\end{array}\right] .
$$

(1) For any $\mathbf{K} \in \mathcal{C}_{\text {stab }}$, the resulting closed-loop responses $\mathbf{\Phi}_{y x}, \mathbf{\Phi}_{u x}, \mathbf{\Phi}_{y y}, \mathbf{\Phi}_{u y}$ are in the following affine subspace

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
I & -\mathbf{G}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{\Phi}_{y x} & \mathbf{\Phi}_{y y} \\
\mathbf{\Phi}_{u x} & \mathbf{\Phi}_{u y}
\end{array}\right]=\left[\begin{array}{ll}
C(z I-A)^{-1} & I
\end{array}\right]} \\
{\left[\begin{array}{ll}
\mathbf{\Phi}_{y x} & \mathbf{\Phi}_{y y} \\
\mathbf{\Phi}_{u x} & \mathbf{\Phi}_{u y}
\end{array}\right]\left[\begin{array}{c}
z I-A \\
-C
\end{array}\right]=0} \tag{3}\\
\mathbf{\Phi}_{y x}, \mathbf{\Phi}_{u x}, \boldsymbol{\Phi}_{y y}, \mathbf{\Phi}_{u y}
\end{array}\right\} \mathcal{R} \mathcal{H}_{\infty} .
$$

(2) For any transfer matrices $\boldsymbol{\Phi}_{y x}, \boldsymbol{\Phi}_{u x}, \boldsymbol{\Phi}_{y y}, \boldsymbol{\Phi}_{u y}$ satisfying (3), $\mathbf{K}=\boldsymbol{\Phi}_{u y} \boldsymbol{\Phi}_{y y}^{-1} \in \mathcal{C}_{s t a b}$.

- Case 2 corresponds to the System-level synthesis;
- Case 3 corresponds to the Input-output parameterization.

Convex parameterizations using closed-loop responses

Case 4:

$$
\left[\begin{array}{c}
\mathbf{x} \\
\mathbf{u}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{\Phi}_{x y} & \boldsymbol{\Phi}_{x u} \\
\mathbf{\Phi}_{u y} & \mathbf{\Phi}_{u u}
\end{array}\right]\left[\begin{array}{l}
\delta_{y} \\
\delta_{u}
\end{array}\right] .
$$

(1) For any $\mathbf{K} \in \mathcal{C}_{\text {stab }}$, the resulting closed-loop responses $\mathbf{\Phi}_{x y}, \mathbf{\Phi}_{u y}, \mathbf{\Phi}_{x u}, \mathbf{\Phi}_{u u}$ are in the following affine subspace

$$
\begin{align*}
{\left[\begin{array}{ll}
z I-A & -B
\end{array}\right]\left[\begin{array}{ll}
\mathbf{\Phi}_{x y} & \mathbf{\Phi}_{x u} \\
\mathbf{\Phi}_{u y} & \mathbf{\Phi}_{u u}
\end{array}\right] } & =0 \\
{\left[\begin{array}{ll}
\mathbf{\Phi}_{x y} & \mathbf{\Phi}_{x u} \\
\mathbf{\Phi}_{u y} & \mathbf{\Phi}_{u u}
\end{array}\right]\left[\begin{array}{c}
-\mathbf{G} \\
I
\end{array}\right] } & =\left[\begin{array}{c}
(z I-A)^{-1} B \\
I
\end{array}\right] . \tag{4}\\
\mathbf{\Phi}_{x y}, \mathbf{\Phi}_{u y}, \mathbf{\Phi}_{x u}, \mathbf{\Phi}_{u u} & \in \mathcal{R} \mathcal{H}_{\infty},
\end{align*}
$$

(2) For any transfer matrices $\boldsymbol{\Phi}_{x y}, \boldsymbol{\Phi}_{u y}, \boldsymbol{\Phi}_{x u}, \boldsymbol{\Phi}_{u u}$ satisfying (4), $\mathbf{K}=\boldsymbol{\Phi}_{u u}^{-1} \boldsymbol{\Phi}_{u y} \in \mathcal{C}_{\text {stab }}$.

Conclusion

Take-home message

- Message 1: Closed-loop convexity. For many controller synthesis problems, one should really consider the convexity in closed-loop form.

- Message 2: Youla \Leftrightarrow System-level sythesis (SLS) \Leftrightarrow Input-output parameterization. Any convex SLS is also convex in Youla or IOP, and vice versa.

- Message 3: Distributed Optimal control. The two formulations are problem dependent, and the existence of QI can make them coincide with each other.

Topics beyond this talk

- Numerical computation: even though problems are convex, they are often in infinite dimensional space, and a state-space solution is non-trivial. The FIR approximation in discrete-time is one practical choice.
- Controller realization and distributed implementation: Wang et al., 2019

- Scalable computation:

Wang, Y. S., Matni, N., \& Doyle, J. C. (2018). Separable and localized system-level synthesis for large-scale systems. IEEE Transactions on Automatic Control, 63(12), 4234-4249.

- Robust versions and their applications in learning-based control Dean, S., Mania, H., Matni, N., Recht, B., \& Tu, S. (2017). On the sample complexity of the linear quadratic regulator. arXiv preprint arXiv:1710.01688.

Thank you for your attention!

Q \& A

- Zheng, Y., Furieri, L., Papachristodoulou, A., Li, N., \& Kamgarpour, M. (2019). On the equivalence of Youla, System-level and Input-output parameterizations. arXiv preprint arXiv:1907.06256.
- Furieri, L., Zheng, Y., Papachristodoulou, A., \& Kamgarpour, M. (2019). An Input-Output Parametrization of Stabilizing Controllers: amidst Youla and System Level Synthesis. IEEE Control Systems Letters.
- Zheng, Y., Furieri, L., Kamgarpour, M., \& Li, N. (2019). On the Parameterization of Stabilizing Controllers using Closed-loop Responses. arXiv preprint arXiv:1909.12346.
- Wang, Y. S., Matni, N., \& Doyle, J. C. (2019). A system level approach to controller synthesis. IEEE Transactions on Automatic Control.
- Zhou, K., Doyle, J. C., \& Glover, K. (1996). Robust and optimal control (Vol. 40, p. 146). New Jersey: Prentice hall.
- Boyd, S. P., \& Barratt, C. H. (1991). Linear controller design: limits of performance (pp. 98-99). Englewood Cliffs, NJ: Prentice Hall.

