Smoothing Traffic Flow via Control of Autonomous Vehicles

Yang Zheng

Postdoc, School of Engineering and Applied Sciences

Harvard University

Seminar at Volkswagen, Wolfsburg Dec 16, 2019

Acknowledgements

Tsinghua University

University of Oxford

Harvard University

Outline

- **1** The potential of autonomous vehicles on traffic dynamics
- 2 Control-theoretic modeling and analysis
- 3 Distributed optimal controller synthesis for mixed mobility
- 4 Coordination of multiple autonomous vehicles in mixed traffic

Mobility in 2019

• The emergence of autonomous vehicles is revolutionizing road transportation systems.

• Many big players are in the race of building fully autonomous vehicles. Volkswagen has been playing a leading role in the process.

Huge potential

- Reduce energy consumption, enhance traffic safety, and improve traffic efficiency
- New mobility patterns: ride-sharing, on-demand mobility, services to elderly and physically-challenged people.

Harvard John A. Pauls School of Engineerin and Applied Sciences

Mixed Autonomy Mobility

Mixed autonomy mobility: a traffic condition where both autonomous vehicles and human-driven vehicles co-exist.

Main questions: can even a small scale of autonomous vehicles benefit traffic dynamics, and if so, how?

Traffic waves: theory & experiments

Main question: can even a small scale of autonomous vehicles benefit traffic dynamics, and if so, how?

• Starting from 1930s, there is a rich family of traffic flow theories to explain traffic jams, *e.g.*, partial differential equations, queuing theory, stochastic differential equations.

Experiments in 2008

Sugiyama, Yuki, et al. 2008.

Experiments in 2018

Stern, Raphael E., et al. 2018.

State-of-the-art

Challenges in general mixed autonomy mobility

- Complex dynamic models: Cascaded, discontinuous, hybrid
- Many interacting agents: High-dimensional problems, information asymmetry
- Human-behavior and reasoning: Stochastic, self-interested, and non-cooperative

Selected literature

- Simulation-based traffic flow analysis: Bose, 2003; Shladover, 2012; Liu, 2018; Van Arem, 2006; Schakel, 2010; Van Driel, 2010; Wang, 2017; Calvert, 2017; Goñi-Ros, 2019
- Theoretical analysis (mainly platooning level): A. Talebpour, H. Mahmassani, 2016; N. Mehr, R. Horowitz, 2018; Cui et al, 2017; G. Orosz, J. I. Ge et al. (Umich, from 2014)
- Learning-based methods for mixed mobility: A. M. Bayen's group at UCB. Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., & Bayen, A. M. (2017). Flow: Architecture and benchmarking for reinforcement learning in traffic control. arXiv preprint arXiv:1710.05465.

Harvard John A. Paulson School of Engineering and Applied Sciences

Part II: Control-theoretic modeling and analysis

- Stability, controllability, and stabilizability

System modeling

System setups

- a single-lane ring road with circumference L consisting of one AV and n-1 HDVs.
- The position, velocity and acceleration: p_i , v_i and a_i . The spacing of vehicle *i*: $s_i = p_{i-1} - p_i$.
- HDV: car-following dynamics (e.g., OVM and IDM)

$$\dot{v}_i(t) = F_i(s_i(t), \dot{s}_i(t), v_i(t)), i = 2, \dots, n,$$

• Equilibrium points $\dot{s}_i(t) = 0, v_i = v^*, i = 2, \dots, n$

$$F_i\left(s_i^*, 0, v^*\right) = 0$$

• Linearization: $\tilde{s}_i(t) = s_i(t) - s_i^*, \tilde{v}_i(t) = v_i(t) - v^*$.

$$\begin{cases} \dot{\tilde{s}}_i(t) = \tilde{v}_{i-1}(t) - \tilde{v}_i(t), \\ \dot{\tilde{v}}_i(t) = \alpha_{i1}\tilde{s}_i(t) - \alpha_{i2}\tilde{v}_i(t) + \alpha_{i3}\tilde{v}_{i-1}(t), \end{cases}$$

here
$$\alpha_{i1} = \frac{\partial F_i}{\partial s_i}, \alpha_{i2} = \frac{\partial F_i}{\partial \dot{s}_i} - \frac{\partial F_i}{\partial v_i}, \alpha_{i3} = \frac{\partial F_i}{\partial \dot{s}_i}$$

Harvard John A. Paulso School of Engineering and Applied Sciences

wł

Control-theoretic modeling and analysis

10/36

System modeling

Autonomous vehicle dynamics

- Control input $u_1(t) = a_1(t)$.
- Car-following dynamics: $(s_1^* \text{ and } v^* \text{ has no relationship!})$

$$\begin{cases} \dot{\tilde{s}}_1(t) = \tilde{v}_n(t) - \tilde{v}_1(t), \\ \dot{\tilde{v}}_1(t) = u(t). \end{cases}$$

System dynamics

- Define the error state: $x(t) = \left[x_1^{\mathsf{T}}(t), x_2^{\mathsf{T}}(t), \dots, x_n^{\mathsf{T}}(t)\right]^{\mathsf{T}}$
- Linearized model

$$\dot{x}(t) = Ax(t) + Bu(t),$$

where

$$A = \begin{bmatrix} C_1 & 0 & \dots & \dots & 0 & C_2 \\ A_{22} & A_{21} & 0 & \dots & \dots & 0 \\ 0 & A_{32} & A_{31} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & A_{n2} & A_{n1} \end{bmatrix}, B = \begin{bmatrix} B_1 \\ B_2 \\ B_2 \\ \vdots \\ B_2 \end{bmatrix}$$

with each block matrix defined as

$$A_{i1} = \begin{bmatrix} 0 & -1 \\ \alpha_{i1} & -\alpha_{i2} \end{bmatrix}, A_{i2} = \begin{bmatrix} 0 & 1 \\ 0 & \alpha_{i3} \end{bmatrix}, C_1 = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, C_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, B_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Harvard John A. Paulson School of Engineering and Applied Sciences

Control-theoretic modeling and analysis

11/36

Analysis I: Stability for all human-driven vehicles

Suppose all vehicles are human-driven and dynamics are homogeneous

 $\dot{x}(t) = \hat{A}x(t),$ Define $\omega = e^{\frac{2\pi j}{n}}$, where j denotes the imaginary unit,

where

	$\lceil A_1 \rceil$	0			0	A_2	
	A_2	A_1	0			0	1 1 1 1
$\hat{A} =$	0	A_2	A_1	0		0	$1 \omega \omega^2 \dots \omega^{n-1}$
	:	۰.	·.	·.	۰.	:	$F_n^* = \frac{1}{\sqrt{n}} \left 1 \omega^2 \omega^4 \dots \omega^{2(n-1)} \right $
	0		0.	A_2	A_1	0	
	0			0	A_2	A_1	$1 \ \omega^{n-1} \ \omega^{2(n-1)} \ \dots \ \omega^{(n-1)(n-1)}$

• Block-circulant matrix can be block-diagonalized

 $\hat{A} = (F_n^* \otimes I_2) \cdot \mathsf{diag}(D_1, D_2, \dots, D_n) \cdot (F_n \otimes I_2)$

For traffic systems with homogeneous HDVs only in a ring road, a stability condition is

$$\alpha_2^2 - \alpha_3^2 - 2\alpha_1 \ge 0.$$

This result first appeared in

• Cui, S., Seibold, B., Stern, R., & Work, D. B. (2017). Stabilizing traffic flow via a single autonomous

vehicle: Possibilities and limitations. In Intelligent Vehicles Symposium (IV) (pp. 1336-1341). IEEE.

Analysis I: Stability for all human-driven vehicles

For traffic systems with homogeneous HDVs only in a ring road, a stability condition is

 $\alpha_2^2 - \alpha_3^2 - 2\alpha_1 \ge 0.$

• For Optimal Velocity Model, $F(s_i(t), \dot{s}_i(t), v_i(t)) = \alpha(V(s_i(t)) - v_i(t)) + \beta \dot{s}_i(t)$, the stability condition is reduced to

$$\alpha + 2\beta \ge \dot{V}(s^*).$$

Harvard John A. Paulson School of Engineering and Applied Sciences

Linearized model

• Controllability invariance under state feedback and linear transformation

 $(A,B) \xrightarrow{\text{state feedback}} (\hat{A},B) \xrightarrow{\text{linear transformation}} (\tilde{A},\tilde{B})$

 $\textbf{ Step 1: we apply } \hat{u}(t) = u(t) + Kx(t) = u(t) - (\alpha_1 \tilde{s}_1(t) - \alpha_2 \tilde{v}_1(t) + \alpha_3 \tilde{v}_n(t))$

• Controllability invariance under state feedback and linear transformation

 $(A, B) \xrightarrow{\text{state feedback}} (\hat{A}, B) \xrightarrow{\text{linear transformation}} (\tilde{A}, \tilde{B})$ $(A, B) \xrightarrow{\text{linear transformation}} (\tilde{A}, \tilde{B})$ $(A, B) \xrightarrow{\text{state feedback}} (\hat{A}, B) \xrightarrow{\text{linear transformation}} (\tilde{A}, \tilde{B})$ $(A, B) \xrightarrow{\text{state feedback}} (\hat{A}, B) \xrightarrow{\text{linear transformation}} (\tilde{A}, \tilde{B})$ $(A, B) \xrightarrow{\text{state feedback}} (\hat{A}, B) \xrightarrow{\text{linear transformation}} (\tilde{A}, \tilde{B})$ $(A, B) \xrightarrow{\text{state feedback}} (\hat{A}, B) \xrightarrow{\text{state feedback}} (\hat{A}, B)$ $(A, B) \xrightarrow{\text{state feedback}} (\hat{A}, B) \xrightarrow{\text{state feedback}} (\hat{A}, B)$ $(A, B) \xrightarrow$

$$\dot{\tilde{x}} = \tilde{A}\tilde{x}(t) + \tilde{B}\hat{u}(t) = \begin{bmatrix} D_1 & & & \\ & D_2 & & \\ & & \ddots & \\ & & & D_n \end{bmatrix} \tilde{x}(t) + \frac{1}{\sqrt{n}} \begin{bmatrix} B_1 \\ B_1 \\ \vdots \\ B_1 \end{bmatrix} \hat{u}(t).$$

where

$$\frac{d}{dt} \begin{bmatrix} \tilde{x}_{i1} \\ \tilde{x}_{i2} \end{bmatrix} = \begin{bmatrix} 0 & -1 + \omega^{(n-1)(i-1)} \\ \alpha_1 & -\alpha_2 + \alpha_3 \omega^{(n-1)(i-1)} \end{bmatrix} \begin{bmatrix} \tilde{x}_{i1} \\ \tilde{x}_{i2} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{\sqrt{n}} \end{bmatrix} \hat{u}(t), i = 1, \dots, n.$$

• The first block is always uncontrollable! This corresponds to the ring structure (zero eigenvalue).

$$\tilde{x}_{11} = \frac{1}{\sqrt{n}} \left((s_1(t) - s_c^*) + \sum_{i=2}^n (s_i(t) - s^*) \right)$$

School of Engineering and Applied Sciences

Theorem 1: Mixed traffic flow with homogeneous HDVs

• The mixed traffic flow in a ring road is not completely controllable. More precisely, we have

$$\mathsf{rank}\left(\left[\widetilde{B},\widetilde{A}\widetilde{B},\ldots,\widetilde{A}^{2n-1}\widetilde{B}\right]\right) = \begin{cases} 2n-1, & \text{if } \alpha_1 - \alpha_2\alpha_3 + \alpha_3^2 \neq 0, \\ n, & \text{if } \alpha_1 - \alpha_2\alpha_3 + \alpha_3^2 = 0. \end{cases}$$

• The mixed traffic flow in a ring road is stabilizable!

Proof sketch:

- If $\alpha_1 \alpha_2\alpha_3 + \alpha_3^2 \neq 0$, then there are no common eigenvalues between different diagonal blocks D_i and D_j . All the modes corresponding to non-zero eigenvalues are controllable using the PBH test ($\xi^T A = \lambda A, \xi^T B = 0, \xi \neq 0$)
- If $\alpha_1 \alpha_2 \alpha_3 + \alpha_3^2 \neq 0$, we have

$$\mathsf{det}(\lambda I - D_i) = (\lambda + \alpha_2 - \alpha_3) \left(\lambda + \alpha_3 - \alpha_3 \omega^{(n-1)(i-1)}\right) = 0, \ i = 1, 2, \dots, n,$$

The eigenvalue $\lambda=\alpha_3-\alpha_2<0$ repeated n times and n-1 of them are uncontrollable but all stable.

Harvard John A. Pau School of Engineeri and Applied Sciences

Theorem 2: Mixed traffic flow with heterogeneous HDVs

- The mixed traffic flow in a ring road is not completely controllable.
- There exists one uncontrollable mode corresponding to a zero eigenvalue, and this uncontrollable mode is stable.
- It is stabilizable if we have,

$$\alpha_{j1}^2 - \alpha_{i2}\alpha_{j1}\alpha_{j3} + \alpha_{i1}\alpha_{j3}^2 \neq 0, \ \forall i, j \in \{1, 2, \dots, n\}.$$

• In both cases, the uncontrollable mode corresponds to the ring structure

$$\rho_0^{\mathsf{T}} x\left(t\right) = \sum_{i=1}^n \tilde{s}_i\left(t\right) = \sum_{i=1}^n s_i\left(t\right) - \sum_{i=1}^n s_i^*$$
Control-theoretic modeling and analysis

School of Engineering and Applied Sciences

Analysis III: Reachability for mixed autonomy mobility

Question: How can a single autonomous vehicle guide the traffic flow to a desired (higher or lower) velocity v^* ?

• Human-driven vehicles

$$F_i(s_i^*, 0, v^*) = 0 \Rightarrow v^* :\to s^*$$

• For autonomous vehicles, s_1^* can be designed seperately.

Theorem 3: Reachability for mixed autonomy mobility

 $\bullet\,$ The traffic flow can reach the desired velocity v^* if and only if the desired spacing of the AV satisfies

$$s_1^* = L - \sum_{i=2}^n s_i^*.$$

• There is a reachable velocity range $0 \leq v^* < v^*_{\max}.$ $(v^*_{\max} = F^{-1}(\frac{L}{n-1})$)

Harvard John A Paulson

School of Engineering

and Applied Sciences

Numerical results

The existence of 5% AVs (1 out of 20) can bring 6% improvement on traffic velocity
 Harvard John A. Paulson

Harvard John A. Paulso School of Engineering and Applied Sciences

Part III: Distributed optimal controller synthesis for mixed mobility

Problem formulation: Distributed optimal control

Local available information

- due to limits of communication capabilities
- only partial information of the entire system is available
- Control law: u(t) = -Kx(t), $K \in \mathcal{K}$ denotes a sparsity pattern

School of Engineering and Applied Sciences

Distributed optimal controller synthesis for mixed mobility

Problem formulation: Distributed optimal control

\mathcal{H}_2 optimal control

$$\dot{x}(t) = Ax(t) + Bu(t) + Hw(t)$$

$$z(t) = \begin{bmatrix} Q^{0.5} \\ -R^{0.5}K \end{bmatrix} x(t)$$

$$\lim_{K \to \infty} \|G_{z\omega}\|^2$$
subject to $u = -Kx$, $K \in \mathcal{K}$,

• Step 1: Standard reformulation

$$\min_{X,Y,Z} \quad \operatorname{Tr}(QX) + \operatorname{Tr}(RY)$$
subject to $AX + XA^{\mathsf{T}} - BZ - Z^{\mathsf{T}}B^{\mathsf{T}} + HH^{\mathsf{T}} \preceq 0,$

$$\begin{bmatrix} Y & Z \\ Z^{\mathsf{T}} & X \end{bmatrix} \succeq 0, \ X \succ 0, \ ZX^{-1} \in \mathcal{K}.$$

• Step 2: sparsity invariance (Luca, Zheng, Papachristodoulou & Kamagarpour, 2019) $\begin{array}{l} \min_{X,Y,Z} & \operatorname{Tr}(QX) + \operatorname{Tr}(RY) \\ \text{subject to} & AX + XA^{\mathsf{T}} - BZ - Z^{\mathsf{T}}B^{\mathsf{T}} + HH^{\mathsf{T}} \prec 0. \end{array}$

Distributed optimal controller synthesis for mixed mobility

 $\begin{bmatrix} Y & Z \\ Z^{\mathsf{T}} & X \end{bmatrix} \succeq 0, \ X \succ 0, Z \in \mathcal{T}, \ X \in \mathcal{R}.$

Numerical experiments: damping traffic waves

- n = 20, L = 400m one vehicle brakes at 3m/s² for 3 seconds.
- Available information: 5 vehicles ahead and 5 vehicles behind

With all human-driven vehicles

With our controller

Numerical experiments: damping traffic waves

- n = 20, L = 400m one vehicle brakes at $3m/s^2$ for 3 seconds.
- Available information: 5 vehicles ahead and 5 vehicles behind

Figure: (a) All the vehicles are human-driven. (b)-(d) correspond to the cases where vehicle 2,11,20 is under ______the perturbation, respectively.

School of Engineering and Applied Sciences

Distributed optimal controller synthesis for mixed mobility

Numerical experiments: comparison

• Compare with empirical methods: FollowerStopper and PI with Saturation (Stern, 2018)

Main question: How to coordinate multiple autonomous vehicles in traffic flow? Is platooning the optimal one?

Modeling

School of Engineering and Applied Sciences

• Human-driven vehicles (linearization)

$$\begin{cases} \dot{\tilde{s}}_i(t) = \tilde{v}_{i-1}(t) - \tilde{v}_i(t), \\ \dot{\tilde{v}}_i(t) = \alpha_1 \tilde{s}_i(t) - \alpha_2 \tilde{v}_i(t) + \alpha_3 \tilde{v}_{i-1}(t) \end{cases}$$

Autonomous vehicles

$$\begin{cases} \dot{\tilde{s}}_i(t) = \tilde{v}_i(t) - \tilde{v}_{i-1}(t), \\ \dot{\tilde{v}}_i(t) = u_i(t), \end{cases} \quad i \in S$$

Set function optimization

$$\max_{S} \quad J(S)$$
$$S \subseteq \Omega, |S| = k$$

where $\Omega = \{1, 2, ..., n\}$, S is the indices of autonomous vehicles, and $J : 2^{\Omega} \to \mathbb{R}$ denotes a utility function to be designed.

• Submodularity: (diminishing return property) a set function $f: 2^{\Omega} \to \mathbb{R}$ is called submodular if $\forall A \subseteq B \subseteq \Omega$ and $\forall e \in \Omega$, we have

$$f(A\cup\{e\})-f(A)\geq f(B\cup\{e\})-f(B)$$

• Monotonicity: A set function $f: 2^{\Omega} \to \mathbb{R}$ is called non-increasing if for all $A \subseteq B \subseteq \Omega$, it holds that

$$f(A) \ge f(B)$$

• Equivalent condition: A set function $f: 2^{\Omega} \to \mathbb{R}$ is submodular if and only if the derived set functions $\Delta_f(\cdot \mid e): 2^{\Omega \setminus \{e\}} \to \mathbb{R}$, defined as

$$\Delta_f(A \mid e) = f(A \cup \{e\}) - f(A), \quad \forall A \subseteq \Omega \setminus \{e\}$$

is non-increasing.

Case 1: each autonomous vehicle has a fixed CACC-type controller

 $\bullet\,$ For each autonomous vehicle $i\in S$, we implement the controller

$$u_i(t) = (\alpha_1 - k_s)\tilde{s}_i(t) + (\alpha_2 - k_v)\tilde{v}_i(t) + \alpha_3\tilde{v}_{i-1}(t)$$

- Closed-loop system $\dot{x}(t) = A_S x(t) + H w(t), y(t) = Q x(t).$
- Define the utility function as $J(S) = -\|G_{yw}\|_{\mathcal{H}_2}^2$

Penetration rate vs. Performance improvement: Introducing more autonomous vehicles with fixed controllers has diminishing improvements to traffic systems.

School of Engineering and Applied Sciences

Case 2: redesign the controller for each autonomous vehicle

- Consider a state feedback controller u(t) = -Kx(t).
- Closed-loop system becomes

$$\dot{x} = (A_S - B_S K)x + Hu$$
$$z = \begin{bmatrix} Q^{\frac{1}{2}} \\ -R^{\frac{1}{2}}K \end{bmatrix} x(t)$$

• Consider the utility function

$$J(S) := -\min_{K} \quad \|G_{zw}\|_{\mathcal{H}_2}^2$$

• Set function optimization for optimal coordination

$$\max_{S} \quad J(S)$$
$$S \subseteq \Omega, |S| = k$$

- This set function is not submodular, as we find explicit counterexamples.
- In numerical simulations, we find two dominant patterns: **platooning** and **uniform distribution**.

and Applied Science

30/36

Two dominant patterns: platooning and uniform distribution

Harvard John A. Paulson School of Engineering and Applied Sciences

Coordination of multiple autonomous vehicles in mixed traffic

31/36

Coordination of autonomous vehicles beyond platooning

Performance at different scales

- The classical idea of platooning is not the optimal one across different scenarios, especially taking system-wide mobility into account.
- More opportunities beyond platooning.

Conclusion

Take-home message

• Message 1: control-theoretic analysis of mixed-autonomy mobility. The following system is not completly cobtrollable, but is stabilizable.

- Message 2: The high potential of autonomous vehicles. They can be used as mobile actuators to actively smooth and increase traffic velocity.
- Message 3: Coordination of multiple autonomous vehicles beyond platooning.

Topics beyond this talk

• Unknown dynamics: incorporate reinforcement learning in mixed autonomy.

🖟 flow-pro	oject / flow			🗊 Used by 🕶	24	• Watch	• 40	\star Star	352	¥ Fork	114		
<> Code	() Issues (101) (1) Pull r	equests 16	III Projects 3	🗉 Wiki	I Securit	Security Insights						
Computational framework for reinforcement learning in traffic control													
reinforcement	t-learning to	raffic-control	benchmark	autonomous	vehicle-cont	trol sumo							
ۍ 3,6	21 commits		₽ 52 branche	5	🖏 7 relea	ases	20 contributors			क्रू MIT			
Branch: maste	er 🕶 New p	ull request				[Create n	ew file Up	load files	Find File	Clor	e or downlo	oad -

- Other scenarios: multiple lanes, ramp metering, intersection, and other urban scenarios;
- **Rigorous safety guarantees**: e.g., develop distributed model predictive control for autonomous vehicles, where rigorous safety constraints can be encoded.

Thank you for your attention!

Q & A

- Zheng, Y., Wang, J., & Li, K. (2019). Smoothing traffic flow via control of autonomous vehicles. under 2nd review, IEEE Internet of Things Journal, available at arXiv preprint arXiv:1812.09544.
- Wang, J., Zheng, Y., Xu, Q., Wang, J., & Li, K. (2019, June). Controllability Analysis and Optimal Controller Synthesis of Mixed Traffic Systems. In 2019 IEEE Intelligent Vehicles Symposium (IV) (pp. 1041-1047). IEEE.
- Wang, J., Zheng, Y., Xu, Q., Wang, J., & Li, K. (2019). Cntrollability Analysis and Optimal Control of Mixed Traffic Flow with Human-driven and Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems, under review.
- Li K., Wang J., Zheng Y. Optimal formation of autonomous vehicles in mixed traffic systems, under review, IFAC 2020.

