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The potential of autonomous vehicles on traffic
dynamics



Mobility in 2019

The emergence of autonomous vehicles is revolutionizing road transportation
systems.

Many big players are in the race of building fully autonomous vehicles. Volkswagen
has been playing a leading role in the process.

Huge potential

Reduce energy consumption, enhance traffic safety, and improve traffic efficiency

New mobility patterns: ride-sharing, on-demand mobility, services to elderly and
physically-challenged people.
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Mixed Autonomy Mobility

Mixed autonomy mobility: a traffic condition where both autonomous vehicles and
human-driven vehicles co-exist.

Main questions: can even a small scale of
autonomous vehicles benefit traffic dynamics,
and if so, how?
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Traffic waves: theory & experiments

Main question: can even a small scale of autonomous vehicles benefit traffic
dynamics, and if so, how?

Starting from 1930s, there is a rich family of traffic flow theories to explain traffic
jams, e.g., partial differential equations, queuing theory, stochastic differential
equations.

Experiments in 2008
Sugiyama, Yuki, et al. 2008.

⇒ Experiments in 2018
Stern, Raphael E., et al. 2018.
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State-of-the-art

Challenges in general mixed autonomy mobility

Complex dynamic models: Cascaded, discontinuous, hybrid

Many interacting agents: High-dimensional problems, information asymmetry

Human-behavior and reasoning : Stochastic, self-interested, and non-cooperative

Selected literature

Simulation-based traffic flow analysis: Bose, 2003; Shladover, 2012; Liu, 2018; Van

Arem, 2006; Schakel, 2010; Van Driel, 2010; Wang, 2017; Calvert, 2017; Goñi-Ros, 2019

Theoretical analysis (mainly platooning level): A. Talebpour, H. Mahmassani, 2016;

N. Mehr, R. Horowitz, 2018; Cui et al, 2017; G. Orosz, J. I. Ge et al. (Umich, from 2014)

Learning-based methods for mixed mobility: A. M. Bayen’s group at UCB.
Wu, C., Kreidieh, A., Parvate, K., Vinitsky, E., & Bayen, A. M. (2017). Flow: Architecture and

benchmarking for reinforcement learning in traffic control. arXiv preprint arXiv:1710.05465.
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Part II: Control-theoretic modeling and analysis
– Stability, controllability, and stabilizability

⇒



System modeling

System setups

a single-lane ring road with
circumference L consisting of one AV
and n− 1 HDVs.

The position, velocity and acceleration:
pi, vi and ai. The spacing of vehicle i:
si = pi−1 − pi.

⇒

HDV: car-following dynamics (e.g., OVM and IDM)

v̇i(t) = Fi (si(t), ṡi(t), vi(t)) , i = 2, . . . , n,

Equilibrium points ṡi(t) = 0, vi = v∗, i = 2, . . . , n

Fi (s∗i , 0, v
∗) = 0

Linearization: s̃i(t) = si(t)− s∗i , ṽi(t) = vi(t)− v∗.{
˙̃si(t) = ṽi−1(t)− ṽi(t),
˙̃vi(t) = αi1s̃i(t)− αi2ṽi(t) + αi3ṽi−1(t),

where αi1 = ∂Fi
∂si

, αi2 = ∂Fi
∂ṡi
− ∂Fi

∂vi
, αi3 = ∂Fi

∂ṡi
.
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System modeling

Autonomous vehicle dynamics

Control input u1(t) = a1(t).

Car-following dynamics: (s∗1 and v∗ has no relationship!){
˙̃s1(t) = ṽn(t)− ṽ1(t),
˙̃v1(t) = u(t).

System dynamics

Define the error state: x(t) =
[
xT

1 (t), xT
2 (t), . . . , xT

n(t)
]T

Linearized model
ẋ(t) = Ax(t) +Bu(t),

where

A =


C1 0 . . . . . . 0 C2

A22 A21 0 . . . . . . 0
0 A32 A31 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . 0 An2 An1

 , B =


B1

B2

B2

...
B2


with each block matrix defined as

Ai1 =

[
0 −1
αi1 −αi2

]
, Ai2 =

[
0 1
0 αi3

]
, C1 =

[
0 −1
0 0

]
, C2 =

[
0 1
0 0

]
, B1 =

[
0
1

]
, B2 =

[
0
0

]
.
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Analysis I: Stability for all human-driven vehicles

Suppose all vehicles are human-driven and dynamics are homogeneous

ẋ(t) = Âx(t),

where

Â =



A1 0 . . . . . . 0 A2

A2 A1 0 . . . . . . 0
0 A2 A1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 A2 A1 0
0 . . . . . . 0 A2 A1


.

Define ω = e
2πj
n , where j denotes the

imaginary unit,

Block-circulant matrix can be block-diagonalized

Â = (F ∗n ⊗ I2) · diag(D1, D2, . . . , Dn) · (Fn ⊗ I2)

For traffic systems with homogeneous HDVs only in a ring road, a stability condition is

α2
2 − α2

3 − 2α1 ≥ 0.

This result first appeared in

Cui, S., Seibold, B., Stern, R., & Work, D. B. (2017). Stabilizing traffic flow via a single autonomous

vehicle: Possibilities and limitations. In Intelligent Vehicles Symposium (IV) (pp. 1336-1341). IEEE.

Control-theoretic modeling and analysis 12/36



Analysis I: Stability for all human-driven vehicles

For traffic systems with homogeneous HDVs only in a ring road, a stability condition is

α2
2 − α2

3 − 2α1 ≥ 0.

For Optimal Velocity Model, F (si(t), ṡi(t), vi(t)) = α(V (si(t))− vi(t)) + βṡi(t),
the stability condition is reduced to

α+ 2β ≥ V̇ (s∗).

(a) (b)
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Analysis II: Controllability for mixed autonomy mobility

Linearized model

ẋ(t) = Ax(t) +Bu(t),

A =


C1 0 . . . . . . 0 C2

A22 A21 0 . . . . . . 0
0 A32 A31 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . 0 An2 An1


⇒

Controllability invariance under state feedback and linear transformation

(A,B)
state feedback−−−−−−−→ (Â, B)

linear transformation−−−−−−−−−−−→ (Ã, B̃)

1 Step 1: we apply û(t) = u(t) +Kx(t) = u(t)− (α1s̃1(t)− α2ṽ1(t) + α3ṽn(t))

⇜1
2

3

4

5

𝑛𝑛

𝑢𝑢(𝑡𝑡)

⇜1
2

3

4

5

𝑛𝑛

𝑢𝑢(𝑡𝑡)̂

⇜

𝑢𝑢(𝑡𝑡)

⇜

𝑢𝑢(𝑡𝑡)̂
1

2

3

4

5

n
1

2

3

4

5

n
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Analysis II: Controllability for mixed autonomy mobility

Controllability invariance under state feedback and linear transformation

(A,B)
state feedback−−−−−−−→ (Â, B)

linear transformation−−−−−−−−−−−→ (Ã, B̃)

1 Step 1: we apply û(t) = u(t) +Kx(t) = u(t)− (α1s̃1(t)− α2ṽ1(t) + α3ṽn(t))

2 Step 2: Block-diagonalization using the Fourier matrix x̃ = (Fn ⊗ I2)x

˙̃x = Ãx̃(t) + B̃û(t) =


D1

D2

. . .

Dn

 x̃(t) +
1√
n


B1

B1

...
B1

 û(t).

where

d

dt

[
x̃i1
x̃i2

]
=

[
0 −1 + ω(n−1)(i−1)

α1 −α2 + α3ω
(n−1)(i−1)

] [
x̃i1
x̃i2

]
+

[
0
1√
n

]
û(t), i = 1, . . . , n.

The first block is always uncontrollable! This corresponds to the ring structure
(zero eigenvalue).

x̃11 =
1√
n

(
(s1(t)− s∗c) +

n∑
i=2

(si(t)− s∗)

)
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Analysis II: Controllability for mixed autonomy mobility

Theorem 1: Mixed traffic flow with homogeneous HDVs

The mixed traffic flow in a ring road is not completely controllable. More precisely,
we have

rank
([
B̃, ÃB̃, . . . , Ã2n−1B̃

])
=

{
2n− 1, if α1 − α2α3 + α2

3 6= 0,

n, if α1 − α2α3 + α2
3 = 0.

The mixed traffic flow in a ring road is stabilizable!

Proof sketch:

If α1 − α2α3 + α2
3 6= 0, then there are no common eigenvalues between different

diagonal blocks Di and Dj . All the modes corresponding to non-zero eigenvalues
are controllable using the PBH test (ξTA = λA, ξTB = 0, ξ 6= 0)

If α1 − α2α3 + α2
3 6= 0, we have

det(λI −Di) = (λ+ α2 − α3)
(
λ+ α3 − α3ω

(n−1)(i−1)
)

= 0, i = 1, 2, . . . , n,

The eigenvalue λ = α3 − α2 < 0 repeated n times and n− 1 of them are
uncontrollable but all stable.
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Analysis II: Controllability for mixed autonomy mobility

Theorem 2: Mixed traffic flow with heterogeneous HDVs

The mixed traffic flow in a ring road is not completely controllable.

There exists one uncontrollable mode corresponding to a zero eigenvalue, and this
uncontrollable mode is stable.

It is stabilizable if we have,

α2
j1 − αi2αj1αj3 + αi1α

2
j3 6= 0, ∀i, j ∈ {1, 2, . . . , n}.

⇒

In both cases, the uncontrollable mode corresponds to the ring structure

ρT
0x (t) =

n∑
i=1

s̃i (t) =

n∑
i=1

si (t)−
n∑

i=1

s∗i .
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Analysis III: Reachability for mixed autonomy mobility

Question: How can a single autonomous vehicle guide the traffic flow to a desired
(higher or lower) velocity v∗?

Human-driven vehicles

Fi (s∗i , 0, v
∗) = 0⇒ v∗ :→ s∗

For autonomous vehicles, s∗1 can be designed
seperately.

Theorem 3: Reachability for mixed autonomy mobility

The traffic flow can reach the desired velocity v∗ if and only if the desired spacing
of the AV satisfies

s∗1 = L−
n∑

i=2

s∗i .

There is a reachable velocity range 0 ≤ v∗ < v∗max. (v∗max = F−1( L
n−1

) )
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Numerical results
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The existence of 5% AVs (1 out of 20) can bring 6% improvement on traffic
velocity
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Part III: Distributed optimal controller synthesis for
mixed mobility



Problem formulation: Distributed optimal control

Local available information

due to limits of communication capabilities

only partial information of the entire system is
available

Control law: u(t) = −Kx(t), K ∈ K denotes a
sparsity pattern
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Problem formulation: Distributed optimal control

H2 optimal control

ẋ(t) = Ax(t) +Bu(t) +Hw(t)

z(t) =

[
Q0.5

−R0.5K

]
x(t)

min
K

‖Gzω‖2

subject to u = −Kx,
K ∈ K,

Step 1: Standard reformulation

min
X,Y,Z

Tr(QX) + Tr(RY )

subject to AX +XAT −BZ − ZTBT +HHT � 0,[
Y Z

ZT X

]
� 0, X � 0, ZX−1 ∈ K.

Step 2: sparsity invariance (Luca, Zheng, Papachristodoulou & Kamagarpour, 2019)

min
X,Y,Z

Tr(QX) + Tr(RY )

subject to AX +XAT −BZ − ZTBT +HHT � 0,[
Y Z

ZT X

]
� 0, X � 0, Z ∈ T , X ∈ R.
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Numerical experiments: damping traffic waves

n = 20, L = 400m
one vehicle brakes at
3m/s2 for 3 seconds.

Available
information: 5
vehicles ahead and 5
vehicles behind

With all human-driven
vehicles

With our controller
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Numerical experiments: damping traffic waves

n = 20, L = 400m one vehicle brakes at 3m/s2 for 3 seconds.

Available information: 5 vehicles ahead and 5 vehicles behind

Figure: (a) All the vehicles are human-driven. (b)-(d) correspond to the cases where vehicle 2,11,20 is under

the perturbation, respectively.
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Numerical experiments: comparison

Compare with empirical methods: FollowerStopper and PI with Saturation (Stern,
2018)

(a) FollowerStopper (b) PI with Saturation

(c) Our method
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(d) Perturbation positions
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Part IV: Coordination of multiple autonomous
vehicles in mixed traffic

⇒



Optimal coordination as set function optimization

Main question: How to coordinate multiple autonomous vehicles in traffic flow? Is
platooning the optimal one?

Modeling

Human-driven vehicles (linearization){
˙̃si(t) = ṽi−1(t)− ṽi(t),
˙̃vi(t) = α1s̃i(t)− α2ṽi(t) + α3ṽi−1(t),

Autonomous vehicles{
˙̃si(t) = ṽi(t)− ṽi−1(t),
˙̃vi(t) = ui(t),

i ∈ S
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Optimal coordination as set function optimization

Set function optimization
max

S
J(S)

S ⊆ Ω, |S| = k

where Ω = {1, 2, . . . , n}, S is the indices of autonomous vehicles, and J : 2Ω → R
denotes a utility function to be designed.

Submodularity: (diminishing return property) a set function f : 2Ω → R is called
submodular if ∀A ⊆ B ⊆ Ω and ∀e ∈ Ω, we have

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)

Monotonicity: A set function f : 2Ω → R is called non-increasing if for all
A ⊆ B ⊆ Ω, it holds that

f(A) ≥ f(B)

Equivalent condition: A set function f : 2Ω → R is submodular if and only if the
derived set functions ∆f (· | e) : 2Ω\{e} → R, defined as

∆f (A | e) = f(A ∪ {e})− f(A), ∀A ⊆ Ω\{e}

is non-increasing.
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Optimal coordination as set function optimization

Case 1: each autonomous vehicle has a fixed CACC-type controller

For each autonomous vehicle i ∈ S, we implement the controller

ui(t) = (α1 − ks)s̃i(t) + (α2 − kv)ṽi(t) + α3ṽi−1(t)

Closed-loop system ẋ(t) = ASx(t) +Hw(t), y(t) = Qx(t).

Define the utility function as J(S) = −‖Gyw‖2H2

Penetration rate vs. Performance improvement: Introducing more autonomous
vehicles with fixed controllers has diminishing improvements to traffic systems.
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Optimal coordination as set function optimization

Case 2: redesign the controller for each autonomous vehicle

Consider a state feedback controller u(t) = −Kx(t).

Closed-loop system becomes

ẋ = (AS −BSK)x+Hw

z =

[
Q

1
2

−R
1
2K

]
x(t)

Consider the utility function

J(S) := −min
K

‖Gzw‖2H2

Set function optimization for optimal coordination

max
S

J(S)

S ⊆ Ω, |S| = k

This set function is not submodular, as we find explicit counterexamples.

In numerical simulations, we find two dominant patterns: platooning and uniform
distribution.
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Two dominant patterns: platooning and uniform distribution

Platooning

Uniform
distribution

Red circles, blue triangles,

and grey stars denote

uniform distribution, platoon

formation, and abnormal

patterns, respectively
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Coordination of autonomous vehicles beyond platooning

Performance at different scales

The classical idea of platooning is not the optimal one across different scenarios,
especially taking system-wide mobility into account.

More opportunities beyond platooning.

⇒
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Conclusion



Take-home message

Message 1: control-theoretic analysis of mixed-autonomy mobility. The
following system is not completly cobtrollable, but is stabilizable.

⇒

Message 2: The high potential of autonomous vehicles. They can be used as
mobile actuators to actively smooth and increase traffic velocity.

Message 3: Coordination of multiple autonomous vehicles beyond platooning.

⇒
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Topics beyond this talk

Unknown dynamics: incorporate reinforcement learning in mixed autonomy.

Other scenarios: multiple lanes, ramp metering, intersection, and other urban
scenarios;

Rigorous safety guarantees: e.g., develop distributed model predictive control for
autonomous vehicles, where rigorous safety constraints can be encoded.
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Thank you for your attention!
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Zheng, Y., Wang, J., & Li, K. (2019). Smoothing traffic flow via control of autonomous vehicles. under
2nd review, IEEE Internet of Things Journal, available at arXiv preprint arXiv:1812.09544.

Wang, J., Zheng, Y., Xu, Q., Wang, J., & Li, K. (2019, June). Controllability Analysis and Optimal
Controller Synthesis of Mixed Traffic Systems. In 2019 IEEE Intelligent Vehicles Symposium (IV) (pp.
1041-1047). IEEE.

Wang, J., Zheng, Y., Xu, Q., Wang, J., & Li, K. (2019). Cntrollability Analysis and Optimal Control of
Mixed Traffic Flow with Human-driven and Autonomous Vehicles. IEEE Transactions on Intelligent
Transportation Systems, under review.

Li K., Wang J., Zheng Y. Optimal formation of autonomous vehicles in mixed traffic systems, under
review, IFAC 2020.
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