Sample Complexity of Linear Quadratic Gaussian (LQG) Control for Output Feedback Systems

Yang Zheng ${ }^{1, \dagger}$, Luca Furieri ${ }^{2,3, \dagger}$, Maryam Kamgarpour ${ }^{2,4}, \quad \mathrm{Na} \mathrm{Li}^{1}$
${ }^{1}$ School of Engineering and Applied Sciences, Harvard University $\quad{ }^{2}$ Automatic Control Laboratory, ETH Zurich
${ }^{3}$ Laboratoire d'Automatique, EPF Lausanne
${ }^{4}$ Electrical and Computer Engineering, University of British Columbia

Model-based LQG Formulation
Model: a partially observed LTI system

$$
\begin{align*}
x_{t+1} & =A_{\star} x_{t}+B_{\star} u_{t}+B_{\star} w_{t}, \\
y_{t} & =C_{\star} x_{t}+v_{t} . \tag{1}
\end{align*}
$$

Optimal control problem:

$$
\begin{aligned}
\min _{u_{0}, u_{1}, \ldots \ldots} & \lim _{T \rightarrow \infty} \mathbb{E}\left[\frac{1}{T} \sum_{t=0}^{T}\left(y_{t}^{\top} Q y_{t}+u_{t}^{\top} R u_{t}\right)\right] \\
\text { subject to } & \text { (1). }
\end{aligned}
$$

Goal: Find optimal linear control policy

$$
\mathbf{u}(z)=\mathbf{K}(z) \mathbf{y}(z)
$$

minimizing (2).
Solution: Classical, e.g. observer/controller design with (model-based) Riccati equations.

> What if the model is completely unknown?
LQG - Unknown Model

Standard Assumption: Stable plant, i.e.,

$$
\rho\left(A_{\star}\right)<1 .
$$

Proposed Design Procedure

I) Compute an estimate $\hat{\mathbf{G}}$ of the input/output impulse response

$$
\mathbf{G}_{\star}(z)=C_{\star}\left(z I-A_{\star}\right)^{-1} B_{\star}
$$

Let $\epsilon=\|\boldsymbol{\Delta}\|_{\infty}:=\left\|\mathbf{G}_{\star}-\hat{\mathbf{G}}\right\|_{\infty}$ be the estimation error.
III) Design a near-optimal controller..

- robustly stabilizing for all $\|\boldsymbol{\Delta}\|_{\infty} \leq \epsilon$

Main contributions

> (1) End-to-end sample complexity bound on learning a robust LQG controller for open-loop stable plants.
> (2) Convex design of robust output-feedback controllers, enabled by the Input-Output Parametrization (IOP) [1].
> © LQG performance degrades linearly with the estimation error.

Alternative Design Philosophies

- Idea 1: First estimate $\hat{A}, \hat{B}, \hat{C}$, then design optimal LQG controller (Certainty Equivalent Controller [2])

$$
\rightarrow \text { may not stabilize }\left(A^{\star}, B^{\star}, C^{\star}\right)!
$$

- Idea 2: So... First estimate

$$
\left\|\hat{A}-A_{\star}\right\|, \quad\left\|\hat{B}-B_{\star}\right\|, \quad\left\|\hat{C}-C_{\star}\right\|
$$

and then design a robustly stabilizing controller.
This is non-trivial!

- SLS from [3] can deal with state-feedback
- State-space estimation errors are only valid up to an unknown change of variables [2]
I) Nonasymptotic Identification
- Estimate Markov parameters

$$
\hat{\mathbf{G}}=\left[\begin{array}{lll}
\hat{C} \hat{B} & \hat{C} \hat{A} \hat{B} & \cdots \hat{C} \hat{A}^{T-1} \hat{B}
\end{array}\right]
$$

using standard least-squares identification

- Adapt nonasymptotic bound from [4]

$$
\begin{aligned}
\left\|\mathbf{G}_{\star}-\hat{\mathbf{G}}\right\|_{\infty} & \leq \frac{R_{w}+R_{v}+R_{e}}{\sigma_{u}} \sqrt{\frac{T}{N}} \\
& +\Phi\left(A_{\star}\right)\left\|C_{\star}\right\|\left\|B_{\star}\right\| \frac{\rho\left(A_{\star}\right)^{T}}{1-\rho\left(A_{\star}\right)}
\end{aligned}
$$

$\rightarrow \sqrt{\frac{T}{N}}$: error 1) increases with modelling complexity T and 2) decreases with more data N
II) Robust Controller Synthesis
(1) Input-Output Parametrization (IOP) [1]

> Optimize over K
\equiv
Optimize over closed-loop responses $(\mathbf{Y}, \mathbf{U}, \mathbf{W}, \mathbf{Z})$

$$
\left[\begin{array}{ll}
\mathbf{Y} & \mathbf{W} \\
\mathbf{U} \mathbf{Z}
\end{array}\right]:=\left[\begin{array}{cc}
\left(I-\mathbf{G}_{\star} \mathbf{K}\right)^{-1} & \left(I-\mathbf{G}_{\star} \mathbf{K}\right)^{-1} \mathbf{G}_{\star} \\
\mathbf{K}\left(I-\mathbf{G}_{\star} \mathbf{K}\right)^{-1} & \left(I-\mathbf{K G}_{\star}\right)^{-1}
\end{array}\right]
$$

(2) Tractable Robust Optimization (\triangle)

$$
\begin{aligned}
& \min _{\gamma \in[0,1 / \epsilon)} \frac{1}{1-\epsilon \gamma} \min _{\hat{\mathbf{Y}}, \hat{\mathbf{W}}, \hat{\mathbf{U}}, \hat{\mathbf{Z}}}\left\|\left[\begin{array}{cc}
\sqrt{1+h(\epsilon, \alpha)} \hat{\mathbf{Y}} & \hat{\mathbf{W}} \\
\hat{\mathbf{U}} & \hat{\mathbf{Z}}
\end{array}\right]\right\|_{\mathcal{H}_{2}} \\
& \text { subject to }\left[\begin{array}{ll}
I & -\hat{\mathbf{G}}
\end{array}\right]\left[\begin{array}{cc}
\hat{\mathbf{Y}} & \hat{\mathbf{W}} \\
\hat{\mathbf{U}} & \hat{\mathbf{Z}}
\end{array}\right]=\left[\begin{array}{ll}
I & 0
\end{array}\right] \text {, } \\
& {\left[\begin{array}{cc}
\hat{\mathbf{Y}} & \hat{\mathbf{W}} \\
\hat{\mathbf{U}} & \hat{\mathbf{Z}}
\end{array}\right]\left[\begin{array}{c}
-\hat{\mathbf{G}} \\
I
\end{array}\right]=\left[\begin{array}{l}
0 \\
I
\end{array}\right] \hat{\mathbf{Y}}, \hat{\mathbf{W}}, \hat{\mathbf{Z}} \in \mathcal{R} \mathcal{H}_{\infty},} \\
& \|\hat{\mathbf{U}}\|_{\infty} \leq \min (\gamma, \alpha) \text {. }
\end{aligned}
$$

Remarks

- Program ($\mathbf{\Delta}$) is quasi-convex
- Inner program is convex
- Golden-ratio search over γ
- Constraint on $\|\hat{\mathbf{U}}\|_{\infty}$ yields robustness [5]
- Controller $\hat{\mathbf{K}}=\hat{\mathbf{U}} \hat{\mathbf{Y}}^{-1}$ stabilizes all $\hat{\mathbf{G}}$ with
$\left\|\hat{\mathbf{G}}-\mathbf{G}_{\star}\right\|_{\infty} \leq \epsilon^{-}$
- α is an hyper-parameter to be tuned

Main Theorem - Sample Complexity

If ϵ is small enough, the controller $\mathbf{K}=\hat{\mathbf{U}}_{\star} \hat{\mathbf{Y}}_{\star}^{-1}$ which is optimal for ($\mathbf{\Delta}$), is such that
i) \mathbf{K} stabilizes the true plant \mathbf{G}_{*},
ii) \mathbf{K} introduces a suboptimality of at most

$$
\frac{J\left(\mathbf{G}_{\star}, \mathbf{K}\right)^{2}-J\left(\mathbf{G}_{\star}, \mathbf{K}_{\star}\right)^{2}}{J\left(\mathbf{G}_{\star}, \mathbf{K}_{\star}\right)^{2}}
$$

$\leq 20 \epsilon\left\|\mathbf{U}_{\star}\right\|_{\infty}+\mathcal{O}(\epsilon)$,
or, in terms of how much data is available: $\frac{J\left(\mathbf{G}_{\star}, \mathbf{K}\right)^{2}-J\left(\mathbf{G}_{\star}, \mathbf{K}_{\star}\right)^{2}}{J\left(\mathbf{G}_{\star}, \mathbf{K}_{\star}\right)^{2}} \sim \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$

References

[1] Furieri, L., Zheng, Y., Papachristodoulou, A., \& Kamgarpour, M. (2019). An input-output parametrization of stabilizing controllers. Amidst Youla and system level synthesis. IEEE Control Systems Letters, 3(4), 1014-1019.
2] Mania, H., Tu, S., \& Recht, B. (2019). Certainty equivalence is efficient for linear quadratic control. arXiv preprint arXiv:1902.07826.
[3] Dean, S., Mania, H., Matni, N., Recht, B., Tu, S. (2019). On the sample complexity of the linear quadratic regulator. Foundations of Computational Mathematics, 1-47
[4] Oymak, S., \& Ozay, N. (2019, July). Non-asymptotic identification of lti systems from a single trajectory. In 2019 American control conference (ACC) (pp. 5655-5661). IEEE..
[5] Zhou, K., Doyle, J. C., \& Glover, K. (1996). Robust and optimal control (Vol. 40, p. 146). New Jersey: Prentice hall.

Acknowledgements

Yang Zheng and Na Li are supported by NSF career, AFOSR YIP, and ONR YIP.

Luca Furieri and Maryam Kamgarpour are supported by the ERC Starting Grant CONENE

