
Chordal Sparsity in Control and
Optimization of Large-scale Systems

Yang Zheng
Balliol College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

February 2019

To my wife, Mohen Zhang

Acknowledgements

I was very fortunate to have Prof. Antonis Papachristodoulou as my DPhil supervisor,
and I would like to thank him for his continued support, guidance, and encouragements.
Throughout our meetings and discussions, his insights and intuitions have shaped my
understanding of many topics in control and optimization. I will really miss those
discussions. I want to thank him for giving me the freedom in exploring different
directions during my DPhil study. He has provided many opportunities for me to travel
and introduced me to many people. This thesis and my future career would not have
been the same without him. I would also like to thank Prof. Mark Cannon and Prof.
Anders Rantzer for being my thesis examiners.

My thanks also go to Prof. Maryam Kamgarpour at ETH Zürich, who gave me the
opportunity to visit her group in September 2016. I would like to thank her for the kind
support and advice she offered, and for sharing insightful ideas in distributed control.
Many results in Part I and Part III of this thesis have been obtained in collaboration with
Giovanni Fantuzzi. It is my great pleasure to thank Giovanni for everything I learned
from him. I have really enjoyed all the discussions we had, and I look forward to my
next project with him. I am also grateful to Prof. Paul Goulart and Prof. Andrew Wynn
for their invaluable suggestions and inputs on first-order algorithms.

I have met many other wonderful people during my time at Oxford. I am grateful to
Mohamadreza Ahmadi for his kind advice during my first year. At that time, I shared
an office with James Scott-Brown, Goran Banjac, Bartolomeo Stellato, Gareth Pease,
and John Martin, who have always been very kind to provide help of all kinds. I would
particularly like to thank Richard Mason for his excellent ideas on chordal graphs, and Ross
Drummond for his warm support and careful proofreading. A special thank you goes to
Aivar Sootla for our interesting discussions on block factor-width-two matrices. I enjoyed
meeting with Luca Furieri during his visit in August 2018, when we had very inspiring
discussions on decentralized optimal control. Many thanks also to James Anderson, Dhruva
Raman, Harrison Steel, Licio Romao, Michael Garstka, Xiaoqing Chen, Shuhao Yan, and
all the other members of Control Group for making it such an enjoyable place to work.

I would also like to acknowledge Prof. Lieven Vandenberghe, Prof. Michal Kočvara,
Prof. Na Li, Prof. Pablo Parrilo, Prof. Mario Sznaier, and Prof. Ufuk Topcu, for inviting
me to give seminars, and for making time to talk with me and offering supportive advice.

Most of all, I wish to thank my family for their support and encouragements, especially
my parents Jianxin Zheng and Fuyan Wu. Finally, to Mohen Zhang, with all of my love,
I dedicate this thesis to you. My journey would not have been the same without you.

The work in this thesis was supported in part by the Clarendon Scholarship and
the Jason Hu Scholarship.

Abstract

Many large-scale systems have inherent structures that can be exploited to facilitate their
analysis and design. This thesis investigates how chordal graph properties can be used
to develop scalable methods for solving three classes of problems: sparse semidefinite
programs (SDPs), distributed control of networked systems, and sum-of-squares (SOS)
programs. By exploiting the properties of chordal graphs and sparse positive semidefinite
matrices, we present decomposition methods that are able to scale these problems
to much larger instances.

The first part of this thesis proposes a new conversion framework for large-scale SDPs
characterized by chordal sparsity. This framework is analogous to standard conversion
techniques for interior-point methods, but is more suitable for the application of first-order
methods. We develop efficient algorithms based on the alternating direction method of
multipliers (ADMM) for sparse SDPs in either primal or dual standard form, and for their
homogeneous self-dual embedding. The algorithms are made available in the open-source
conic solver CDCS. CDCS is the first open-source first-order solver that exploits chordal
decomposition and can detect infeasible problems. We demonstrate the performance
of CDCS in standard analysis problems of large-scale networked systems.

The second part of this thesis is concerned with solution scalability and model privacy
in distributed control of networked systems. Specifically, we apply chordal decomposition
in sparse Lyapunov-type linear matrix inequalities arising from structured stabilization
and optimal decentralized control of networked systems. We introduce a sequential method
based on the clique-intersection property of a clique tree for structured stabilization. This
strategy greatly improves the computational efficiency for large-scale sparse systems.
In addition, we propose an ADMM algorithm that can maintain model privacy when
solving the optimal decentralized control problem.

Finally, we consider large-scale SOS programs. We identify an inherent partial
orthogonality in the formulation when recasting general SOS programs using the stan-
dard monomial basis. In addition, we extend the well-established chordal decompo-
sition/completion results for sparse positive semidefinite matrices to a subset of SOS
matrices. Using a new graph-theoretic viewpoint, we build an explicit relationship between
chordal decomposition in SOS optimization and two other recent techniques — DSOS and
SDSOS optimization. We demonstrate that chordal decomposition can bring significant
speed-ups for large-scale sparse SOS programs.

Contents

Abstract vii

Contents xii

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Outline and contributions . 3

2 Preliminaries: convex optimization, chordal graphs, and sparse matrix
decomposition 7
2.1 Convex optimization . 7

2.1.1 Convex sets and convex functions 7
2.1.2 Lagrangian duality . 8
2.1.3 Linear matrix inequalities . 9
2.1.4 Semidefinite programs . 12

2.2 Chordal graphs . 13
2.2.1 Chordal graph . 13
2.2.2 Perfect elimination orderings . 14
2.2.3 Maximal cliques and clique trees 15

2.3 Sparse matrix decomposition . 17
2.3.1 Sparse symmetric matrices . 17
2.3.2 Sparse positive semidefinite matrix cone 18
2.3.3 Positive semidefinite completable matrix cone 20

2.4 Block matrices and chordal decomposition 22
2.4.1 Sparse block matrices . 23
2.4.2 Extension of chordal decomposition theorems 24
2.4.3 Proofs of Theorems 2.17 and 2.18 26

I Large-scale Sparse Semidefinite Programs (SDPs) 31

3 Chordal decomposition in sparse semidefinite programs 33
3.1 Introduction . 33

3.1.1 Statement of results . 35
3.1.2 Outline . 36

ix

x Contents

3.2 Chordal decomposition of sparse SDPs . 36
3.2.1 Domain-space decomposition . 37
3.2.2 Range-space decomposition . 38

3.3 ADMM for domain- and range-space decompositions of sparse SDPs . . . 39
3.3.1 Vectorized forms . 40
3.3.2 ADMM for the domain-space decomposition 41
3.3.3 ADMM for the range-space decomposition 44
3.3.4 Equivalence between the primal and dual ADMM algorithms . . . 46

3.4 Homogeneous self-dual embedding of domain- and range-space decomposed
SDPs . 47
3.4.1 Homogeneous self-dual embedding 48
3.4.2 A simplified ADMM algorithm . 49

3.5 Complexity analysis via flop count . 53
3.6 Implementation and numerical experiments 55

3.6.1 CDCS . 55
3.6.2 Sparse SDPs from SDPLIB . 57
3.6.3 Nonchordal SDPs . 60
3.6.4 Random SDPs with block-arrow patterns 62
3.6.5 Comparison with SparseCoLO . 63

3.7 Conclusion . 64
3.8 Proofs of Chapter 3 . 64

3.8.1 Proof of Proposition 3.6 . 64
3.8.2 Proof of Proposition 3.7 . 65
3.8.3 Proof of Proposition 3.8 . 67

4 Scalable systems analysis using CDCS 69
4.1 Introduction . 69
4.2 Problem statement . 70
4.3 Chordal decomposition in sparse SDPs . 72
4.4 Scalable performance analysis of sparse systems 73

4.4.1 Stability verification . 74
4.4.2 H2 performance . 75
4.4.3 H∞ performance . 76

4.5 Numerical simulations . 78
4.5.1 A chain of subsystems . 78
4.5.2 Networked systems over a scale-free graph 80

4.6 Conclusion . 81

II Distributed Control of Networked Systems 83

5 Scalable design using chordal decomposition 85
5.1 Introduction . 85
5.2 Problem statement . 88
5.3 Design of structured feedback gains using convex restriction 90
5.4 Scalable solution via chordal decomposition 91

5.4.1 Chordal characterization of system data 91
5.4.2 Decomposition of positive semidefinite constraints 92
5.4.3 Sequential design over a clique tree 92

Contents xi

5.4.4 Guaranteed minimum decay rate 95
5.5 Illustrative examples . 95

5.5.1 Hierarchical systems . 96
5.5.2 A practical example: coupled inverted pendula 97
5.5.3 General networked systems . 98

5.6 Conclusion . 100

6 Distributed design of decentralized controllers 101
6.1 Introduction . 101
6.2 Problem statement . 103
6.3 Chordal decomposition in optimal decentralized control 104

6.3.1 Convex restriction of the optimal decentralized control problem . . 105
6.3.2 Chordal decomposition of the restriction problem 106

6.4 A distributed solution via ADMM . 107
6.4.1 A simple example . 108
6.4.2 The general case . 111

6.5 Numerical examples . 112
6.5.1 First-order systems with acyclic directed graphs 113
6.5.2 Coupled inverted pendula . 113
6.5.3 A chain of unstable second-order coupled systems 114

6.6 Conclusion . 116

III Large-scale Sum-of-squares (SOS) Programs 117

7 Partial orthogonality in general SOS programs 119
7.1 Introduction . 119

7.1.1 Related work . 121
7.1.2 Main contributions . 122
7.1.3 Outline . 122

7.2 Preliminaries . 123
7.2.1 General SOS programs . 123
7.2.2 SDP formulation . 124

7.3 Partial orthogonality in SOS programs . 125
7.4 A fast ADMM-based algorithm . 127

7.4.1 The ADMM algorithm . 127
7.4.2 Application to SOS programming 128

7.5 Matrix-valued SOS programs . 130
7.6 Weighted SOS constraints . 132
7.7 Numerical experiments . 135

7.7.1 Constrained polynomial optimization 135
7.7.2 Finding Lyapunov functions . 137
7.7.3 A practical example: Nuclear receptor signalling 139

7.8 Conclusion . 139

8 Decomposition and completion of sum-of-squares matrices 141
8.1 Introduction . 141
8.2 Nonnegativity and sum-of-squares . 144
8.3 Decomposition of sparse SOS matrices . 144

xii Contents

8.4 Completion of sparse SOS matrices . 147
8.5 Application to matrix-valued SOS programs 149
8.6 Conclusion . 151

9 Chordal decomposition in sparse SOS optimization 153
9.1 Introduction . 153
9.2 Preliminaries . 155

9.2.1 SOS, DSOS, and SDSOS polynomials 155
9.2.2 Correlatively sparse polynomials 156

9.3 Revisiting sparse SOS decompositions . 157
9.4 Relating SSOS to sparse DSOS/SDSOS 160
9.5 Extension to sparse matrix-valued polynomials 162

9.5.1 Sparse SOS, SDSOS, and DSOS matrices 163
9.5.2 Reduction to the scalar analysis 165

9.6 Numerical examples . 167
9.6.1 Lower bounds on scalar polynomials 167
9.6.2 Eigenvalue bounds on matrix polynomials 168
9.6.3 Co-positive programming . 169
9.6.4 Lyapunov stability analysis . 170

9.7 Conclusion . 171

10 Conclusion and outlook 173
10.1 Summary . 173
10.2 Future research directions . 175

Appendices

A On block-diagonal Lyapunov functions 181
A.1 Block-diagonal Lyapunov functions . 181
A.2 Strongly decentralized stabilization . 182

A.2.1 Fully actuated systems . 182
A.2.2 Weakly coupled systems . 183

References 187

List of Figures

2.1 (a) Feasible set of the LMI in Example 2.1, enclosed with the ellipse
x1−2x2−2x2

1+4x1x2−4x2
2 ≥ 0. (b) Feasible set of the LMI in Example 2.2,

which is a 3-dimensional elliptope. 10
2.2 (a) Nonchordal graph: the cycle (1-2-3-4) is of length four but has no

chords. (b) Chordal graph: all cycles of length no less than four have a
chord; the maximal cliques are C1 = {1, 2, 4} and C2 = {2, 3, 4}. 14

2.3 Examples of chordal graphs: (a) a banded graph; (b) a block-arrow graph;
(c) a generic chordal graph. 14

2.4 Sparsity pattern of a positive definite matrix A ∈ Sn++(E , 0) with a
chordal pattern and its Cholesky factor before/after performing a perfect
elimination ordering permutation: (a) pattern of A; (b) pattern of PσAPT

σ ;
(c) pattern of the Cholesky factor of A; (d) pattern of the Cholesky factor
of PσAPT

σ . 15
2.5 Illustration of the chordal graph decomposition: (a) a chordal graph with

six nodes; (b) maximal cliques; (c) a clique tree that satisfies the clique
intersection property. 16

2.6 Sparsity patterns of 8×8 matrices corresponding to Figure 2.3(a)-Figure 2.3(c),
respectively: (a) banded sparsity pattern; (b) block-arrow sparsity pattern;
(c) a generic sparsity pattern. 17

2.7 Joint feasible set of the decomposed LMIs in (2.18): (a) projection onto the
(x1, x2) plane, (b) projection onto the (x1, (Z2)11) plane, (c) projection onto
the (x2, (Z2)11) plane. Panel (a) also shows the boundary of the feasible
set of the original 3× 3 LMI (2.17). 20

2.8 Summary of duality between Sn+(E , 0) and Sn+(E , ?) and duality between
Theorem 2.10 and Theorem 2.13 for a chordal graph G(V, E) with maximal
cliques C1, . . . , Ct. 21

2.9 (a) Feasible set of the positive semidefinite completable condition in (2.20):
(b) projection onto the (x1, x2) plane, (c) projection onto the (x2, x3) plane,
(c) projection onto the (x1, x3) plane. 22

2.10 A nonchordal graph: the cycle (1-3-5-4) is of length four but with no chords. 23

xiii

xiv List of Figures

2.11 Sparsity patterns SNα (E , 0) with different partitions, where E denotes the
edge set of the graph in Figure 2.10: (a) scalar case α = {1, 1, 1, 1, 1}; (b)
uniform block case α = {3, 3, 3, 3, 3}; (c) random block case α = {2, 8, 4, 6, 2}. 24

2.12 Hyper-graph interpretations of sparse matrices with different partition α
in Example 2.19. (a) a chain of three nodes with α = {1, 1, 1}, where
maximal cliques are C1 = {1, 2} and C2 = {2, 3}, corresponding to (2.29);
(b) a hyper-graph for partition α = {2, 1, 2} where maximal cliques are
C1 = {1, 2, 3} and C2 = {3, 4, 5}, corresponding to (2.30); (c) another hyper-
graph for partition α = {2, 2, 2} where maximal cliques are C1 = {1, 2, 3, 4}
and C2 = {3, 4, 5, 6}, corresponding to (2.31). In the panels (a)-(c), the
nodes with the same color can be viewed in the same group. 26

3.1 Duality between the original primal and dual SDPs, and the decomposed
primal and dual SDPs. 39

3.2 Aggregate sparsity patterns of the nonchordal SDPs in [25]; see Table 3.6
for the matrix dimensions. 60

3.3 Block-arrow sparsity pattern (dots indicate repeating diagonal blocks). The
parameters are: the number of blocks, l; block size, d; the width of the
arrow head, h. 62

3.4 Average CPU time (in seconds) per 100 iterations for SDPs with block-
arrow patterns. Left to right: varying the number of constraints; varying
the number of blocks; varying the block size. 63

4.1 (a) Sparsity pattern of ATP + PA with maximal cliques C1 = {1, 2, 4} and C2 =

{1, 3, 4}. (b) Corresponding sparsity pattern of the H∞ performance matrix (4.15),

where the maximal cliques are C1 = {1, 2, 4}, C2 = {1, 3, 4}, C3 = {1, 5, 9}, C4 =

{2, 6, 10}, C5 = {3, 7, 11} and C6 = {4, 8, 12}. 77
4.2 A chain of n subsystems: (a) each subsystem Gi has physical interactions

with its nearest two neighbouring ones, except the first one and the last
one which only interacts with one nearest neighbouring subsystem; (b) a
simplified line graph illustration. 79

4.3 CPU time in seconds required by SeDuMi, SCS and CDCS to solve the
SDP formulations of the analysis problems of a chain of subsystems. CDCS
exploits the chordal decomposition in solving sparse SDPs. 79

4.4 (a) A scale free graph of 200 nodes in our experiment. The chordal extension
has 178 maximal cliques and the size of the largest maximal clique is 23
(highlighted in blue); (b) Distribution of the maximal clique size in a
chordal extension of the scale-free graph. 80

List of Figures xv

5.1 Example of hierarchical systems: (a) plant graph Gp(V, Ep) where only the
subsystems in upper layer have dynamical influence on those in lower layer;
(b) communication graph Gc(V, Ec), where only the nodes in upper layer
can use the state information of the nodes in lower layer. 88

5.2 Illustrative diagram for the steps of chordal characterization. i) Define
Gp,Gc for plant and communication structure; ii) Get mirror graphs Gpr ,Gcr ;
iii) Define a super-graph Gs to characterize the whole structure; iv) Finally,
obtain Gex by making a chordal extension to Gs. 92

5.3 Chordal extension and clique tree for the hierarchical system in Figure 5.1.
(a) Chordal graph Gex, where two undirected edges (in blue) are added. (b)
a clique tree. For the breadth-first tree traversal, we start from the root
node C1, and then explore the neighbouring cliques C2, C3, C4 in the second
layer before moving to the next level neighbours C5, C6. 93

5.4 (a) Hierarchical systems over a circular tree with 4 layers and 3 branches.
The information flow is bottom-up but only dynamics of nodes in the upper
layer have influence on those in the lower layer. (b) Time consumption (in
seconds) comparison for solving the structured feedback gains over circular
trees. 97

5.5 A network of three coupled inverted pendula. 98
5.6 Chordal decomposition of the coupled inverted pendula: (a) maximal

cliques; (b) clique tree. 98
5.7 Exponential decay of ‖x(t)‖ using the centralized computation and the

sequential computation. 99
5.8 Time consumption (in seconds) comparison for solving structured feedback

gains: (a) general systems with bounded maximal clique size (the largest
maximal clique size is five); (b) general systems with 100 nodes when
varying the largest maximal clique size. 99

6.1 Illustration of the ADMM algorithm for solving (6.16): cliques C1 = {1, 2}
and C2 = {2, 3} can serve as two computing agents and the overlapping
node 2 plays a role of coordination by updating the axillary variables. . . 110

6.2 Illustration of the ADMM algorithm for solving (6.8) corresponding to the
example (6.27): the cliques C1 = {1, 2, 4} and C2 = {2, 3, 4} can serve as
two computing agents and the overlapping nodes play a role of coordination
by updating the axillary variables. 113

6.3 Response of the closed-loop inverted pendula using the decentralized
controller computed by the ADMM algorithm: (a) vertical angle θi of
each pendulum; (b) horizontal displacement yi of each pendulum. 114

xvi List of Figures

6.4 (a) A chain of five nodes, where each subsystem is a second-order unstable
subsystem coupled with its neighbours, as shown in (6.28); (b) Four
maximal cliques in this system Ci = {i, i+ 1}, i = 1, 2, 3, 4, which serve as
four computing agents relying only on the model data within each clique;
the overlapping nodes 2, 3, 4 play a role of coordination. 115

6.5 Cumulative plot of the fraction of 100 random trails of (6.28) that required
a given number of iterations to converge. 116

7.1 Sparsity patterns for (a) AAT, (b) A1AT
1 , and (c) A2AT

2 for problem
sosdemo2 in SOSTOOLS [80]. 126

7.2 Average CPU time per 100 iterations for the SDP relaxations of: (a) the
POP (7.48); (b) the Lyapunov function search problem. 139

9.1 Graph patterns for polynomial (9.10): (a) the correlative sparsity pattern
G(V, E) of (9.10) is a line graph; (b) the corresponding hyper-graph
Gd(Vd, Ed) is chordal with maximal cliques Cd1 = {1, x1, x2}, Cd2 = {1, x2, x3}.159

9.2 Graph pattern for polynomial yTPy in (9.24). 166
9.3 Block-arrow sparsity pattern (dots indicate repeating diagonal blocks). The

parameters are: the number of blocks, l; block size, e; the width of the
arrow head, h. 169

List of Tables

3.1 Details of the SDPLIB problems considered in this chapter. 58
3.2 Results for two small SDPs, theta1 and theta2, in SDPLIB. 58
3.3 Results for two infeasible SDPs in SDPLIB. An objective value of +Inf

denotes infeasiblity. Results for the primal-only and dual-only algorithms
in CDCS are not reported since they cannot detect infeasibility. 58

3.4 Results for four large sparse SDPs in SDPLIB, maxG11, maxG32, qpG11 and
qpG51. 59

3.5 Average CPU time per iteration (in seconds) for the SDPs from SDPLIB. 59
3.6 Summary of chordal decomposition for the chordal extensions of the

nonchordal SDPs form [25]. 60
3.7 Results for large-scale SDPs with nonchordal sparsity patterns form [25].

Entries marked *** indicate that the problem could not be solved due to
memory limitations. 61

3.8 Average CPU time per iteration (in seconds) for the nonchordal SDPs
form [25]. 61

3.9 Average CPU time (×10−2 s) required by the affine projection steps in
CDCS-primal, CDCS-dual, and CDCS-hsde as a function of the number
of constraints (m) for l = 100, d = 10, and h = 20. 63

3.10 Results for four large sparse SDPs in SDPLIB using SparseCoLO+SeDuMi.
Entries marked ∗ ∗ ∗ indicate that the problem could not be solved due to
memory limitations. 64

4.1 Approximated H2 and H∞ performance of a chain of subsystems computed
by different solvers. 80

4.2 Performance of different solvers to solve the analysis problems for a system
of 200 subsystems over a scale-free netowrk. 81

5.1 Computing sequences, structured gains and computing time for the hierar-
chical system shown in Figure 5.1. 96

6.1 Comparison of the proposed ADMM algorithm, sequential approach [41],
localized LQR and truncated LQR design for system (6.28). 115

xvii

xviii List of Tables

7.1 CPU time (in seconds) to solve the SDP relaxations of (7.48). N is the
size of the largest PSD cone, m is the number of constraints, t is the size
of the matrix factorized by CDCS-sos. 136

7.2 Terminal objective value from interior-point solvers, SCS-direct, SCS-
indirect and CDCS-sos for the SDP relaxation of (7.48). 137

7.3 CPU time (in seconds) to solve the SDP relaxations of (7.3a)-(7.3b). N is
the size of the largest PSD cone, m is the number of constraints, t is the
size of the matrix factorized by CDCS-sos. 138

8.1 CPU time (in seconds) required to solve (8.18) using different formulations.150
8.2 Objective value γ for (8.18) using different formulations. 150

9.1 Details of problem types for SOS, SSOS, SDSOS, and SOS optimization
with degree 2d polynomials in n variables. The value m is the size of the
largest clique of the underlying correlative sparsity graph G(V, E); for many
problem instances, m� n. 161

9.2 Optimal γ for the SOS/SSOS/SDSOS/DSOS relaxations of problem (9.25),
as a function of the number of variables n. 167

9.3 CPU time, in seconds, required by MOSEK to solve the SOS/SSOS/SDSOS/DSOS
relaxations of problem (9.25), as a function of the number of variables n. . 168

9.4 Optimal γ for the SOS/SSOS/SDSOS/DSOS relaxations of problem (9.26),
as a function of the matrix size r. 168

9.5 CPU time, in seconds, required by MOSEK to solve the SOS/SSOS/SDSOS/DSOS
relaxations of problem (9.26), as a function of the matrix size r. 169

9.6 Optimal γ for the SOS/SSOS/SDSOS/DSOS relaxations of problem (9.27)
with block size e = 3 and arrow head size h = 2, as a function of the
number of blocks, l. 170

9.7 CPU time, in seconds, required by MOSEK to solve the SOS/SSOS/SDSOS/DSOS
relaxations of problem (9.27). Results are given as a function of the number
of blocks, l, for block size e = 3 and arrow head size h = 2. 170

9.8 CPU time, in seconds, required by MOSEK to construct a quadratic
Lyapunov function for a locally stable, degree-3 polynomial system of the
form (9.28). 171

Notation

Sets

N Natural integers {0, 1, 2, . . .}
R Real numbers
Rn Real vectors of dimension n (n× 1 matrices)
Rn×m Real matrices of dimension n×m
R+ Nonnegative real numbers
Rn+ Nonnegative orthant
Sn Symmetric matrices of dimension n× n

Sn+(Sn++) Symmetric positive semidefinite (definite) matrices of
dimension n× n

Definition and inequalities

A ≡ B A and B are equivalent
A := B A is defined by B
A−B � 0 A−B is positive semidefinite
A−B � 0 A−B is positive definite
A−B � 0 B −A is positive semidefinite
A−B ≺ 0 B −A is positive definite

Vectors and matrices

I Identity matrix
XT Transpose of matrix X
Trace(X) Trace of matrix X
A⊗B Kronecker product between matrices A and B

diag(X1, . . . , Xn) Block-diagonal matrix with X1, . . . , Xn on its diagonal
blocks

vec(A) Vector by stacking columns of A ∈ Sn
mat(x) Inverse operator of vec
〈x, y〉 Inner product of vectors x and y, i.e., 〈x, y〉 = xTy

〈A,B〉 Inner product of matrices A and B, i.e., 〈A,B〉 =
Trace(ATB)

xix

xx List of Tables

Acronyms

ADMM Alternating direction method of multipliers
FOM First-order method
HSDE Homogeneous self-dual embedding
IPM Interior-point method
LMI Linear matrix inequality
LQR Linear quadratic regulator
PSD Positive semidefinite
QI Quadratic invariance
SDP Semidefinite program
SOS Sum-of-squares

1
Introduction

1.1 Motivation

Large-scale systems have attracted increasing attention in recent years [1, 2], since they
appear in a wide range of engineering applications, including communication networks,
vehicle formations, and the smart grid. Despite differences in their nature, these systems
share some common features, e.g., dynamical properties imposed by the relevant physical
laws and sparsity in the interconnection topology. The objective of this thesis is to
investigate how this inherent sparsity can be used to develop scalable methods for control
and optimization of large-scale systems.

One common but non-trivial approach is to find a convex formulation or a tight convex
relaxation, since typical convex optimization problems can be solved using well-established
interior-point methods in polynomial time [3, 4]. In the past decades, significant efforts
have been devoted to casting real-world problems into a convex optimization framework.
For instance, a quadratic invariance (QI) property was identified in [5] to recast the
problem of optimal decentralized control into a convex problem. A zero-duality-gap
condition for optimal power flow problems was derived in [6], for which a global optimum
solution to the optimal power flow problem can be retrieved by solving semidefinite
programs (SDPs). The sum-of-squares (SOS) technique was introduced in [7, 8], which
can handle many analysis and synthesis problems of nonlinear polynomial systems using
SDPs [9]. The interested reader is referred to [10] for extensive applications of convex
optimization in linear systems theory, and to [11] for an excellent survey on applying
semidefinite optimization in real algebraic geometry.

The framework of convex optimization (especially semidefinite optimization) offers
powerful capabilities for the analysis and design of many engineering applications. However,
in practice, the scale of systems that can be analyzed and designed is still limited by
computational resources. This is because the polynomials that bound the computational
complexity of SDPs grow rapidly as a function of the instance size. The main motivation

1

2 1.1. Motivation

for this thesis is that many real-world large-scale systems have inherent structures and that
many of them are sparse in their topological connections. Moreover, in many applications,
this sparsity structure can be inherited in the resulting optimization problems, such as
network node localization [12], convex relaxations of optimal power flow problems [6],
and sparse linear systems analysis [13]. Therefore, it is important to exploit this inherent
sparsity to solve the associated optimization problems more efficiently.

In particular, this thesis focuses on exploiting the relationship between chordal
graphs and positive semidefinite matrices to solve sparse SDPs that arise in control
and optimization of large-scale systems more efficiently. Chordal graphs are a class of
undirected graphs where every cycle of length greater than three has a chord (a precise
definition will be given in Chapter 2) [14]. Chordal graphs are a well-studied object in
graph theory [15]. Several combinatorial optimization problems that are hard on general
graphs can be solved efficiently for chordal graphs. Examples include the graph coloring
problem and the problem of finding the largest maximum clique in a graph [16]. In
numerical algebra, chordal graphs are strongly related to the zero fill-in property during
Cholesky factorization of sparse positive definite matrices, and can facilitate the solution of
sparse linear equations [17]. Also, chordal graph properties have been applied to maximum
likelihood estimation for sparse graphical models [18].

The theory between chordal graphs and sparse SDPs originates from two important
decomposition results, which were proven in [19–22]. These two decomposition results
essentially reduce a large sparse positive semidefinite (PSD) cone or positive semidefinite
completable cone into a set of smaller and coupled cones (see Section 2.3 for details).
This decomposition idea was first applied in interior-point methods for sparse semidefinite
optimization by Fukuda et al. [23]. A conversion method utilizing the decomposition of
both the sparse PSD cone and PSD completable cone was introduced for the primal side
and dual side of SDPs in [24]. Then, choral graph techniques were exploited to develop fast
recursive algorithms to evaluate the function values and derivatives of the barrier functions
for sparse SDPs in [25]. The chordal decomposition results that underpin the conversion
method of [23, 24] are also important for first-order algorithms [26, 27]. Recently, this
line of results has been used in a number of applications, including optimal power flow
problems [28–30], SOS optimization [31, 32], and sparse systems analysis [13, 33, 34]. A
comprehensive survey on chordal graphs and semidefinite optimization can be found in [15].

This thesis exploits chordal graph properties to develop new scalable methods for
control and optimization of sparse large-scale systems. The results in this thesis are
categorized into three parts: large-scale sparse semidefinite programs (SDPs) (Part I),
distributed control of networked systems (Part II), and large-scale sum-of-squares (SOS)
programs (Part III).

1. Introduction 3

1.2 Outline and contributions

We now provide an outline of the thesis, summarizing the main contributions of each
chapter. Details of relevant previous work are discussed separately in each chapter.

Chapter 2: Convex optimization and chordal decomposition play a central role
throughout the thesis. This chapter first covers a brief overview of convex optimization,
focusing on Lagrangian duality, linear matrix inequalities, and semidefinite programs.
Some preliminaries on chordal graphs and their relation to sparse matrix decomposition
are discussed subsequently, with a focus on the duality relationship between the matrix
decomposition results. This chapter also introduces basic definitions of block partitioned
matrices, and extends two key chordal matrix decomposition theorems into the case
of sparse block matrices.

Part I: large-scale sparse semidefinite programs (SDPs)

The first part of this thesis is devoted to exploiting the potential of chordal decomposition
in general sparse SDPs and consists of Chapters 3 and 4.

Chapter 3: In this chapter, we employ chordal decomposition to reformulate a large
and sparse semidefinite program (SDP), either in primal or dual standard form, into
an equivalent SDP with smaller positive semidefinite (PSD) constraints. In contrast
to previous approaches, the decomposed SDP is suitable for the application of first-
order operator-splitting methods, enabling the development of efficient and scalable
algorithms. In particular, we apply the alternating direction method of multipliers
(ADMM) to solve decomposed primal, dual, and homogeneous self-dual embedding
forms of SDPs. All algorithms are implemented in the open-source MATLAB solver
CDCS [35]. Numerical experiments demonstrate the computational advantages of the
proposed methods compared to common state-of-the-art solvers. The results in this
chapter have been published in [36–38]1.

Chapter 4: This chapter demonstrates the performance of CDCS [35] on scalable
analysis of linear networked systems, including stability, H2, and H∞ performance. The
main strategy is to exploit any sparsity within these analysis problems and use chordal
decomposition. By choosing block-diagonal Lyapunov functions, we decompose large PSD
constraints in all of the analysis problems into multiple smaller ones depending on the
maximal cliques of the system graph. This makes the solutions more computationally
efficient via CDCS [35]. The results in this chapter have been published in [39].

1This line of work was in collaboration with Giovanni Fantuzzi. I initiated the research, and we worked
together on the formulation. Giovanni Fantuzzi implemented the primal and dual algorithms, and I
focused on the implementation of the homogeneous self-dual embedding algorithm, complexity analysis,
and extensive numerical testing. I led the writing of [36–38].

4 1.2. Outline and contributions

Part II: distributed control of networked systems

Part II of the thesis applies chordal decomposition in the distributed control of networked
systems, focusing on solution scalability and model privacy. This part of the thesis
includes the following two chapters.

Chapter 5: In this chapter, we consider the problem of designing static feedback gains
subject to a priori structural constraints. By exploiting the underlying sparsity properties
of the problem, and using chordal decomposition, we propose a scalable sequential
algorithm to obtain structured feedback gains that stabilize a large-scale system. Several
examples demonstrate the efficiency and scalability of the proposed design method. The
results in this chapter have been published in [40, 41].

Chapter 6: Synthesizing decentralized controllers in a distributed fashion is desirable
due to privacy concerns of model data in certain complex systems. In this chapter, we
propose a distributed design method for optimal decentralized control by exploiting
the underlying sparsity properties of the problem. Our method combines chordal
decomposition of sparse block matrices with the ADMM framework. In our algorithm,
the subsystems only need to share their model data with their neighbours, not centrally
or globally. The results in this chapter have been summarized in [42].

Part III: large-scale sum-of-squares (SOS) programs

This part of the thesis, consisting of Chapters 7 — 9, focuses on exploiting sparsity in
SOS programs to facilitate the solution scalability.

Chapter 7: This chapter focuses on general SOS programs. We first show that the
constraint matrices of the SDP arising in SOS programs possess a structural property
that we call partial orthogonality. Then, we leverage partial orthogonality to develop
a fast first-order method for the solution of the homogeneous self-dual embedding of
SDPs describing SOS programs. The resulting algorithm has been implemented as a new
package in the solver CDCS. The results in this chapter have been published in [43].

Chapter 8: This chapter introduces a notion of decomposition and completion of SOS
matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns
can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero
only on certain principal submatrices. Also, the completion of an SOS matrix is equivalent
to a set of SOS conditions on its principal submatrices and a consistency condition on the
Gram representation of the principal submatrices. These results are partial extensions of
chordal decomposition and completion of constant matrices to matrices with polynomial
entries. Chapter 8 is based on the work in [44].

Chapter 9: This chapter investigates the relation between three tractable relaxations
for optimizing over sparse non-negative polynomials: sparse sum-of-squares (SSOS)

1. Introduction 5

optimization, diagonally dominant sum-of-squares (DSOS) optimization, and scaled
diagonally dominant sum-of-squares (SDSOS) optimization. We show that for polynomials
with chordal correlative sparsity, DSOS/SDSOS optimization is provably more conservative
than SSOS optimization. Also, SSOS optimization promises better scalability compared to
standard SOS optimization. Therefore, SSOS optimization bridges the existing theoretical
and computational gaps between DSOS/SDSOS and SOS optimization for sparse instances.
Chapter 9 is based on the work in [45].

Chapter 10: This chapter summarizes the main results of this thesis and suggests
some future research topics.

Appendix A: We present some discussions on block-diagonal Lyapunov functions and
strongly decentralized stabilization, which are key concepts in Chapters 4, 5, and 6.

Other publications

The work of this thesis has also led to the following publications.

• Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Decomposition methods for
large-scale semidefinite programs with chordal aggregate sparsity and partial or-
thogonality”. In: Large-Scale and Distributed Optimization. Ed. by P. Giselsson and
A. Rantzer. Springer International Publishing, 2018. Chap. 3

• A. A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, and Y. Zheng.
“Improving efficiency and scalability of sum of squares optimization: Recent advances
and limitations”. In: Decision and Control (CDC), IEEE 56th Annual Conference
on. IEEE. 2017, pp. 453–462

In addition, the contributions of the following papers are not explicitly covered in this
thesis.

• Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Exploiting sparsity in the
coefficient matching conditions in sum-of-squares programming using ADMM”. In:
IEEE Control System Letter 1.1 (2017), pp. 80–85

• A. Sootla, Y. Zheng, and A. Papachristodoulou. “Block-diagonal solutions to
Lyapunov inequalities and generalisations of diagonal dominance”. In: Decision and
Control (CDC), IEEE 56th Annual Conference on. IEEE. 2017, pp. 6561–6566

• A. Sootla, Y. Zheng, and A. Papachristodoulou. “Block factor-width-two matrices
in semidefinite programming”. In: European Control Conference (ECC), accepted
(2019)

• L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour. “On separable
quadratic Lyapunov functions for convex design of distributed controllers”. In:
European Control Conference (ECC), accepted (2019)

6 1.2. Outline and contributions

Code, software, and numerical examples

To facilitate the reproducibility of the results in the thesis, the code for all the numerical
examples is available to download from

https://github.com/zhengy09.

In particular, the work of this thesis has led to the development of two open-source
conic solvers, and I am one of the two main developers of these solvers2.

1. CDCS: Cone Decomposition Conic Solver. An open-source first-order MATLAB
solver for sparse conic programs by exploiting chordal sparsity, available at
https://github.com/oxfordcontrol/CDCS.

2. SOSADMM. An open source first-order MATLAB solver for conic programs with
row sparsity, especially for the SDPs arising from SOS programs, available at
https://github.com/oxfordcontrol/SOSADMM.

2Another main developer of CDCS is Giovanni Fantuzzi.

https://github.com/zhengy09
https://github.com/oxfordcontrol/CDCS
https://github.com/oxfordcontrol/SOSADMM

2
Preliminaries: convex optimization, chordal graphs,

and sparse matrix decomposition

In this chapter, we first present some preliminaries on convex optimization, focusing on
Lagrangian duality, linear matrix inequalities, and semidefinite programs. These concepts
are well-known in the control and optimization communities. Convex optimization,
together with the notion of chordal graphs, plays a fundamental role in this thesis. We
next cover some mathematical preliminaries on chordal graphs and their relation to sparse
matrix decomposition. We also present the notion of sparse block matrices. This chapter
aims to give a self-contained introduction to material that will be used in subsequent
chapters. For a detailed treatment, we refer the reader to the excellent works on convex
optimization [3, 4, 11] and the comprehensive surveys on chordal graphs [14, 15].

2.1 Convex optimization

2.1.1 Convex sets and convex functions

To define a convex optimization problem, we first need to define convex sets and convex
functions. A set S ⊆ Rn is convex if ∀x1, x2 ∈ S and 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ S.

An intersection of two convex sets is convex, i.e., if S1 and S2 are convex, then S1 ∩ S2 is
convex. Also, this property extends to the intersection of an infinite number of convex sets.
An important subclass of convex sets is convex cones. A set S ⊆ Rn is a convex cone if it
is convex and closed under nonnegative scaling, i.e., ∀x1, x2 ∈ S and θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ S.

The nonnegative orthant Rn+ := {x ∈ Rn | x ≥ 0} and the set of real n × n positive
semidefinite matrices Sn+ are examples of convex cones.

7

8 2.1. Convex optimization

Let K ⊆ Rn be a cone. The dual cone of K is defined as

K∗ = {y ∈ Rn | xTy ≥ 0,∀x ∈ K}.

The dual cone K∗ is always closed and convex. If K1 ⊆ K2, then K∗2 ⊆ K∗1 . Also, the
nonnegative orthant Rn+ and the positive semidefinite cone Sn+ are self-dual, meaning
that (Rn+)∗ = Rn+ and (Sn+)∗ = Sn+.

A function f : Ω ⊆ Rn 7→ R is convex if its domain Ω is convex and ∀x, y ∈ Ω
and 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Important examples of convex functions include affine functions, norms, and the indicator
function of a convex set S, defined as

IS(x) :=
{

0, x ∈ S,
+∞, otherwise.

A convex optimization problem is a problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

(2.1)

where the functions f0, f1, . . . , fm : Ω ⊆ Rn 7→ R are convex, and the functions h1, . . . , hp :
Ω ⊆ Rn 7→ R are affine. The function f0 is called the cost function or objective function,
and the remaining functions fi and hi are referred to as constraint functions. The
feasible set of (2.1) is the set of points satisfying all the constraints. If the feasible
set is empty, we say problem (2.1) is infeasible.

2.1.2 Lagrangian duality

Lagrangian duality provides a framework to study (2.1) by augmenting the objective
function f0 with a weighted sum of the constraint functions f1, . . . , fm, h1, . . . , hp.

Given λ ∈ Rm, ν ∈ Rp, the Lagrangian function associated with (2.1) is defined as

L(x, λ, ν) := f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

νihi(x), (2.2)

where λi and νi are known as the Lagrangian multipliers for the inequality constraint
fi(x) ≤ 0 and the equality constraint hi(x) = 0, respectively. The dual function is defined
as

g(λ, ν) := inf
x∈Ω

L(x, λ, ν). (2.3)

2. Preliminaries 9

The dual function g(λ, ν) is always concave since it is the pointwise infimum of a family
of affine functions. Also, ∀λ ≥ 0 and ν, g(λ, ν) provides a lower bound of the optimal
value of (2.1). Indeed, assuming that (2.1) is feasible and that there exists an optimal
point x∗ achieving the optimal value p∗ := f(x∗), ∀λ ≥ 0 and ν, one has

g(λ, ν) = inf
x∈Ω

L(x, λ, ν) ≤ L(x∗, λ, ν)

= f0(x∗) +
m∑
i=1

λifi(x∗) +
p∑
i=1

νihi(x∗)

≤ f0(x∗) = p∗,

(2.4)

where the last inequality holds since λi ≥ 0, fi(x∗) ≤ 0 and hi(x∗) = 0. In particular, we
can look for the best lower bound on p∗ by solving the following problem

maximize g(λ, ν)

subject to λ ≥ 0,
(2.5)

which is known as the dual problem associated with (2.1). We denote the optimal value
of (2.5) as d∗. Following (2.4), we have an important inequality d∗ ≤ p∗, which is
called weak duality, and it holds for a general problem (convex or not). If the equality
d∗ = p∗ is achieved, we say that strong duality holds. Strong duality does not hold
in general. Given a convex problem (2.1), one sufficient condition for strong duality is
Slater’s condition [3, Section 5.2.3], [4, Section 5.3].

2.1.3 Linear matrix inequalities

Many linear systems analysis and synthesis problems naturally involve linear matrix
inequalities (LMIs) [10]. Specifically, an LMI is a constraint of the form

A(x) := A0 +
m∑
i=1

Aixi � 0, (2.6)

where x ∈ Rm is a variable, and A0, A1, . . . , Am ∈ Sn are given symmetric matrices. It
is not difficult to see that the LMI (2.6) defines a convex set on x, i.e., the set

S := {x ∈ Rm | A(x) � 0}

is convex, i.e., ∀y, z ∈ S and 0 ≤ θ ≤ 1, we have θy + (1− θ)z ∈ S. The convexity of S
can also be seen from the equivalence that A(x) � 0⇔ vT(A0 +∑m

i=1Aixi)v ≥ 0,∀v ∈ Rn

(the intersection of an infinite number of convex sets is convex).

Example 2.1. Let x ∈ R2 and consider a 2× 2 LMI

A(x) :=
[
1− x1 + 2x2 x1

x1 x1 − 2x2

]
� 0,

10 2.1. Convex optimization

(a) (b)

Figure 2.1: (a) Feasible set of the LMI in Example 2.1, enclosed with the ellipse x1− 2x2− 2x2
1 +

4x1x2 − 4x2
2 ≥ 0. (b) Feasible set of the LMI in Example 2.2, which is a 3-dimensional elliptope.

which can be rewritten in the form (2.6) with

A0 =
[
1 0
0 0

]
, A1 =

[
−1 1
1 1

]
, A2 =

[
2 0
0 −2

]
.

Since a 2 × 2 symmetric matrix is positive semidefinite if and only if its trace and
determinant are nonnegative, the feasible set S := {x ∈ R2 | A(x) � 0} can be found
by imposing (1 − x1 + 2x2)(x1 − 2x2) − x2

1 = x1 − 2x2 − 2x2
1 + 4x1x2 − 4x2

2 ≥ 0. This
quadratic polynomial inequality defines an ellipse shown in Figure 2.1(a).

Example 2.2. Let x ∈ R3 and consider a 3× 3 LMI

A(x) :=

 1 x1 x2
x1 1 x3
x2 x3 1

 � 0,

which can be rewritten in the form (2.6) with

A0 =

1 0 0
0 1 0
0 0 1

 , A1 =

0 1 0
1 0 0
0 0 0

 , A2 =

0 0 1
0 0 0
1 0 0

 , A3 =

0 0 0
0 0 1
0 1 0

 .
The feasible set S := {x ∈ R3 | A(x) � 0} is a 3-dimensional elliptope [11], plotted in
Figure 2.1(b).

Linear matrix inequalities can represent many common types of constraints. We
list three typical examples that will be encountered in the subsequent chapters. In the
following, we denote the optimization variable as y ∈ Rm.

• Linear inequalities. Given A ∈ Rn×m and b ∈ Rn, a set of linear inequalities
Ay ≤ b is equivalent to the diagonal LMI

diag
(

m∑
i=1

yiA1i − b1,
m∑
i=1

yiA2i − b2, . . . ,
m∑
i=1

yiAni − bn

)
� 0. (2.7)

2. Preliminaries 11

• Second-order cone constraints. Given A ∈ Rn×m, b ∈ Rn, c ∈ Rm, and d ∈ R,
by Schur’s complement condition [3, Appendix A.5.5], a second-order constraint
‖Ay + b‖ ≤ cTy + d is equivalent to the LMI constraint[

(cTy + d)I Ay + b
(Ay + b)T cTy + d

]
� 0. (2.8)

• Polynomial sum-of-squares constraints. Given x ∈ Rn, we denote p(x) as a
polynomial in x of degree 2d. We say p(x) is a sum-of-squares (SOS) polynomial if
it can be written into a sum of squares of other polynomials of degree no greater
than d. It is known that p(x) admits an SOS decomposition if and only if there
exists a positive semidefinite Q ∈ Ss+ with s :=

(n+d
d

)
such that [52]

p(x) = vd(x)TQvd(x), (2.9)

where vd(x) is a vector of monomials of degree no greater than d. When the
coefficients of p(x) depend affinely on y ∈ Rm, comparing coefficients on both
sides of (2.9) leads to a set of equalities on y and Q. Considering the positive
semidefiniteness of Q, an SOS constraint on p(x) is equivalent to an LMI constraint
involving y and Q.

Example 2.3. Let x ∈ R2, y ∈ R3 and consider a parametric polynomial

p(x) := x2
1 + x2

2 + 2y3x1x2 + 2y1x1 + 2y2x2 + 1.

With vd(x) =
[
1, x1, x2

]T
and Q ∈ S3, we have

p(x) =

 1
x1
x2


T q11 q12 q13

q12 q22 q23
q13 q23 q33


 1
x1
x2


= q33x

2
2 + q22x

2
1 + 2q23x1x2 + 2q12x1 + 2q13x2 + q11.

Matching coefficients on both sides lead to

q11 = 1, q22 = 1, q33 = 1, q12 = y1, q13 = y2, q23 = y3.

Consequently, we have

{y ∈ R3 | p(x) is SOS} ≡

y ∈ R3

∣∣∣∣∣∣∣
 1 y1 y2
y1 1 y3
y2 y3 1

 � 0

 ,
which is the same as the 3-dimensional elliptope shown in Figure 2.1(b).

12 2.1. Convex optimization

2.1.4 Semidefinite programs

A semidefinite program (SDP) is a convex optimization problem involving a linear cost
function subject to linear matrix inequalities [3, 11]. A standard primal form SDP
is a problem of the form

minimize
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0,

(2.10)

where C,Ai ∈ Sn, i = 1, . . . ,m, b ∈ Rm are given problem data. Note that X � 0 is
a particular LMI constraint. The Lagrangian dual problem associated with (2.10) is
a problem involving a general-form LMI constraint.

To derive the dual problem, following Section 2.1.2, we augment the cost function
with the constraints in (2.10) and define the Lagrangian function as

L(X, y, Z) :=〈C,X〉+
m∑
i=1

yi (bi − 〈Ai, X〉)− 〈X,Z〉

=
〈
C −

m∑
i=1

yiAi − Z,X
〉

+ bTy.

The dual function is

g(y, Z) := inf
X
L(X, y, Z) =

{
bTy, if C −∑m

i=1 yiAi − Z = 0,
−∞, otherwise.

As stated in Section 2.1.2, the dual function g(y, Z) provides a lower bound on the optimal
value p∗ of (2.10): ∀y ∈ Rm and Z � 0, one has

g(y, Z) = inf
X
L(X, y, Z) ≤ inf

X�0,〈Ai,X〉=bi
L(X, y, Z) ≤ p∗,

where the last inequality holds since 〈X,Z〉 ≥ 0,∀X � 0, Z � 0. Then, the dual
problem associated with (2.10) is

maximize
y,Z

bTy

subject to Z +
m∑
i=1

yiAi = C,

Z � 0,

(2.11)

which is equivalent to a problem involving a general-form LMI constraint

maximize
y

bTy

subject to C −
m∑
i=1

yiAi � 0.
(2.12)

2. Preliminaries 13

In the literature, problem (2.11) is referred to as a standard dual form SDP. Following
the fact that LMIs can represent linear inequalities and second-order cone constraints (see
Section 2.1.3), SDPs include linear programs and second-order cone programs as special
cases. Also, linear optimization over SOS polynomials can be equivalently formulated
into an SDP problem, which is a crucial fact for many applications [7, 8, 11].

2.2 Chordal graphs

Chordal graphs play an important role in exploiting sparsity in large-scale SDPs and
related convex problems involving sparse positive semidefinite matrices [15]. This section
introduces the notation in graph theory that will be used throughout this thesis, and
reviews some basic definitions and results on chordal graphs [14, 15].

2.2.1 Chordal graph

A graph G(V, E) is defined by a set of vertices V = {1, 2, . . . , n} and a set of edges
E ⊆ V × V. A graph is called complete if any two nodes are connected by an edge. A
path in G is a sequence of edges that connect a sequence of distinct vertices. A graph is
called connected if there is a path between every pair of vertices. A subset of vertices
C ⊆ V is called a clique, if (i, j) ∈ E for any distinct vertices i, j ∈ C, i.e., the subgraph
induced by C is complete. The number of vertices in C is denoted by |C|. If C is not a
subset of any other clique, then it is referred to as a maximal clique. A cycle of length k
in a graph G is a set of pairwise distinct nodes {v1, v2, . . . , vk} ⊂ V such that (vk, v1) ∈ E
and (vi, vi+1) ∈ E for i = 1, . . . , k − 1. A chord is an edge joining two non-adjacent nodes
in a cycle. A graph G is undirected if (vi, vj) ∈ E ⇔ (vj , vi) ∈ E .

Definition 2.4. An undirected graph G is called chordal if every cycle of length greater
than or equal to four has at least one chord.

Chordal graphs include several other classes of graphs, such as acyclic undirected
graphs, undirected graphs with cycles of length no greater three, and complete graphs.
Algorithms such as the maximum cardinality search [53] can test chordality and identify
the maximal cliques of a chordal graph efficiently, i.e., in linear time in terms of the
number of nodes and edges. Nonchordal graphs can always be chordal extended, i.e.,
extended to a chordal graph, by adding additional edges to the original graph.

Definition 2.5. A chordal extension (or chordal embedding) of a graph G(V, E) is a
chordal graph Ĝ(V, Ê), where E ⊆ Ê .

14 2.2. Chordal graphs

1 2

4 3

(a)

1 2

4 3

(b)
Figure 2.2: (a) Nonchordal graph: the cycle (1-2-3-4) is of length four but has no chords. (b)
Chordal graph: all cycles of length no less than four have a chord; the maximal cliques are
C1 = {1, 2, 4} and C2 = {2, 3, 4}.

(a) (b) (c)

Figure 2.3: Examples of chordal graphs: (a) a banded graph; (b) a block-arrow graph; (c) a
generic chordal graph.

Finding chordal extensions with the minimum number of additional edges corresponds
to sparse Cholesky factorization with minimum fill-ins, which is known to be NP-
complete [54]. However, several heuristics can be used to find good chordal extensions
efficiently, such as the minimum degree ordering followed by a symbolic Cholesky
factorization [23]. Figure 2.2 illustrates these concepts. The graph in Figure 2.2(a)
is not chordal, but can be chordal extended to the graph in Figure 2.2(b) by adding the
edge (2, 4). The chordal graph in Figure 2.2(b) has two maximal cliques, C1 = {1, 2, 4}
and C2 = {2, 3, 4}. Other examples of chordal graphs are given in Figure 2.3.

2.2.2 Perfect elimination orderings

A vertex v of an undirected graph is called simplicial if all its neighbors are connected
to each other, i.e., the subgraph induced by its neighbors is complete. It is known that
every chordal graph has at least one simplicial vertex [15, Section 3.4]. For example,
vertex 1 and 3 are both simplicial in Figure 2.2(b).

A bijection σ : V 7→ {1, . . . , n} is called an ordering of G(V, E). For simplicity,
one can write an ordering as σ = 〈v1, . . . , vn〉 where i = α(vi). An ordering σ of an
undirected graph G(V, E) is a perfect elimination ordering if each vi, i = 1, . . . , n, is
a simplicial vertex in the subgraph induced by the nodes {vi, vi+1, . . . , vn}. Then, we
have an equivalent definition of chordal graphs.

Theorem 2.6 ([15, Theorem 4.1]). A graph G(V, E) is chordal if and only if G has a
perfect elimination ordering.

2. Preliminaries 15

(a) (b) (c) (d)

Figure 2.4: Sparsity pattern of a positive definite matrix A ∈ Sn++(E , 0) with a chordal pattern
and its Cholesky factor before/after performing a perfect elimination ordering permutation: (a)
pattern of A; (b) pattern of PσAPT

σ ; (c) pattern of the Cholesky factor of A; (d) pattern of the
Cholesky factor of PσAPT

σ .

Given a chordal graph, a perfect elimination ordering can be found efficiently, e.g.,
using the maximum cardinality search [53] that has an O(|V|+ |E|) complexity. Finding
perfect elimination orderings for chordal graphs has an important application in numerical
algebra. In particular, positive definite matrices with chordal sparsity patterns (a precise
definition will be given in Section 2.3) always admit Cholesky factorizations with zero
fill-ins [17]. Precisely, given a positive definite matrix A with a chordal sparsity pattern,
we have a Cholesky factorization

PσAP
T
σ = LLT,

where Pσ is a permutation matrix according to the perfect elimination ordering σ, and L
is a lower-triangular matrix. Then, PT

σ (L+ LT)Pσ has the same sparsity pattern as A.

Example 2.7. There exists no perfect elimination ordering for the nonchordal graph in
Figure 2.2 (a), while for the chordal graph in Fig 2.2 (b), one can verify that 〈1, 2, 3, 4〉 is
a perfect elimination ordering. Consequently, the following Cholesky factorization admits
zero fill-ins, 

4 2 0 2
2 2 1 2
0 1 5 3
2 2 3 4


︸ ︷︷ ︸

A�0

=


2 0 0 0
1 1 0 0
0 1 2 0
1 1 1 1


︸ ︷︷ ︸

L

·


2 1 0 1
0 1 1 1
0 0 2 1
0 0 0 1


︸ ︷︷ ︸

LT

,

where A and L+ LT have the same sparsity pattern corresponding to Figure 2.2 (b) and
the (1, 3)-th element is zero in both A and L + LT. Figure 2.4 shows the zero fill-in
property for another positive definite matrix with a chordal sparsity pattern.

2.2.3 Maximal cliques and clique trees

Listing all maximal cliques for a general graph is computationally challenging since
the number of maximal cliques can increase exponentially in |V|. However, a chordal

16 2.2. Chordal graphs

4

1 2

3

5

6

(a)

1

3

5

1 2

3

4

3

5

1

5

6

(b)

C1 = {1, 2, 3}

C2 = {1, 3, 5}

C3 = {1, 5, 6} C4 = {3, 4, 5}

(c)

Figure 2.5: Illustration of the chordal graph decomposition: (a) a chordal graph with six nodes;
(b) maximal cliques; (c) a clique tree that satisfies the clique intersection property.

graph with n vertices can have at most n maximal cliques [16]. Moreover, given a perfect
elimination ordering, the maximal cliques of a chordal graph can be identified in linear time.

Let G(V, E) be a connected chordal graph with a set of maximal cliques Γ =
{C1, C2, . . . , Ct}. These maximal cliques can be further arranged in a clique tree T = (Γ,Ξ)
with the maximal cliques as its vertices and Ξ ⊆ Γ × Γ, which satisfies the clique-
intersection property, i.e., Ci ∩ Cj ⊆ Ck if clique Ck lies on the path between cliques Ci
and Cj in the tree [14]. A related notion is the so-called running intersection property:
an ordering of the maximal cliques C1, . . . , Ct satisfies the running intersection property
if for every k = 1, 2, . . . , t − 1, such thatCk+1 ∩

k⋃
j=1
Cj

 ⊆ Cs, for some s ≤ k.

Given a clique tree that satisfies the clique-intersection property, a topological ordering
of the nodes in the clique tree naturally satisfies the running intersection property.
Recall that a topological ordering is an ordering of the nodes in a rooted tree where
each parent node comes before its children. We have another two equivalent char-
acterizations of chordal graphs.

Theorem 2.8 ([14, Theorem 3.1]). A connected graph G(V, E) is chordal if and only if
there exists a clique tree that satisfies the clique-intersection property.

Theorem 2.9 ([14, Theorem 3.4]). A connected graph G(V, E) is chordal if and only
if there exists an ordering of its maximal cliques that satisfies the running-intersection
property.

Figure 2.5 illustrates these concepts. A chordal graph with six nodes, shown in
Figure 2.5(a), has four maximal cliques listed in Figure 2.5(b), and a clique tree satisfying
the clique intersection property is shown in Figure 2.5(c). Consider maximal cliques
C1 = {1, 2, 3} and C3 = {1, 5, 6}. We have C1 ∩ C3 = {1} ⊂ C2. Also, one can verify that
the ordering C1, C2, C3, C4 satisfies the running intersection property.

2. Preliminaries 17

(a) (b) (c)

Figure 2.6: Sparsity patterns of 8 × 8 matrices corresponding to Figure 2.3(a)-Figure 2.3(c),
respectively: (a) banded sparsity pattern; (b) block-arrow sparsity pattern; (c) a generic sparsity
pattern.

2.3 Sparse matrix decomposition

In this section, we proceed by discussing two key applications of chordal graphs to sparse
positive semidefinite matrices. As we have already seen in Example 2.7, chordal graph
theory has an important consequence on sparse Cholesky factorization with zero fill-ins [17].
Indeed, the zero fill-in property of the Cholesky factorization can be used to derive a
decomposition of the sparse positive semidefinite matrix cone [20–22] and a dual result
on the decomposition of the sparse positive semidefinite completable matrix cone [19].

2.3.1 Sparse symmetric matrices

We first introduce some notation. Given an undirected graph G(V, E), we say a symmetric
matrix X ∈ Sn has a sparsity pattern E if Xij = Xji = 0, whenever i 6= j and (i, j) /∈ E .
For example, Figure 2.2(b) shows a sparsity pattern of the matrix

X =


X11 X12 0 X14
X21 X22 X23 X24

0 X32 X33 X34
X41 X42 X43 X44

 , (2.13)

and the sparsity patterns illustrated in Figure 2.6 correspond to the graphs in Figure 2.3.
More precisely, we define the space of sparse symmetric matrices as

Sn(E , 0) := {X ∈ Sn | Xij = Xji = 0, if i 6= j and (i, j) /∈ E}.

Note that given X ∈ Sn(E , 0), the diagonal elements Xii and the off-diagonal elements
Xij with (i, j) ∈ E may be nonzero or zero. If X ∈ Sn(E , 0) and E ⊂ Ê , then X also has
sparsity pattern Ê , i.e., X ∈ Sn(Ê , 0). In this case, Ê is called an extension or embedding
of E . In particular, if Ê is chordal, this is the notion of chordal extension.

It will be convenient to refer to principle submatrices of a sparsity pattern E . Given
a clique Ck of G(V, E), we define a matrix ECk ∈ R|Ck|×n with entries

(ECk)ij =
{

1, if Ck(i) = j,

0, otherwise,
(2.14)

18 2.3. Sparse matrix decomposition

where Ck(i) is the i-th vertex in Ck, sorted in the natural ordering. When the clique size
is n, this corresponds to an identity matrix up to a certain permutation. Given X ∈ Sn,
the matrix ECk can be used to select a principal submatrix defined by the clique Ck, i.e.,

ECkXE
T
Ck ∈ S|Ck|.

In addition, the operation ET
CkY ECk creates an n× n symmetric matrix from a |Ck| × |Ck|

matrix. For example, the chordal graph in Figure 2.2(b) has a maximal clique C1 = {1, 2, 4},
and for X ∈ S4 in (2.13) and Y ∈ S3 we have

EC1 =

1 0 0 0
0 1 0 0
0 0 0 1

 , EC1XE
T
C1 =

X11 X12 X14
X21 X22 X24
X41 X42 X44

 , ET
C1Y EC1 =


Y11 Y12 0 Y13
Y21 Y22 0 Y23
0 0 0 0
Y31 Y32 0 Y33

 .
Finally, we say a sparsity pattern E is chordal if the corresponding graph G(V, E) is

chordal. Without loss of generality, we assume the sparsity graph G(V, E) is connected
in our discussion of sparse matrices Sn(E , 0). If not, the matrices in Sn(E , 0) can be
rearranged into a block-diagonal form by reordering the rows and columns. The diagonal
blocks correspond to the connected components of G and can be analyzed individually.

2.3.2 Sparse positive semidefinite matrix cone

We define the set of positive semidefinite matrices with sparsity pattern E as

Sn+(E , 0) := {X ∈ Sn(E , 0) | X � 0}.

It is easy to see that Sn+(E , 0) = Sn(E , 0) ∩ Sn+, and that Sn+(E , 0) is a convex cone in
Sn(E , 0) since it is an intersection of a subspace and a convex cone. If G(V, E) is chordal,
the cone Sn+(E , 0) can be equivalently decomposed into a sum of smaller but coupled
convex cones, as stated in the following theorem.

Theorem 2.10 ([20, Theorem 2.3], [21, Theorem 4], [22, Theorem 1]). Let G(V, E) be a
chordal graph and let {C1, C2, . . . , Ct} be the set of its maximal cliques. Then, Z ∈ Sn+(E , 0)
if and only if there exist matrices Zk ∈ S|Ck|+ for k = 1, . . . , t such that

Z =
t∑

k=1
ET
CkZkECk . (2.15)

The “if” part of Theorem 2.10 is immediate since a sum of positive semidefinite
matrices is positive semidefinite, and the “only if” part can be proved using the zero fill-in
property of sparse Cholesky factorization for Z ∈ Sn+(E , 0) [15, Section 9.2], which relies
on a perfect elimination ordering. A recent proof can be found in [22], which is based on
simple linear algebra and the existence of at least one simplicial vertex for chordal graphs.

2. Preliminaries 19

Note that if Z ∈ Sn+(E , 0) and E is non-chordal, one may still find a decomposition (2.15).
However, for every non-chordal pattern E , there exist positive semidefinite matrices
Z ∈ Sn+(E , 0) that do not admit the decomposition (2.15) (see [15, Page 342]).

Theorem 2.10 has an important application in the context of sparse SDPs [23]: if the
LMI constraint in the dual SDP (2.12) has a chordal sparsity pattern, then it can be
equivalently replaced by a set of smaller LMIs and a set of affine equality constraints.
This procedure can bring substantial computational improvement for solving large sparse
SDPs if the underlying maximal cliques are small, as demonstrated in [23, 55].

Example 2.11. Consider the following positive semidefinite matrix2 1 0
1 1 1
0 1 2

 � 0, (2.16)

which has a chordal sparsity pattern corresponding to a chain of three nodes with
maximal cliques C1 = {1, 2} and C2 = {2, 3}. In this case, Theorem 2.10 guarantees a
decomposition (2.15). Indeed, we have

EC1 =
[
1 0 0
0 1 0

]
, EC2 =

[
0 1 0
0 0 1

]
,

and 2 1 0
1 1 1
0 1 2

 = ET
C1

[
2 1
1 0.5

]
︸ ︷︷ ︸
�0

EC1 + ET
C2

[
0.5 1
1 2

]
︸ ︷︷ ︸
�0

EC2 .

Example 2.12. Consider the following 3× 3 LMI that involves a variable x ∈ R2

Z(x) :=

 2x1 x1 + x2 0
x1 + x2 5− x1 − x2 x1

0 x1 x2 + 1

 � 0. (2.17)

This LMI has the same sparsity pattern as (2.16), which is chordal. Consequently,
Theorem 2.10 implies that (2.17) holds if and only if there exist matrices

Z1 :=
[
(Z1)11 (Z1)12
(Z1)21 (Z1)22

]
� 0, Z2 :=

[
(Z2)11 (Z2)12
(Z2)21 (Z2)22

]
� 0,

such that (Z1)11 (Z1)12 0
(Z1)21 (Z1)22 + (Z2)11 (Z2)12

0 (Z2)21 (Z2)22

 = Z(x).

After eliminating some variables, it is not difficult to see that (2.17) holds if and only if
there exists (Z2)11 such that[

2x1 x1 + x2
x1 + x2 5− x1 − x2 − (Z2)11

]
� 0,

[
(Z2)11 x1
x1 x2 + 1

]
� 0. (2.18)

20 2.3. Sparse matrix decomposition

(a) (b) (c)

Figure 2.7: Joint feasible set of the decomposed LMIs in (2.18): (a) projection onto the (x1, x2)
plane, (b) projection onto the (x1, (Z2)11) plane, (c) projection onto the (x2, (Z2)11) plane. Panel
(a) also shows the boundary of the feasible set of the original 3× 3 LMI (2.17).

Figure 2.7 shows the joint feasible set of LMIs in (2.18). As expected, the projection on
the (x1, x2) plane is consistent with the feasible set of LMI (2.17). This confirms that the
LMIs in (2.18) are equivalent to LMI (2.17). Therefore, we have equivalently decomposed
a 3× 3 LMI into two coupled 2× 2 LMIs.

2.3.3 Positive semidefinite completable matrix cone

A concept related to the matrix decomposition above is that of positive semidefinite
matrix completion. We define the cone

Sn+(E , ?) := PSn(E,0)(Sn+),

given by the projection of the positive semidefinite cone onto the space of sparse matrices
Sn(E , 0) with respect to the usual Frobenius matrix norm. The question mark “?” means
that the off-diagonal elements outside E are free to find a positive semidefinite completion.
Indeed, it is not difficult to see that X ∈ Sn+(E , ?) if and only if X has a positive
semidefinite completion that is consistent with E ,i.e., if there exists a positive semidefinite
matrix M � 0 such that Mij = Xij when i = j and (i, j) ∈ E . Therefore, we also refer
to Sn+(E , ?) as the positive semidefinite completable cone.

For any undirected graph G(V, E), the cones Sn+(E , ?) and Sn+(E , 0) are dual to each
other with respect to the trace inner product in the space Sn(E , 0) [15, Chapter 10].
To see this, it is not difficult to verify

(Sn+(E , ?))∗ = {Z ∈ Sn(E , 0) | 〈X,Z〉 ≥ 0, ∀X ∈ Sn+(E , ?)}

= {Z ∈ Sn(E , 0) |
〈
PSn(E,0)(X), Z

〉
≥ 0, ∀X � 0}

= {Z ∈ Sn(E , 0) | 〈X,Z〉 ≥ 0, ∀X � 0}

= {Z ∈ Sn(E , 0) | Z � 0}

= Sn+(E , 0).

2. Preliminaries 21

Z ∈ Sn+(E , 0) X ∈ Sn+(E , ?)

Z = ∑t
k=1E

T
CkZkECk , Zk ∈ S|Ck|+ ECkXE

T
Ck ∈ S|Ck|+ , k = 1, . . . , t

Theorem 2.10 Theorem 2.13

Duality

Duality

Figure 2.8: Summary of duality between Sn+(E , 0) and Sn+(E , ?) and duality between Theorem 2.10
and Theorem 2.13 for a chordal graph G(V, E) with maximal cliques C1, . . . , Ct.

For a chordal pattern, the decomposition result on Sn+(E , 0) (see Theorem 2.10) leads
to the following characterization of Sn+(E , ?).

Theorem 2.13 ([19, Theorem 7]). Let G(V, E) be a chordal graph and let {C1, C2, . . . , Ct}
be the set of its maximal cliques. Then, X ∈ Sn+(E , ?) if and only if

ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , t. (2.19)

The “only if” part of Theorem 2.13 is immediate since any principal submatrix of a
positive semidefinite matrix is positive semidefinite, and the “if” part relies on chordal
graph properties. One can prove the “if” part based on the duality between Sn+(E , 0)
and Sn+(E , ?) and Theorem 2.10 [15, Page 357]. Precisely, we have

X ∈ Sn+(E , ?)⇔ 〈X,Z〉 ≥ 0,∀Z ∈ Sn+(E , 0),

⇔
〈
X,

t∑
k=1

ET
CkZkECk

〉
≥ 0,∀Zk ∈ S|Ck|+ ,

⇔
t∑

k=1

〈
ECkXE

T
Ck , Zk

〉
≥ 0, ∀Zk ∈ S|Ck|+ ,

⇔ ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , t.

In the context of SDPs, similar to the consequence of Theorem 2.10 in the dual
SDP (2.12), Theorem 2.13 can be used to decompose the positive semidefinite constraint
in the primal sparse SDP (2.10). These decomposition strategies are known as the
conversion method, originally proposed in [23, 55]. Indeed, this conversion method
underpins much of the recent research on sparse SDPs [24–26, 28]. Figure 2.8 shows an
elegant picture, where the duality between Sn+(E , 0) and Sn+(E , ?) is mirrored in the duality
between Theorem 2.10 and Theorem 2.13 for chordal graphs.

Example 2.14. Consider a symmetric matrix with partially specified entries2 1 ?
1 0.5 1
? 1 2

 ,

22 2.4. Block matrices and chordal decomposition

(a) (b) (c) (d)

Figure 2.9: (a) Feasible set of the positive semidefinite completable condition in (2.20): (b)
projection onto the (x1, x2) plane, (c) projection onto the (x2, x3) plane, (c) projection onto the
(x1, x3) plane.

where the question mark “?” denotes unspecified entries. This matrix shares the same
sparsity pattern with (2.17), which is chordal with maximal cliques C1 = {1, 2} and
C2 = {2, 3}, and its principal submatrices are positive semidefinite. Then, Theorem 2.13
guarantees the existence of a positive semidefinite completion by filling in the unspecified
entries, shown as follows[

2 1
1 0.5

]
� 0,

[
0.5 1
1 2

]
� 0, X =

2 1 2
1 0.5 1
2 1 2

 � 0.

Example 2.15. Consider the following 3× 3 positive semidefinite completable matrix
that involves a variable x ∈ R3 1− x1 x1 + x2 ?

x1 + x2 x2 x2 + x3
? x2 + x3 2x3 + 1

 ∈ Sn+(E , ?). (2.20)

Theorem 2.13 implies that (2.20) is equivalent to the following two LMIs[
1− x1 x1 + x2
x1 + x2 x2

]
� 0,

[
x2 x2 + x3

x2 + x3 2x3 + 1

]
� 0. (2.21)

The feasible region (2.21) can be found by imposing 1−x1+x2 ≥ 0, (1−x1)x2−(x1+x2)2 =
x2−3x1x2−x2

1−x2
2 ≥ 0 and x2 + 2x3 + 1 ≥ 0, x2(2x3 + 1)− (x2 +x3)2 = x2−x2

2−x2
3 ≥ 0.

Figure 2.9 shows the feasible region of (2.21). Similar to Example 2.12, we have equivalently
decomposed a 3× 3 LMI into two coupled 2× 2 LMIs.

2.4 Block matrices and chordal decomposition

Block matrices naturally occur both in the modeling of networked systems, where each
subsystem corresponds to a block in the matrix description, and in the Gram matrix
representation of SOS polynomials, where a lifted Gram matrix is used to characterize an
SOS condition [52]. In this section, we extend sparse matrix notation in Section 2.3 to
the block partitioned case, and present an extension of Theorem 2.10 and Theorem 2.13
to block symmetric matrices with chordal sparsity patterns.

2. Preliminaries 23

1

2 3 4

5

Figure 2.10: A nonchordal graph: the cycle (1-3-5-4) is of length four but with no chords.

2.4.1 Sparse block matrices

Given a vector of integers α = {α1, α2, . . . , αn}, we say a block matrix M ∈ RN×N

has α-partitioning with N = ∑n
i=1 αi if

M =


M11 M12 . . . M1n
M12 M22 . . . M2n
...

...
Mn1 Mn2 . . . Mnn

 ,

where each block entry Mij ∈ Rαi×αj , i, j = 1, . . . , n. We describe the sparsity pattern of
α-partitioned matrix M by a graph G(V, E) with a node set V = {1, 2, . . . , n}

RN×Nα (E , 0) := {M ∈ RN×N |Mij = 0 if i 6= j and (j, i) /∈ E}, (2.22)

where Mij represents the (i, j)-th block in M , and 0 denotes a zero block with appropriate
size. If G is undirected, we define the space of sparse symmetric block matrices as

SNα (E , 0) := {M ∈ SN |Mij = MT
ji = 0 if i 6= j and (i, j) /∈ E}, (2.23)

and the cone of sparse block positive semidefinite matrices as

SNα,+(E , 0) := {M ∈ SNα (E , 0) |M � 0}. (2.24)

Also, we define a cone SNα,+(E , ?) as the set of matrices in SNα (E , 0) that have a
positive semidefinite completion,

SNα,+(E , ?) = PSNα (E,0)(SN+), (2.25)

where P denotes the projection onto the space of sparse matrices. Figure 2.11 gives
an illustration of SNα (E , 0) for the nonchordal graph in Figure 2.10. We can see that
a graph can represent a class of sparsity patterns with different partition α. This will
bring us much convenience in modeling the sparsity of networked systems and the Gram
matrix representation of SOS matrices.

24 2.4. Block matrices and chordal decomposition

(a) (b) (c)

Figure 2.11: Sparsity patterns SNα (E , 0) with different partitions, where E denotes the edge set of
the graph in Figure 2.10: (a) scalar case α = {1, 1, 1, 1, 1}; (b) uniform block case α = {3, 3, 3, 3, 3};
(c) random block case α = {2, 8, 4, 6, 2}.

Remark 2.16. The notation above is a natural extension of sparse scalar matrices (see
Section 2.3) to sparse block matrices with α-partition. If α = {1, 1, . . . , 1}, then the
notation is reduced to the normal scalar case. Similar to Section 2.3, the definition (2.23)
allows the block entry Mij = 0 if (i, j) ∈ E . We have M ∈ SNα (Ê , 0) if M ∈ SNα (E , 0) and
Ê is a chordal extension of E . Also, one can verify that for any partition α, the cones
SNα,+(E , 0) and SNα,+(E , ?) are dual to each other in the space SNα (E , 0), meaning that

SNα,+(E , ?) ≡ {X ∈ SNα (E , 0) | 〈X,Z〉 ≥ 0, ∀Z ∈ Snα,+(E , 0)},

SNα,+(E , 0) ≡ {Z ∈ SNα (E , 0) | 〈Z,X〉 ≥ 0, ∀X ∈ Snα,+(E , ?)}.

2.4.2 Extension of chordal decomposition theorems

As the reader would expect, similar decomposition results may hold for SNα,+(E , ?)
and SNα,+(E , 0) for chordal sparsity pattern E . To be precise, we define a block ver-
sion of index matrices.

Given a partition α = {α1, α2, . . . , αn} and a clique Ck of G, we define a block-wise
index matrix ECk,α ∈ R|Ck|α×N with |Ck|α = ∑

i∈Ck αi and N = ∑n
i=1 αi as

(ECk,α)ij =
{
Iαi , if Ck(i) = j,

0αi×αj , otherwise,
(2.26)

where Iαi is an identity matrix of dimension αi, Ck(i) denotes the i-th node in Ck, sorted
in the natural ordering, and 0αi×αj denotes a zero block of dimension αi × αj . When
α = {1, 1, . . . , 1} (the scalar case), (2.26) is reduced to (2.14), i.e., ECk,α = ECk . For a
uniform partition α = {a, a, . . . , a}, a ∈ N, we also have

ECk,α = ECk ⊗ Ia,

where ⊗ denotes the Kronecker product. Similar to the scalar case in Section 2.3,
given a block matrix X ∈ SN with α-partition, ECk,αXET

Ck,α ∈ S|Ck|α extracts a principal
submatrix defined by the clique Ck, and the operation ET

Ck,αY ECk,α inflates an |Ck|α×|Ck|α
matrix into a sparse N × N matrix.

Then, we have the following two theorems, which extend Theorems 2.10 and 2.13
to the case of sparse block matrices, respectively.

2. Preliminaries 25

Theorem 2.17 (Block-chordal decomposition theorem). Let G(V, E) be a chordal graph
with maximal cliques {C1, C2, . . . , Ct}. Given a partition α = {α1, α2, . . . , αn} and N =∑n
i=1 αi, then, Z ∈ SNα,+(E , 0) if and only if there exist matrices Zk ∈ S|Ck|α+ for k = 1, . . . , p

such that

Z =
t∑

k=1
ET
Ck,αZkECk,α. (2.27)

Theorem 2.18 (Block-chordal completion theorem). Let G(V, E) be a chordal graph with
maximal cliques {C1, C2, . . . , Ct}. Given a partition α = {α1, α2, . . . , αn} and N = ∑n

i=1 αi,
then, X ∈ SNα,+(E , ?) if and only if

ECk,αXE
T
Ck,α ∈ S|Ck|α+ , k = 1, . . . , t. (2.28)

The following example illustrates Theorem 2.17, and similar examples hold for Theo-
rem 2.18.

Example 2.19. Consider a chain of three nodes shown in Figure 2.12(a), which is chordal
with maximal cliques C1 = {1, 2} and C2 = {2, 3}. For the scalar case, i.e., α = {1, 1, 1},
Theorem 2.17 or Theorem 2.10 guarantees the following decomposition (throughout this
example, ∗ denote a real scalar number) ∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

=

 ∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

 0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

. (2.29)

If α = {2, 1, 2}, then Theorem 2.17 implies a block-wise decomposition as follows
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗


︸ ︷︷ ︸

�0

=


∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

�0

+


0 0 0 0 0
0 0 0 0 0
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗


︸ ︷︷ ︸

�0

, (2.30)

while for another partition α = {2, 2, 2}, Theorem 2.17 guarantees another block-wise
decomposition as

∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗


︸ ︷︷ ︸

�0

=



∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

�0

+



0 0 0 0 0 0
0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗


︸ ︷︷ ︸

�0

. (2.31)

In fact, one can consider (2.30) and (2.31) as an application of Theorem 2.10 to a
hyper-graph shown in Figure 2.12(b) and Figure 2.12(c), respectively. This hyper-graph
interpretation will be used to prove Theorems 2.17 and 2.18 in Section 2.4.3.

26 2.4. Block matrices and chordal decomposition

1 2 3

(a)

1 4

3

2 5

(b)

1 3 5

2 4 6

(c)
Figure 2.12: Hyper-graph interpretations of sparse matrices with different partition α in
Example 2.19. (a) a chain of three nodes with α = {1, 1, 1}, where maximal cliques are C1 = {1, 2}
and C2 = {2, 3}, corresponding to (2.29); (b) a hyper-graph for partition α = {2, 1, 2} where
maximal cliques are C1 = {1, 2, 3} and C2 = {3, 4, 5}, corresponding to (2.30); (c) another hyper-
graph for partition α = {2, 2, 2} where maximal cliques are C1 = {1, 2, 3, 4} and C2 = {3, 4, 5, 6},
corresponding to (2.31). In the panels (a)-(c), the nodes with the same color can be viewed in the
same group.

2.4.3 Proofs of Theorems 2.17 and 2.18

Similar to the duality analysis in Section 2.3 (also, see Figure 2.8), it is not difficult
to see that Theorem 2.17 and Theorem 2.18 can be proved from each other. In this
section, we first present an induction proof of Theorem 2.17 for the uniform partition
case α = {a, a, . . . , a}, a ∈ N, which is adapted from [22]. Rantzer has used this induction
idea to prove chordal decomposition for sparse positive definite rational matrix functions
in [56]. Then, we present another proof based on a hyper-graph viewpoint as illustrated
in Figure 2.12, which reduces the block-partitioned case into the normal scalar case.
Accordingly, Theorems 2.10 and 2.13 can be applied in the block-partitioned case.

Induction for the uniform partition case

Here, we consider the uniform partition case α = {a, a, . . . , a}, a ∈ N in Theorems 2.17
and 2.18.

Lemma 2.20. [57] Given a positive semidefinite matrix with compatible blocks

X =
[
X11 X12
XT

12 X22

]
� 0,

then we have X11 � 0, X22 � 0, and the column space of X12 is a subspace of that of X11,
i.e., there exists a matrix H such that[

I H
0 I

]T

X

[
I H
0 I

]
=
[
X11 0

0 X̂22

]
.

Proof of Theorem 2.17: The “if” part is immediate. We prove the “only if” part
by induction. We let X ∈ SNα,+(E , 0). If α = {a} (i.e., there is only one node in
G), the result is obvious.

2. Preliminaries 27

Assume this statement holds for graphs with n − 1 (n ≥ 2) nodes, i.e.,

α = {a, . . . , a}︸ ︷︷ ︸
n−1

.

Now consider a chordal graph with n nodes. Since G is chordal, there exists a simplicial
vertex v. Without loss of generality, suppose that the maximal clique containing v,
which is unique, is C1. We further assume v = 1, and C1 \ {v} = {2, . . . ,m}. Then,
the matrix X = [Xij]n×n is of the form

X =

 X11 X{1},C̃1
0

XC̃1,{1} XC̃1,C̃1
XC̃1,Ĉ1

0 XĈ1,C̃1
XĈ1,Ĉ1

 ,
where C̃1 = C1 \ {1} = {2, . . . ,m}, Ĉ1 = V \ C1. According to Lemma 2.20, we have
X11 � 0, and X can be transformed into

LTXL =

X11 0 0
0 X̂C̃1,C̃1

XC̃1,Ĉ1
0 XĈ1,C̃1

XĈ1,Ĉ1

 , (2.32)

where

L =

I H 0
0 I 0
0 0 I


represents certain column operations. Then, we can rewrite X as

X = X̂1 + X̂2, (2.33)

where

X̂1 = (L−1)T

X11 0 0
0 0 0
0 0 0

L−1, X̂2 = (L−1)T

0 0 0
0 X̂C̃1,C̃1

XC̃1,Ĉ1
0 XĈ1,C̃1

XĈ1,Ĉ1

L−1.

Both X̂1 and X̂2 are positive semidefinite since L is non-singular. Moreover, we have

• the nonzero part of X̂1 is Ẑ1 = EC1,αX̂1ET
C1,α

∈ S|C1|α
+ , which satisfies X̂1 =

ET
C1,α

Ẑ1EC1,α;

• the lower-right part of X̂2 is a sparse positive semidefinite matrix corresponding to
Ĝ(V \ {1}, Ê) which is the subgraph induced by V \ {1}.

Since v is simplicial, the induced subgraph Ĝ is also chordal with maximal cliques
as C̃1, C2, . . . , Ct. Therefore, applying the induction hypothesis to the lower-right part
of X̂2 in (2.33) leads to

X̂2 = ET
C̃1,α

Z̃1EC̃1,α
+

t∑
k=2

ET
Ck,αZkECk,α (2.34)

28 2.4. Block matrices and chordal decomposition

for some Z̃1 ∈ S|C̃1|α
+ , Zk ∈ S|Ck|α+ , k = 2, . . . , t. Then, upon defining

Z1 = Ẑ1 +
[
0 0
0 Z̃1

]
∈ S|C1|α

+ ,

where 0 denotes a zero block with compatible dimensions, we have found a set of matrices
Zk ∈ S|Ck|α+ , k = 1, . . . , t such that

X = X̂1 + X̂2

= ET
C1,αẐ1EC1,α + ET

C̃1,α
Z̃1EC̃1,α

+
t∑

k=2
ET
Ck,αZkECk,α

= ET
C1,α

(
Ẑ1 +

[
0 0
0 Z̃1

])
EC1,α +

t∑
k=2

ET
Ck,αZkECk,α

=
t∑

k=1
ET
Ck,αZkECk,α.

This completes the proof. �

The key in the proof above lies on the facts that chordal graphs have at least one
simplicial vertex and that the induced graph by removing the simplicial vertex remains
chordal. Then, one can apply the induction hypothesis to finish the proof. This induction
idea first appears in [22] which focuses on the scalar case with α = {1, . . . , 1}. We note
that Rantzer independently used this induction idea to extend Theorem 2.10 to the case
of positive definite rational matrix functions. With Theorem 2.17 at hand, the proof of
Theorem 2.18 follows from standard duality analysis, as in the proof of Theorem 2.13.

Hyper-graph reduction for arbitrary partitions

Here, we present another proof for Theorems 2.17 and 2.18 that is suitable for an
arbitrary partition α. The main strategy is based on a perspective of hyper-graphs
that reduces a sparse block partitioned matrix (corresponding to the original graph)
to a sparse scalar matrix (corresponding to a new hyper-graph). Consequently, the
usual Theorems 2.10 and 2.13 can be applied.
Proof of Theorems 2.17 and 2.18: Let G(V, E) be a chordal graph with maximal
cliques Γ = {C1, C2, . . . , Ct}. Given a partition α = {α1, α2, . . . , αn} and N = ∑n

i=1 αi,
we define a hyper-node set corresponding to the partition α as

Vα = {1, 2, . . . , N},

and denote a corresponding set of hyper-maximal cliques Λα = {Cα1 , Cα2 , . . . , Cαp } as

Cαk =


j−1∑
i=1

αi + 1, . . . ,
j∑
i=1

αi | j ∈ Ck

 , k = 1, . . . , t. (2.35)

2. Preliminaries 29

Further, we define a hyper-edge set Eα ⊆ Vα × Vα in the following way

Eα =
t⋃

k=1
(Cαk × Cαk) . (2.36)

Note that for the scalar case α = {1, 1, . . . , 1} = 1, we actually have Cαk = Ck and Eα = E .

Then, the rest is to prove the following two statements:

• Statement 1: the space of sparse block matrices with α-partition and pattern E is

equivalent to the space of sparse scalar matrices with pattern Eα, i.e.,

SNα (E , 0) ≡ SN1 (Eα, 0), (2.37)

• Statement 2: the hyper-graph Gα(Vα, Eα) is chordal with maximal cliques {Cα1 , Cα2 , . . . , Cαt }.

If Statements 1 and 2 hold, then Theorems 2.17 and 2.18 follow immediately by applying

the normal Theorems 2.10 and 2.13 to the hyper-graph Gα(Vα, Eα), respectively.

Step 1, proof of Statement 1: ∀M ∈ SNα (E , 0), the off-diagonal block satisfies

Mij = MT
ji = 0 ∈ Rαi×αj if (i, j) /∈ E , i 6= j. (2.38)

Meanwhile, we have

(i, j) /∈ E

⇔ there exists no k, such that i, j ∈ Ck

⇔ there exists no k, such that
{
i−1∑
l=1

αl + 1, . . . ,
i∑
l=1

αl

}
,


j−1∑
l=1

αl + 1, . . . ,
j∑
l=1

αl

 ∈ Cαk
⇔
{
i−1∑
l=1

αl + 1, . . . ,
i∑
l=1

αl

}
×


j−1∑
l=1

αl + 1, . . . ,
j∑
l=1

αl

 /∈ Eα. (2.39)

Then M ∈ SN1 (Eα, 0). Similarly, it can be seen that ∀M ∈ SN1 (Eα, 0), we have M ∈

SNα (E , 0). Therefore, Statement 1 is true.

Step 2, proof of Statement 2: Since G(V, E) is chordal, it has a clique tree T = (Γ,Λ)

with Λ ⊆ Γ× Γ that satisfies the clique intersection property (see Theorem 2.8). Now, we

consider a clique tree Tα = (Γα,Λ) with the same edge set as T , where the nodes have

been replaced by the hyper-maximal cliques Γα = {Cα1 , Cα2 , . . . , Cαt }. We shall show that

the clique intersection property of T is invariant for any partition α = {α1, α2, . . . , αn}.

30 2.4. Block matrices and chordal decomposition

Suppose Cαq be a hyper-maximal clique on the path between Cαi and Cαj . Then,
considering the definition (2.35) and the fact Ci ∩ Cj ⊂ Cq, we have

Cαi ∩ Cαj =
{
t−1∑
l=1

αl + 1, . . . ,
t∑
l=1

αl

∣∣∣∣ t ∈ Ci and t ∈ Cj
}

=
{
t−1∑
l=1

αl + 1, . . . ,
t∑
l=1

αl

∣∣∣∣ t ∈ Ci ∩ Cj
}

⊆
{
t−1∑
l=1

αl + 1, . . . ,
t∑
l=1

αl

∣∣∣∣ t ∈ Cq
}

= Cαq ,

(2.40)

for any partition α. This implies the clique intersection property holds for the clique tree
Tα = (Γα,Λ). Hence, we conclude that the hyper-graph Gα = (Vα, Eα) is chordal with
a set of maximal cliques {Cα1 , Cα2 , . . . , Cαp }, according to Theorem 2.8.

The combination of the Statements 1 and 2 completes the proof of Theorems 2.17
and 2.18. �

We refer the reader to Figure 2.12 to an illustration of constructing hyper-graphs for
a chain of three nodes, when α = {1, 1, 1}, α = {2, 1, 2}, or α = {2, 2, 2}.

Part I

Large-scale Sparse Semidefinite
Programs (SDPs)

31

3
Chordal decomposition in sparse semidefinite

programs

The first part of this thesis is devoted to show the potential of chordal decomposition
(i.e., Theorem 2.10 and 2.13) in general sparse SDPs. In particular, Chapter 3 introduces
a new conversion framework for large-scale sparse SDPs that is suitable for first-order
algorithms, and presents ADMM algorithms to solve decomposed primal- and dual-
standard form SDPs. We also describe an open-source MATLAB solver, CDCS, that
implements our algorithms. In Chapter 4, we demonstrate the performance of CDCS in
some analysis problems of large-scale linear networked systems, which shows the efficiency
and scalability of our algorithms in CDCS.

3.1 Introduction

As stated in Section 2.1.4, semidefinite programs (SDPs) are convex optimization problems
over the cone of positive semidefinite (PSD) matrices. For convenience, we restate
the standard primal form SDP as

minimize
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ Sn+,

(3.1)

and the standard dual form as

maximize
y, Z

〈b, y〉

subject to Z +
m∑
i=1

Ai yi = C,

Z ∈ Sn+,

(3.2)

where b ∈ Rm, C ∈ Sn, and matrices A1, . . . , Am ∈ Sn are given problem data.
SDPs have found applications in a wide range of fields, such as control theory,

machine learning, combinatorics, and operations research [10]. Semidefinite programming

33

34 3.1. Introduction

encompasses other common types of optimization problems, including linear, quadratic,
and second-order cone programs [3]. Furthermore, many nonlinear convex constraints
admit SDP relaxations that work well in practice [58]. It is well-known that small
and medium-sized SDPs can be solved up to any arbitrary precision in polynomial
time [58] using efficient second-order interior-point methods (IPMs) [59, 60]. However,
many problems of practical interest are too large to be addressed by the current state-
of-the-art interior-point algorithms, largely due to the need to compute, store, and
factorize an m × m matrix at each iteration.

A common strategy to address this shortcoming is to abandon IPMs in favour of
simpler first-order methods (FOMs), at the expense of reducing the accuracy of the
solution. For instance, Malick et al. introduced regularization methods to solve SDPs
based on a dual augmented Lagrangian [61]. Wen et al. proposed an alternating direction
augmented Lagrangian method for large-scale SDPs in the dual standard form [62]. Zhao
et al. presented an augmented Lagrangian dual approach combined with the conjugate
gradient method to solve large-scale SDPs [63]. More recently, O’Donoghue et al. developed
a first-order operator-splitting method to solve the homogeneous self-dual embedding
(HSDE) of a primal-dual pair of conic programs [64]. The algorithm, implemented in the C
package SCS [65], has the advantage of providing certificates of primal or dual infeasibility.

A second major approach to resolve the aforementioned scalability issues is based on
the observation that the large-scale SDPs encountered in applications are often structured
and/or sparse [10]. Exploiting sparsity in SDPs is an active and challenging area of
research [66], with one main difficulty being that the optimal (primal) solution is typically
dense even when the problem data are sparse. Nonetheless, if the aggregate sparsity
pattern of the data is chordal (or has sparse chordal extensions), one can replace the
original, large PSD constraint with a set of PSD constraints on smaller matrices, coupled
by additional equality constraints [19–22]. Having reduced the size of the semidefinite
variables, the converted SDP can in some cases be solved more efficiently than the original
problem using standard IPMs. These ideas underly the domain-space and the range-space
conversion techniques in [23, 24], implemented in the MATLAB package SparseCoLO [67].

The problem with such decomposition techniques, however, is that the addition of
equality constraints to an SDP often offsets the benefit of working with smaller semidefinite
cones. One possible solution is to exploit the properties of chordal sparsity patterns
directly in the IPMs: Fukuda et al. used a positive definite completion theorem [19]
to develop a primal-dual path-following method [23]; Burer proposed a nonsymmetric
primal-dual IPM using Cholesky factors of the dual variable Z and maximum determinant
completion of the primal variable X [68]; and Andersen et al. developed fast recursive
algorithms to evaluate the function values and derivatives of the barrier functions for

3. Chordal decomposition in sparse semidefinite programs 35

SDPs with chordal sparsity [25]. Another attractive option is to solve the sparse SDP using
FOMs: Sun et al. proposed a first-order splitting algorithm for partially decomposable
conic programs, including SDPs with chordal sparsity [26]; Kalbat & Lavaei applied a first-
order operator-splitting method to solve a special class of SDPs with fully decomposable
constraints [27]; Madani et al. developed a highly-parallelizable first-order algorithm
for sparse SDPs with inequality constraints, with applications to optimal power flow
problems [28]; Dall’Anese et al. exploited chordal sparsity to solve SDPs with separable
constraints using a distributed FOM [69].

3.1.1 Statement of results

In this chapter, we embrace the spirit of [26–28, 64, 69] and exploit sparsity in SDPs
using a first-order operator-splitting method known as the alternating direction method of
multipliers (ADMM). In contrast to the approach in [26], which requires the solution of
a quadratic SDP at each iteration, our approach relies entirely on first-order methods.
Moreover, our ADMM-based algorithm works for generic SDPs with chordal sparsity
and has the ability to detect infeasibility, which are key advantages compared to the
algorithms in [26–28, 69].

More precisely, our contributions in this chapter are:

1. We apply two chordal decomposition theorems [19, 20] to formulate domain-space
and range-space conversion frameworks for the application of FOMs to standard-
form SDPs with chordal sparsity. These are analogous to the conversion methods
developed in [23, 24] for IPMs, but we introduce two sets of slack variables that
allow for the separation of the conic and the affine constraints when using operator-
splitting algorithms. To the best of our knowledge, this extension has never been
presented before, and its significant potential is demonstrated in this chapter.

2. We apply ADMM to solve the domain- and range-space converted SDPs, and show
that the resulting iterates of the ADMM algorithms are the same up to scaling.
The iterations are computationally inexpensive: the positive semidefinite (PSD)
constraint is enforced via parallel projections onto small PSD cones—a much more
economical strategy than that in [26]—while imposing the affine constraints requires
solving a linear system with a constant coefficient matrix, the factorization/inverse
of which can be cached before iterating the algorithm.

3. We formulate the HSDE of a converted primal-dual pair of sparse SDPs. In contrast
to [26–28, 69], this allows us to compute either primal and dual optimal points,
or a certificate of infeasibility. We then extend the algorithm proposed in [64],
showing that the structure of our HSDE can be exploited to solve a large linear

36 3.2. Chordal decomposition of sparse SDPs

system of equations extremely efficiently through a sequence of block eliminations.
As a result, we obtain an algorithm that is more efficient than the method of [64],
irrespectively of whether this is used on the original primal-dual pair of SDPs (before
decomposition) or on the converted problems. In the former case, the advantage
comes from the application of chordal decomposition to replace a large PSD cone
with a set of smaller ones. In the latter case, efficiency is gained by the proposed
sequence of block eliminations.

4. We present the MATLAB solver CDCS (Cone Decomposition Conic Solver), which
implements our ADMM algorithms. CDCS is the first open-source first-order solver
that exploits chordal decomposition and can detect infeasible problems. We test
our implementation on large-scale sparse problems in SDPLIB [70], selected sparse
SDPs with nonchordal sparsity pattern [25], and randomly generated SDPs with
block-arrow sparsity patterns [26]. The results demonstrate the efficiency of our
algorithms compared to the interior-point solvers SeDuMi [71] and the first-order
solver SCS [65].

3.1.2 Outline

The rest of this chapter is organized as follows. Section 3.2 introduces our conversion
framework for sparse SDPs based on chordal decomposition. We show how to apply the
ADMM to exploit domain-space and range-space sparsity in primal and dual SDPs in
Section 3.3. Section 3.4 discusses the ADMM algorithm for the HSDE of SDPs with
chordal sparsity. The computational complexity of our algorithms in terms of floating-
point operations is discussed in Section 3.5. CDCS and our numerical experiments are
presented in Section 3.6. Section 3.7 concludes this chapter.

3.2 Chordal decomposition of sparse SDPs

The sparsity pattern of the problem data for the primal-dual pair of standard-form
SDPs (3.1)-(3.2) can be described using the so-called aggregate sparsity pattern. We say
that the pair of SDPs (3.1)-(3.2) has an aggregate sparsity pattern G(V, E) if

C ∈ Sn(E , 0) and Ai ∈ Sn(E , 0), i = 1, . . . ,m. (3.3)

In other words, the aggregate sparsity pattern G is the union of the individual sparsity
patterns of the data matrices C, A1, . . . , Am. Throughout the rest of this chapter,
we assume that the aggregate sparsity pattern G is chordal (or that a suitable chordal
extension has been found), and that it has p maximal cliques C1, . . . , Cp. In addition,
we assume that the matrices A1, . . . , Am are linearly independent.

3. Chordal decomposition in sparse semidefinite programs 37

It is not difficult to see that the aggregate sparsity pattern determines the sparsity
pattern of any feasible dual variable Z in (3.2), i.e., any dual feasible Z must have sparsity
pattern G. Similarly, while the primal variable X in (3.1) is usually dense, the value
of the cost function and the equality constraints depend only on the entries Xij with
(i, j) ∈ E , and the remaining entries simply guarantee that X is positive semidefinite.
Recalling the definition of the sparse matrix cones Sn+(E , ?) and Sn+(E , 0), we can therefore
recast the primal-form SDP (3.1) as

minimize
X

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . , m,

X ∈ Sn+(E , ?),

(3.4)

and the dual-form SDP (3.2) as

maximize
y,Z

〈b, y〉

subject to Z +
m∑
i=1

Ai yi = C,

Z ∈ Sn+(E , 0).

(3.5)

This formulation was first proposed by Fukuda et al. [23], and was later discussed in [24–26].
Note that (3.4) and (3.5) are a primal-dual pair of linear conic problems because the
cones Sn+(E , ?) and Sn+(E , 0) are dual to each other.

3.2.1 Domain-space decomposition

As we have seen in Section 2.3.2 of Chapter 2, Theorem 2.13 allows us to decompose
the sparse matrix cone constraint X ∈ Sn+(E , ?) into p standard PSD constraints on the
submatrices of X defined by the cliques C1, . . . , Cp. In other words,

X ∈ Sn+(E , ?) ⇔ ECkXE
T
Ck ∈ S|Ck|+ , k = 1, . . . , p.

These p constraints are implicitly coupled since EClXET
Cl and ECqXE

T
Cq have overlap-

ping elements if Cl ∩ Cq 6= ∅. Upon introducing slack variables Xk, k = 1, . . . , p,
we can rewrite this as

X ∈ Sn+(E , ?) ⇔
{
Xk = ECkXE

T
Ck , k = 1, . . . , p,

Xk ∈ S|Ck|+ , k = 1, . . . , p.
(3.6)

The primal optimization problem (3.4) is then equivalent to the SDP

minimize
X,X1,...,Xp

〈C,X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

Xk = ECkXE
T
Ck , k = 1, . . . , p,

Xk ∈ S|Ck|+ , k = 1, . . . , p.

(3.7)

38 3.2. Chordal decomposition of sparse SDPs

Adopting the same terminology used in [23], we refer to (3.7) as the domain-space
decomposition of the primal-standard-form SDP (3.1).

Remark 3.1. The main difference between the conversion method proposed in this
section and that in [23, 24] is that the large matrix X is not eliminated. Instead, in the
domain-space decomposition of [23, 24], X is eliminated by replacing the constraints

Xk = ECkXE
T
Ck , k = 1, . . . , p,

with the requirement that the entries of any two different sub-matrices Xj , Xk must
match if they map to the same entry in X. Precisely, this condition can be written as

ECj∩Ck

(
ET
CkXkECk − E

T
CjXjECj

)
ET
Cj∩Ck = 0, ∀j, k such that Cj ∩ Ck 6= ∅. (3.8)

Redundant constraints in (3.8) can be eliminated using the running intersection property
of the cliques [14, 23], and the decomposed SDP can be solved efficiently by IPMs in
certain cases [23, 24]. However, applying FOMs to (3.7) effectively after the elimination
of X is not straightforward because the PSD matrix variables X1, . . . , Xp are coupled
via (3.8). In [26], for example, an SDP with a quadratic objective had to be solved at
each iteration to impose the PSD constraints, requiring an additional iterative solver.
Even when this problem is resolved, e.g., by using the algorithm of [64], the size of the
KKT system enforcing the affine constraints is increased dramatically by the consensus
conditions (3.8), sometimes so much that memory requirements are prohibitive on desktop
computing platforms [23]. In contrast, we show in Section 3.3 that if a set of slack variables
Xk are introduced in (3.6) and X is not eliminated from (3.7), then the PSD constraint
can be imposed via projections onto small PSD cones. At the same time, the affine
constraints require the solution of an m×m linear system of equations, as if no consensus
constraints were introduced. This makes our conversion framework more suitable for
FOMs than that of [23, 24], since all steps in many common operator-splitting algorithms
have an efficiently computable explicit solution.

3.2.2 Range-space decomposition

A range-space decomposition of the dual-standard-form SDP (3.2) can be formulated by
applying Theorem 2.10 to the sparse matrix cone constraint Z ∈ Sn+(E , 0) in (3.5):

Z ∈ Sn+(E , 0) ⇔ Z =
p∑

k=1
ET
CkZkECk for some Zk ∈ S|Ck|+ , k = 1, . . . , p.

We then introduce slack variables Vk, k = 1, . . . , p and conclude that Z ∈ Sn+(E , 0) if
and only if there exists matrices Zk, Vk ∈ S|Ck|, k = 1, . . . , p, such that

Z =
p∑

k=1
ET
CkVkECk , Zk = Vk, Zk ∈ S|Ck|+ , k = 1, . . . , p.

3. Chordal decomposition in sparse semidefinite programs 39

Primal SDP (3.1) Dual SDP (3.2)

Decomposed
Primal SDP (3.7)

Decomposed
Dual SDP (3.9)

Algorithm 1 Algorithm 2

Theorem 2.13 Theorem 2.10

Duality

Duality

ADMM ADMM
Scaling

Figure 3.1: Duality between the original primal and dual SDPs, and the decomposed primal
and dual SDPs.

The range-space decomposition of (3.2) is then given by

maximize
y,Z1,...,Zp,V1,...,Vp

〈b, y〉

subject to
m∑
i=1

Ai yi +
p∑

k=1
ET
CkVkECk = C,

Zk − Vk = 0, k = 1, . . . , p,

Zk ∈ S|Ck|+ , k = 1, . . . , p.

(3.9)

Remark 3.2. Similar comments as in Remark 3.1 hold: the slack variables V1, . . . , Vp

are essential to formulate a decomposition framework suitable for the application of FOMs.
Although the domain- and range-space decompositions (3.7) and (3.9) have been derived
individually, they are in fact a primal-dual pair of SDPs. The duality between the original
SDPs (3.1) and (3.2) is inherited by the decomposed SDPs (3.7) and (3.9) by virtue of
the duality between Theorem 2.13 and Theorem 2.10. This elegant picture is illustrated
in Figure 3.1.

3.3 ADMM for domain- and range-space decompositions of
sparse SDPs

In this section, we demonstrate how ADMM can be applied to solve the domain-space
decomposition (3.7) and the range-space decomposition (3.9) efficiently. Furthermore,
we show that the resulting domain- and range-space algorithms are equivalent, in the
sense that one is just a scaled version of the other (cf. Figure 3.1).

ADMM is an operator-splitting method developed in the 1970s, and it is known to be
equivalent to other operator-splitting methods such as Douglas-Rachford splitting and
Spingarn’s method of partial inverses; see [72] for a review. The ADMM algorithm
solves the optimization problem

minimize
x,y

f(x) + g(y)

subject to Ax+By = c,
(3.10)

40 3.3. ADMM for domain- and range-space decompositions of sparse SDPs

where f and g are convex functions, x ∈ Rnx , y ∈ Rny , A ∈ Rnc×nx , B ∈ Rnc×ny and
c ∈ Rnc . Given a penalty parameter ρ > 0 and a dual multiplier z ∈ Rnc , the ADMM
algorithm finds a saddle point of the augmented Lagrangian

Lρ(x, y, z) := f(x) + g(y) + zT (Ax+By − c) + ρ

2 ‖Ax+By − c‖2

by minimizing L with respect to the primal variables x and y separately, followed
by a dual variable update:

x(n+1) = argmin
x
Lρ(x, y(n), z(n)), (3.11a)

y(n+1) = argmin
y
Lρ(x(n+1), y, z(n)), (3.11b)

z(n+1) = z(n) + ρ (Ax(n+1) +By(n+1) − c). (3.11c)

The superscript (n) indicates that a variable is fixed to its value at the n-th itera-
tion. Note that since z is fixed in (3.11a) and (3.11b), one may equivalently minimize
the modified Lagrangian

L̂ρ(x, y, z) := f(x) + g(y) + ρ

2

∥∥∥∥Ax+By − c+ 1
ρ
z

∥∥∥∥2
.

Under very mild conditions, the ADMM converges to a solution of (3.10) with a
rate O(1

n) [72, Section 3.2]. ADMM is particularly suitable when (3.11a) and (3.11b)
have closed-form expressions, or can be solved efficiently. Moreover, splitting the
minimization over x and y often allows distributed and/or parallel implementations
of steps (3.11a)–(3.11c).

3.3.1 Vectorized forms

Throughout this section, δK(x) will denote the indicator function of a set K, i.e.,

δK(x) :=
{

0, if x ∈ K,
+∞, otherwise.

To simplify notation, we write δ0 when K ≡ {0}.
To ease the exposition further, we consider the usual vectorized forms of (3.7) and (3.9).

Specifically, we let vec : Sn → Rn2 be the usual operator mapping a matrix to the stack
of its columns and define the vectorized data

c := vec(C), A :=
[
vec(A0) . . . vec(Am)

]T
.

Note that the assumption that A1, . . ., Am are linearly independent matrices means that
A has full row rank. For all k = 1, . . . , p, we also introduce the vectorized variables

x := vec(X), xk := vec(Xk), zk := vec(Zk), vk := vec(Vk),

3. Chordal decomposition in sparse semidefinite programs 41

and define “entry-selector” matrices Hk := ECk ⊗ ECk for k = 1, . . . , p that project x
onto the subvectors x1, . . . , xp, i.e., such that

xk = vec(Xk) = vec(ECkXET
Ck) = Hkx.

Note that for each k = 1, . . . , p, the rows of Hk are orthonormal, and that the matrix
HT
k Hk is diagonal. Upon defining mat(·) := vec−1 and

Sk :=
{
x ∈ R|Ck|

2 : mat(x) ∈ S|Ck|+
}
,

such that xk ∈ Sk if and only if Xk ∈ S|Ck|+ , we can rewrite (3.7) as

minimize
x,x1,...,xp

〈c, x〉

subject to Ax = b,

xk = Hkx, k = 1, . . . , p,

xk ∈ Sk, k = 1, . . . , p,

(3.12)

while (3.9) becomes

maximize
y,z1,...,zp,v1,...,vp

〈b, y〉

subject to ATy +
p∑

k=1
HT
k vk = c,

zk − vk = 0, k = 1, . . . , p,

zk ∈ Sk, k = 1, . . . , p.

(3.13)

3.3.2 ADMM for the domain-space decomposition

We start by moving the constraints Ax = b and xk ∈ Sk in (3.12) to the objective using
the indicator functions δ0(·) and δSk(·), respectively, i.e., we write

minimize
x,x1,...,xp

〈c, x〉+ δ0 (Ax− b) +
p∑

k=1
δSk(xk)

subject to xk = Hkx, k = 1, . . . , p.
(3.14)

This problem is in the standard form for the application of ADMM. Given a penalty
parameter ρ > 0 and a Lagrange multiplier λk for each constraint xk = Hkx, k = 1, . . . , p,
we consider the (modified) augmented Lagrangian

L(x, x1, . . . , xk, λ1, . . . , λk) := 〈c, x〉+ δ0 (Ax− b)

+
p∑

k=1

[
δSk(xk) + ρ

2

∥∥∥∥xk −Hkx+ 1
ρ
λk

∥∥∥∥2
]
, (3.15)

and group the variables as X := {x}, Y := {x1, . . . , xp}, and Z := {λ1, . . . , λp}.
According to (3.11), each iteration of the ADMM requires the minimization of the

42 3.3. ADMM for domain- and range-space decompositions of sparse SDPs

Lagrangian in (3.15) with respect to the X - and Y-blocks separately, followed by an
update of the multipliers Z. At each step, the variables not being optimized over are fixed
to their most current value. Note that splitting the primal variables x, x1, . . . , xp in the
two blocks X and Y defined above is essential to solving the X and Y minimization sub-
problems (3.11a) and (3.11b); more details will be given in Remark 3.3 after describing
the Y-minimization step in Section 3.3.2.

Minimization over X

Minimizing the augmented Lagrangian (3.15) over X is equivalent to the equality-
constrained quadratic program

minimize
x

〈c, x〉+ ρ

2

p∑
k=1

∥∥∥∥x(n)
k −Hkx+ 1

ρ
λ

(n)
k

∥∥∥∥2

subject to Ax = b.

(3.16)

Letting ρy be the multiplier for the equality constraint (we scale the multiplier by
ρ for convenience), and defining

D :=
p∑

k=1
HT
k Hk, (3.17)

the optimality conditions for (3.16) can be written as the KKT system[
D AT

A 0

] [
x
y

]
=
[∑p

k=1H
T
k

(
x

(n)
k + ρ−1λ

(n)
k

)
− ρ−1c

b

]
. (3.18)

Recalling that the product HT
k Hk is a diagonal matrix for all k = 1, . . . , p we conclude

that so is D, and since A has full row rank by assumption (3.18) can be solved efficiently,
for instance by block elimination. In particular, eliminating x shows that the only
matrix to be inverted/factorized is

AD−1AT ∈ Sm. (3.19)

Incidentally, we note that the first-order algorithms of [62, 64] require the factorization of
a similar matrix with the same dimension. Since this matrix is the same at every iteration,
its Cholesky factorization (or any other factorization of choice) can be computed and
cached before starting the ADMM iterations. For some families of SDPs, such as the SDP
relaxation of MaxCut problems and sum-of-squares (SOS) feasibility problems [48], the
matrix AD−1AT is diagonal, so solving (3.18) is inexpensive even when the SDPs are very
large. If factorizing AD−1AT is too expensive, the linear system (3.18) can alternatively
be solved by an iterative method, such as the conjugate gradient method [73].

3. Chordal decomposition in sparse semidefinite programs 43

Minimization over Y

Minimizing the augmented Lagrangian (3.15) over Y is equivalent to solving p independent

conic problems of the form

minimize
xk

∥∥∥xk −Hkx
(n+1) + ρ−1λ

(n)
k

∥∥∥2

subject to xk ∈ Sk.
(3.20)

In terms of the original matrix variables X1, . . . , Xp, each of these p sub-problems

amounts to a projection onto a PSD cone. More precisely, if P
S|Ck|+

denotes the projection

onto the PSD cone S|Ck|+ , we have

x
(n+1)
k = vec

{
P
S|Ck|+

[
mat

(
Hkx

(n+1) − ρ−1λ
(n)
k

)]}
. (3.21)

Since the size of each cone S|Ck|+ is small for typical sparse SDPs and the projection

onto it can be computed with an eigenvalue decomposition, the variables x1, . . . , xp can

be updated efficiently. Moreover, the computation can be carried out in parallel. In

contrast, the algorithms for generic SDPs developed in [61, 62, 64] require projections

onto the (much larger) original PSD cone Sn+.

Remark 3.3. As anticipated in Remark 3.1, retaining the global variable x in the

domain-space decomposed SDP to enforce the consensus constraints between the entries

of the subvectors x1, . . . , xp (i.e., xk = Hkx) is fundamental. In fact, it allowed us to

separate the conic constraints from the affine constraints in (3.12) when applying the

splitting strategy of ADMM, making the minimization over Y easy to compute and

parallelizable. In contrast, when x is eliminated as in the conversion method of [23, 24],

the conic constraints and the affine constraints cannot be easily decoupled when applying

the first-order splitting method: in [26] a quadratic SDP had to be solved at each iteration,

which limits its scalability.

Updating the multipliers Z

The final step in the n-th ADMM iteration is to update the multipliers λ1, . . . , λp with

the usual gradient ascent rule: for each k = 1, . . . , p,

λ
(n+1)
k = λ

(n)
k + ρ

(
x

(n+1)
k −Hkx

(n+1)
)
. (3.22)

This computation is inexpensive and easily parallelized.

44 3.3. ADMM for domain- and range-space decompositions of sparse SDPs

Algorithm 1 ADMM for the domain-space decomposition of sparse primal-form SDPs
1: Set ρ > 0, εtol > 0, a maximum number of iterations nmax, and initial guesses x(0),
x

(0)
1 , . . . , x

(0)
p , λ(0)

1 , . . . , λ
(0)
p .

2: Data preprocessing: chordal extension, chordal decomposition, and factorization of the KKT
system (3.18).

3: for n = 1, 2, . . . , nmax do
4: Compute x(n) using (3.18).
5: for k = 1, . . . , p do
6: Compute x(n)

k using (3.21).
7: Compute λ(n)

k using (3.22).
8: end for
9: Update the residuals εc, ελ.

10: if maximize(εc, ελ) ≤ εtol then
11: break
12: end if
13: end for

Stopping conditions

The ADMM algorithm is stopped after the n-th iteration if the relative primal/dual error
measures.

εc =

(p∑
k=1

∥∥∥x(n)
k −Hkx

(n)
∥∥∥2
)1/2

max


(p∑
k=1

∥∥∥x(n)
k

∥∥∥2
)1/2

,

(p∑
k=1

∥∥∥Hkx
(n)
∥∥∥2
)1/2


, (3.23a)

ελ = ρ

(p∑
k=1

∥∥∥x(n)
k − x

(n−1)
k

∥∥∥2
)1/2(p∑

k=1

∥∥∥λ(n)
k

∥∥∥2
)−1/2

, (3.23b)

are smaller than a specified tolerance, εtol. The reader is referred to [72] for a detailed
discussion of stopping conditions for ADMM algorithms. In conclusion, a primal-form
SDP with domain-space decomposition (3.12) can be solved using the steps summa-
rized in Algorithm 1.

3.3.3 ADMM for the range-space decomposition

An ADMM algorithm similar to Algorithm 1 can be developed for the range-space
decomposition (3.13) of a dual-standard-form sparse SDP. As in Section 3.3.2, we start
by moving all but the consensus equality constraints zk = vk, k = 1, . . . , p, to the
objective using indicator functions. This leads to

minimize − 〈b, y〉+ δ0

(
c−ATy −

p∑
k=1

HT
k vk

)
+

p∑
k=1

δSk(zk)

subject to zk = vk, k = 1, . . . , p. (3.24)

3. Chordal decomposition in sparse semidefinite programs 45

Given a penalty parameter ρ > 0 and a Lagrange multiplier λk for each of the
constraints zk = vk, k = 1, . . . , p, we consider the (modified) augmented Lagrangian

L(y, v1, . . . , vp, z1, . . . , zp, λ1, . . . , λp) := −〈b, y〉

+ δ0

(
c−ATy −

p∑
k=1

HT
k vk

)
+

p∑
k=1

[
δSk(zk) + ρ

2

∥∥∥∥zk − vk + 1
ρ
λk

∥∥∥∥2
]
, (3.25)

and consider three groups of variables, X := {y, v1, . . . , vp}, Y := {z1, . . . , zp}, and
Z := {λ1, . . . , λp}. Similar to Section 3.3.2, each iteration of the ADMM algorithm
for (3.13) consists of minimizations over X and Y, and an update of the multipliers Z.
Each of these steps admits an inexpensive closed-form solution, as we demonstrate next.

Minimization over X

Minimizing (3.25) over block X is equivalent to solving the equality-constrained quadratic
program

minimize
y,v1,...,vp

− 〈b, y〉+ ρ

2

p∑
k=0

∥∥∥∥z(n)
k − vk + 1

ρ
λ

(n)
k

∥∥∥∥2

subject to c−ATy −
p∑

k=1
HT
k vk = 0. (3.26)

Let ρx be the multiplier for the equality constraint. After some algebra, the optimality
conditions for (3.26) can be written as the KKT system[

D AT

A 0

] [
x
y

]
=
[
c−

∑p
k=1H

T
k

(
z

(n)
k + ρ−1λ

(n)
k

)
−ρ−1b

]
, (3.27)

plus a set of p uncoupled equations for the variables vk,

vk = z
(n)
k + 1

ρ
λ

(n)
k +Hkx, k = 1, . . . , p. (3.28)

The KKT system (3.27) is the same as (3.18) after rescaling x 7→ −x, y 7→ −y,
c 7→ ρ−1c and b 7→ ρb. Consequently, the numerical cost of (3.26) is the same as
in Section 3.3.2 plus the cost of (3.28), which is inexpensive and can be parallelized.
Moreover, as in Section 3.3.2, the factors of the coefficient matrix required to solve the KKT
system (3.27) can be pre-computed and cached before iterating the ADMM algorithm.

Minimization over Y

As in Section 3.3.2, the variables z1, . . . , zp are updated with p independent projections,

z
(n+1)
k = vec

{
P
S|Ck|+

[
mat

(
v

(n+1)
k − ρ−1λ

(n)
k

)]}
, (3.29)

where P
S|Ck|+

denotes projection on the PSD cone S|Ck|+ . Again, these projections can
be computed efficiently and in parallel.

46 3.3. ADMM for domain- and range-space decompositions of sparse SDPs

Remark 3.4. As anticipated in Section 3.2.2, introducing the set of slack variables vk
and the consensus constraints zk = vk, k = 1, . . . , p is essential to obtain an efficient
algorithm for range-space decomposed SDPs. The reason is that the splitting strategy
of the ADMM decouples the conic and affine constraints, and the conic variables can be
updated using the simple conic projection (3.29).

Updating the multipliers Z

The multipliers λk, k = 1, . . . , p, are updated (possibly in parallel) with the compu-
tationally inexpensive gradient ascent rule

λ
(n+1)
k = λ

(n)
k + ρ

(
z

(n+1)
k − v(n+1)

k

)
. (3.30)

Stopping conditions

Similar to Section 3.3.2, we stop our ADMM algorithm after the n-th iteration if the
relative primal/dual error measures

εc =

(p∑
k=1

∥∥∥z(n)
k − v(n)

k

∥∥∥2
)1/2

max


(p∑
k=1

∥∥∥z(n)
k

∥∥∥2
)1/2

,

(p∑
k=1

∥∥∥v(n)
k

∥∥∥2
)1/2


, (3.31a)

ελ = ρ

(p∑
k=1

∥∥∥z(n)
k − z(n−1)

k

∥∥∥2
)1/2(p∑

k=1

∥∥∥λ(n)
k

∥∥∥2
)−1/2

, (3.31b)

are smaller than a specified tolerance, εtol. The ADMM algorithm to solve the range-space
decomposition (3.13) of a dual-form sparse SDP is summarized in Algorithm 2.

3.3.4 Equivalence between the primal and dual ADMM algorithms

Since the computational cost of (3.28) is the same as (3.22), all ADMM iterations
for the dual-form SDP with range-space decomposition (3.13) have the same cost
as those for the primal-form SDP with domain-space decomposition (3.12), plus the
cost of (3.30). However, if one minimizes the dual augmented Lagrangian (3.25) over
z1, . . . , zp before minimizing it over y, v1, . . . , vp, then (3.28) can be used to simplify
the multiplier update equations to

λ
(n+1)
k = ρHkx

(n+1), k = 1, . . . , p. (3.32)

Given that the products H1x, . . . ,Hpx have already been computed to update v1, . . . , vp

in (3.28), updating the multipliers λ1, . . . , λp requires only a scaling operation. Then, after

3. Chordal decomposition in sparse semidefinite programs 47

Algorithm 2 ADMM for the range-space decomposition of sparse dual-form SDPs
1: Set ρ > 0, εtol > 0, a maximum number of iterations nmax and initial guesses y(0), v(0)

1 , . . . , v
(0)
p ,

λ
(0)
1 , . . . , λ

(0)
p .

2: Data preprocessing: chordal extension, chordal decomposition, and factorization of the KKT
system (3.27).

3: for n = 1, 2, . . . , nmax do
4: for k = 1, . . . , p do
5: Compute z(n)

k using (3.29).
6: end for
7: Compute y(n), x using (3.27).
8: for k = 1, . . . , p do
9: Compute v(n)

k using (3.28).
10: Compute λ(n)

k using (3.32).
11: end for
12: Update the residuals εc and ελ.
13: if maximize(εc, ελ) ≤ εtol then
14: break
15: end if
16: end for

swapping the order of X - and Y-block minimization of (3.25) and recalling that (3.18)
and (3.27) are scaled versions of the same KKT system, the ADMM algorithms for
the primal and dual standard form SDPs can be considered scaled versions of each
other; see Figure 3.1 for an illustration. In fact, the equivalence between ADMM
algorithms for the original (i.e., before chordal decomposition) primal and dual SDPs
was already noted in [74].

Remark 3.5. Although the iterates of Algorithm 1 and Algorithm 2 are the same up to
scaling, the convergence performance of these two algorithms differ in practice because
first-order methods are sensitive to the scaling of the problem data and of the iterates.

3.4 Homogeneous self-dual embedding of domain- and range-
space decomposed SDPs

Algorithms 1 and 2, as well as other first-order algorithms that exploit chordal sparsity [26–
28], can solve feasible problems, but cannot detect infeasibility in their current formulation.
Although some recent ADMM methods resolve this issue [75, 76], an elegant way to deal
with an infeasible primal-dual pair of SDPs—which we pursue here—is to solve their
homogeneous self-dual embedding (HSDE) [77].

The essence of the HSDE method is to search for a non-zero point in the intersection
of a convex cone and a linear space; this is non-empty because it always contains the
origin, meaning that the problem is always feasible. Given such a non-zero point, one
can either recover optimal primal and dual solutions of the original pair of optimization

48 3.4. Homogeneous self-dual embedding of domain- and range-space decomposed SDPs

problems, or construct a certificate of primal or dual infeasibility. HSDEs have been
widely used to develop IPMs for SDPs [71, 78], and more recently O’Donoghue et al. have
proposed an operator-splitting method to solve the HSDE of general conic programs [64].

In this section, we formulate the HSDE of the domain- and range-space decomposed
SDPs (3.12) and (3.13), which is a primal-dual pair of SDPs. We also apply ADMM
to solve this HSDE; in particular, we extend the algorithm of [64] to exploit chordal
sparsity without increasing its computational cost (at least to leading order) compared
to Algorithms 1 and 2.

3.4.1 Homogeneous self-dual embedding

To simplify the formulation of the HSDE of the decomposed (vectorized) SDPs (3.12)
and (3.13), we let S := S1 × · · · × Sp be the Cartesian product of PSD cones and define

s :=

x1
...
xp

 , z :=

z1
...
zp

 , t :=

v1
...
vp

 , H :=

H1
...
Hp

 .
When strong duality holds, the tuple (x∗, s∗, y∗, t∗, z∗) is optimal if and only if all

of the following conditions hold:

1. (x∗, s∗) is primal feasible, i.e., Ax∗ = b, s∗ = Hx∗, and s∗ ∈ S. For reasons that
will become apparent below, we introduce slack variables r∗ = 0 and w∗ = 0 of
appropriate dimensions and rewrite these conditions as

Ax∗ − r∗ = b, s∗ + w∗ = Hx∗, s∗ ∈ S, r∗ = 0, w∗ = 0. (3.33)

2. (y∗, t∗, z∗) is dual feasible, i.e., ATy∗ +HTt∗ = c, z∗ = t∗, and z∗ ∈ S. Again, it is
convenient to introduce a slack variable h∗ = 0 of appropriate size and write

ATy∗ +HTt∗ + h∗ = c, z∗ − t∗ = 0, z∗ ∈ S, h∗ = 0. (3.34)

3. The duality gap is zero, i.e.
cTx∗ − bTy∗ = 0. (3.35)

The idea behind the HSDE [77] is to introduce two non-negative and complementary
variables τ and κ and embed the optimality conditions (3.33), (3.34) and (3.35) into
the linear system v = Qu with u, v and Q defined as

u :=


x
s
y
t
τ

 , v :=


h
z
r
w
κ

 , Q :=


0 0 −AT −HT c
0 0 0 I 0
A 0 0 0 −b
H −I 0 0 0
−cT 0 bT 0 0

 . (3.36)

3. Chordal decomposition in sparse semidefinite programs 49

Any nonzero solution of this embedding can be used to recover an optimal solution for (3.7)

and (3.9), or provide a certificate for primal or dual infeasibility, depending on the values

of τ and κ; details are omitted for brevity, and the interested reader is referred to [64].

The decomposed primal-dual pair of (vectorized) SDPs (3.12)-(3.13) can therefore

be recast as the self-dual conic feasibility problem

find (u, v)

subject to v = Qu,

(u, v) ∈ K ×K∗,

(3.37)

where, writing nd = ∑p
k=1 |Ck|2 for brevity, K := Rn2 × S × Rm × Rnd × R+ is a cone

and K∗ := {0}n2 × S × {0}m × {0}nd × R+ is its dual.

3.4.2 A simplified ADMM algorithm

The feasibility problem (3.37) is in a form suitable for the application of ADMM, and more-

over steps (3.11a)-(3.11c) can be greatly simplified by virtue of its self-dual character [64].

Specifically, the n-th iteration of the simplified ADMM algorithm for (3.37) proposed

in [64] consists of the following three steps, where PK denotes projection onto the cone K:

û(n+1) = (I +Q)−1
(
u(n) + v(n)

)
, (3.38a)

u(n+1) = PK
(
û(n+1) − v(n)

)
, (3.38b)

v(n+1) = v(n) − û(n+1) + u(n+1). (3.38c)

Note that (3.38b) is inexpensive, since K is the cartesian product of simple cones

(zero, free and non-negative cones) and small PSD cones, and can be efficiently carried

out in parallel. The third step is also computationally inexpensive and parallelizable.

On the contrary, even when the preferred factorization of I + Q (or its inverse) is

cached before starting the iterations, a direct implementation of (3.38a) may require

substantial computational effort because

Q ∈ Sn
2+2nd+m+1

is a very large matrix (e.g., n2 +2nd+m+1 = 2 360 900 for problem rs365 in Section 3.6.3).

Yet, it is evident from (3.36) that Q is highly structured and sparse, and these properties

can be exploited to speed up step (3.38a) using a series of block-eliminations and the

matrix inversion lemma [3, Section C.4.3].

50 3.4. Homogeneous self-dual embedding of domain- and range-space decomposed SDPs

Solving the “outer” linear system

The affine projection step (3.38a) requires the solution of a linear system (which we refer
to as the “outer” system for reasons that will become clear below) of the form[

M ζ
−ζT 1

] [
û1
û2

]
=
[
ω1
ω2

]
, (3.39)

where

M :=
[
I −ÂT

Â I

]
, ζ :=

[
ĉ

−b̂

]
, Â :=

[
A 0
H −I

]
, ĉ :=

[
c
0

]
, b̂ :=

[
b
0

]
(3.40)

and we have split

u(n) + v(n) =
[
ω1
ω2

]
. (3.41)

Note that û2 and ω2 are scalars. Eliminating û2 from the first block equation in (3.39)
yields

(M + ζζT)û1 = ω1 − ω2ζ, (3.42a)

û2 = ω2 + ζTû1. (3.42b)

Moreover, applying the matrix inversion lemma [3, Section C.4.3] to (3.42a) shows that

û1 =
[
I − (M−1ζ)ζT

1 + ζT(M−1ζ)

]
M−1 (ω1 − ω2ζ) . (3.43)

Note that the vector M−1ζ and the scalar 1 + ζT(M−1ζ) depend only on the problem
data, and can be computed before starting the ADMM iterations (sinceM is quasi-definite
it can be inverted, and any symmetric matrix obtained as a permutation of M admits an
LDL factorization). Instead, recalling from (3.41) that ω1 − ω2ζ changes at each iteration
because it depends on the iterates u(n) and v(n), the vector M−1 (ω1 − ω2ζ) must be
computed at each iteration. Consequently, computing û1 and û2 requires the solution of
an “inner” linear system for the vector M−1 (ω1 − ω2ζ), followed by inexpensive vector
inner products and scalar-vector operations in (3.43) and (3.42b).

Solving the “inner” linear system

Recalling the definition of M from (3.40), the “inner” linear system to calculate û1

in (3.43) has the form [
I −ÂT

Â I

] [
σ1
σ2

]
=
[
ν1
ν2

]
. (3.44)

3. Chordal decomposition in sparse semidefinite programs 51

Here, σ1 and σ2 are the unknowns and represent suitable partitions of the vectorM−1(ω1−

ω2ζ) in (3.43), which is to be calculated, and we have split

ω1 − ω2ζ =
[
ν1
ν2

]
.

Applying block elimination to remove σ1 from the second equation in (3.44), we obtain

(I + ÂTÂ)σ1 = ν1 + ÂTν2, (3.45a)

σ2 = −Âσ1 + ν2. (3.45b)

Recalling the definition of Â and recognizing that

D = HTH =
p∑

k=1
HT
k Hk

is a diagonal matrix, as already noted in Section 3.3.2, we also have

I + ÂTÂ =
[
(I +D +ATA) −HT

−H 2I

]
.

Block elimination can therefore be used once again to solve (3.45a), and simple algebraic
manipulations show that the only matrix to be factorized (or inverted) is

I + 1
2D +ATA ∈ Sn

2
. (3.46)

Note that this matrix depends only on the problem data and the chordal decomposition, so
it can be factorized/inverted before starting the ADMM iterations. In addition, it is of the
“diagonal plus low rank" form because A ∈ Rm×n2 with m < n2 (in fact, often m� n2).
This means that the matrix inversion lemma can be used to reduce the size of the matrix to
factorize/invert even further: letting P = I + 1

2D be the diagonal part of (3.46), we have

(P +ATA)−1 = P−1 − P−1AT(I +AP−1AT)−1AP−1.

In summary, after a series of block eliminations and applications of the matrix inversion
lemma, step (3.38a) of the ADMM algorithm for (3.37) only requires the solution of an
m × m linear system of equations with coefficient matrix

I +A

(
I + 1

2D
)−1

AT ∈ Sm, (3.47)

plus a sequence of matrix-vector, vector-vector, and scalar-vector multiplications. A
detailed count of floating-point operations is given in Section 3.5.

52 3.4. Homogeneous self-dual embedding of domain- and range-space decomposed SDPs

Stopping conditions

The ADMM algorithm described in the previous section can be stopped after the n-
th iteration if a primal-dual optimal solution or a certificate of primal and/or dual
infeasibility is found, up to a specified tolerance εtol. As noted in [64], rather than
checking the convergence of the variables u and v, it is desirable to check the convergence
of the original primal and dual SDP variables using the primal and dual residual error
measures normally considered in interior-point algorithms [71]. For this reason, we employ
different stopping conditions than those used in Algorithms 1 and 2, which we define
below using the following notational convention: we denote the entries of u and v in (3.36)
that correspond to x, y, τ , and z, respectively, by ux, uy, uτ , and vz.

If u(n)
τ > 0 at the n-th iteration of the ADMM algorithm, we take

x(n) = u
(n)
x

u
(n)
τ

, y(n) = u
(n)
y

u
(n)
τ

, z(n) = HTv
(n)
z

u
(n)
τ

(3.48)

as the candidate primal-dual solutions, and define the relative primal residual, dual
residual, and duality gap as

εp := ‖Ax
(n) − b‖2

1 + ‖b‖2
, (3.49a)

εd := ‖A
Ty(n) + z(n) − c‖2

1 + ‖c‖2
, (3.49b)

εg := |cTx(n) − bTy(n)|
1 + |cTx(n)|+ |bTy(n)|

. (3.49c)

Also, we define the residual in consensus constraints as

εc := max{(3.23a), (3.31a)}. (3.50)

We terminate the algorithm if max{εp, εd, εg, εc} is smaller than εtol. If u(n)
τ = 0, instead,

we terminate the algorithm if

max
{
‖Au(n)

x ‖2 + cTu
(n)
x

‖c‖2
εtol, ‖ATu(n)

y +HTv(n)
z ‖2 −

bTu
(n)
y

‖b‖2
εtol

}
≤ 0. (3.51)

Certificates of primal or dual infeasibility (with tolerance εtol) are then given, respectively,
by the points u(n)

y /(bTu
(n)
y) and −u(n)

x /(cTu
(n)
x). These stopping criteria are similar

to those used by many other conic solvers, and coincide with those used in SCS [65]
except for the addition of the residual in the consensus constraints (3.50). The complete
ADMM algorithm to solve the HSDE of the primal-dual pair of domain- and range-space
decomposed SDPs is summarized in Algorithm 3.

3. Chordal decomposition in sparse semidefinite programs 53

Algorithm 3 ADMM for the HSDE of sparse SDPs with chordal decomposition
1: Set εtol > 0, a maximum number of iterations nmax and initial guesses û(0), u(0), v(0).
2: Data preprocessing: chordal extension, chordal decomposition and factorization of the matrix

in (3.47).
3: for n = 1, . . . , nmax do
4: Compute û(n+1) using the sequence of block eliminations (3.39)-(3.47).
5: Compute u(n+1) using (3.38b).
6: Compute v(n+1) using (3.38c).
7: if u(n)

τ > 0 then
8: Compute εp, εd, εg, εc.
9: if maximize{εp, εd, εg, εc} ≤ εtol then

10: break
11: end if
12: else
13: if (3.51) holds then
14: break
15: end if
16: end if
17: end for

3.5 Complexity analysis via flop count

The computational complexity of each iteration of Algorithms 1-3 can be assessed by
counting the total number of required floating-point operations (flops)—that is, the number
of additions, subtractions, multiplications, or divisions of two floating-point numbers [3,
Appendix C.1.1]—as a function of problem dimensions. For (3.18) and (3.27) we have

A ∈ Rm×n
2
, b ∈ Rm, c ∈ Rn

2
, D ∈ Sn

2
, Hk ∈ R|Ck|

2×n2 for k = 1, . . . , p,

while the dimensions of the variables are

x ∈ Rn
2
, y ∈ Rm, xk, λk ∈ R|Ck|

2 for k = 1, . . . , p.

In this section, we count the flops in Algorithms 1–3 as a function of m, n, p, and
nd = ∑p

k=1 |Ck|2. We do not consider the sparsity in the problem data, both for simplicity
and because sparsity is problem-dependent. Thus, the matrix-vector product Ax is
assumed to cost (2n2 − 1)m flops (for each row, we need n2 multiplications and n2 − 1
additions), while ATy is assumed to cost (2m− 1)n2 flops. In practice, of course, these
matrix-vector products may require significantly fewer flops if A is sparse, and sparsity
should be exploited in any implementation to reduce computational cost. The only
exception that we make concerns the matrix-vector products Hkx and HT

k xk because each
Hk, k = 1, . . . , p, is an “entry-selector” matrix that extracts the subvector xk ∈ R|Ck|2 from
x ∈ Rn2 . Hence, the operations Hkx and HT

k xk require no actual matrix multiplications
but only indexing operations (plus, possibly, making copies of floating-point numbers
depending on the implementation), so they cost no flops according to our definition.

54 3.5. Complexity analysis via flop count

However, we do not take into account that the vectors HT
k xk ∈ Rn2 , k = 1, . . . , p, are

often sparse, because their sparsity depends on the particular problem at hand. It follows
from these considerations that computing the summation∑p

k=1H
T
k xk costs (p−1)n2 flops.

Using these rules, in Section 3.8, we prove the following results.

Proposition 3.6. Given the Cholesky factorization of AD−1AT = LLT, where L is
lower triangular, solving the linear systems (3.18) and (3.27) via block elimination costs
(4m+ p+ 3)n2 + 2m2 + 2nd flops.

Proposition 3.7. Given the constant vector ζ̂ := (M−1ζ)/(1 + ζTM−1ζ) ∈ Rn2+2nd+m

and the Cholesky factorization I +A(I + 1
2D)−1AT = LLT, where L is lower triangular,

solving (3.38a) using the sequence of block eliminations (3.39)–(3.47) requires (8m+ 2p+
11)n2 + 2m2 + 7m+ 21nd − 1 flops.

These propositions reveal that the computational complexity of the affine projections
in Algorithms 1 and 2, which amount to solving the linear systems (3.18) and (3.27),
is comparable to that of the affine projection (3.38a) in Algorithm 3. In fact, since
typically m� n2, we expect that the affine projection step of Algorithm 3 will be only
approximately twice as expensive as the corresponding step in Algorithms 1 and 2 in
terms of the number of flops, and therefore also in terms of CPU time (the numerical
results presented in Table 3.9, Section 3.6.4, will confirm this expectation).

Similarly, the following result (also proved in Section 3.8) guarantees that the leading-
order costs of the conic projections in Algorithms 1–3 are identical and, importantly,
depend only on the size and number of the maximal cliques in the chordal decomposition,
not on the dimension n of the original PSD cone in (3.1)–(3.1).

Proposition 3.8. The computational costs of the conic projections in Algorithms 1–3
require O(∑p

k=1 |Ck|3) floating-point operations.

In particular, the computational burden grows as a linear function of the number of
cliques when their size is fixed, and as a cubic function of the clique size.

Finally, we emphasize that Propositions 3.6–3.8 suggest that Algorithms 1–3 should
solve a primal-dual pair of sparse SDPs more efficiently than the general-purpose ADMM
method for conic programs of [64], irrespective of whether this is used before or after chordal
decomposition. In the former case, the benefit comes from working with smaller PSD cones:
one block-elimination in equation (28) of [64] allows solving affine projection step (3.38a) in
O(mn2) flops, which is typically comparable to the flop count of Propositions 3.6 and 3.7,
but the conic projection step costsO(n3) flops, which for typical sparse SDPs is significantly
larger than O(∑p

k=1 |Ck|3). In the latter case, instead, the conic projection (3.38b) costs
the same for all methods, but projecting the iterates onto the affine constraints becomes
much more expensive according to our flop count when the sequences of block eliminations
described in Section 3.4 is not exploited fully.

3. Chordal decomposition in sparse semidefinite programs 55

3.6 Implementation and numerical experiments

We implemented Algorithms 1–3 in an open-source MATLAB solver which we call CDCS
(Cone Decomposition Conic Solver). We refer to our implementation of Algorithms 1–3
as CDCS-primal, CDCS-dual and CDCS-hsde, respectively. This section briefly describes
CDCS and presents numerical results on sparse SDPs from SDPLIB [70], large and sparse
SDPs with nonchordal sparsity patterns from [25], and randomly generated SDPs with
block-arrow sparsity pattern. Such problems have also been used as benchmarks in [25, 26].

In order to highlight the advantages of chordal decomposition, first-order algorithms,
and their combination, the three algorithms in CDCS are compared to the interior-point
solver SeDuMi [71], and to the single-threaded direct implementation of the first-order
algorithm of [64] provided by the conic solver SCS [65]. All experiments were carried out
on a PC with a 2.8 GHz Intel Core i7 CPU and 8GB of RAM and the solvers were called
with termination tolerance εtol = 10−3, number of iterations limited to 2 000, and their
default remaining parameters. The purpose of comparing CDCS to a low-accuracy IPM is
to demonstrate the advantages of combining FOMs with chordal decomposition, while a
comparison to the high-performance first-order conic solver SCS highlights the advantages
of chordal decomposition alone. When possible, accurate solutions (εtol = 10−8) were
also computed using SeDuMi; these can be considered “exact”, and used to assess how
far the solution returned by CDCS is from optimality. Note that tighter tolerances
could be used with CDCS and SCS to obtain a more accurate solution, at the expense
of increasing the number of iterations required to meet the convergence requirements.
Finally, SparseCoLO [67] was used as a preprocessor for SeDuMi, which implemented
the conversion techniques [23, 24] to exploit chordal sparsity.

3.6.1 CDCS

To the best of our knowledge, CDCS is the first open-source first-order conic solver
that exploits chordal decomposition for the PSD cones and is able to handle infeasible
problems. Cartesian products of the following cones are supported: the cone of free
variables Rn, the non-negative orthant Rn+, second-order cones, and PSD cones. The
current implementation is written in MATLAB and can be downloaded from

https://github.com/oxfordcontrol/cdcs.

Note that although many steps of Algorithms 1–3 can be carried out in parallel, our
implementation is sequential. Interfaces with the optimization toolboxes YALMIP [79]
and SOSTOOLS [80] are also available.

https://github.com/oxfordcontrol/cdcs

56 3.6. Implementation and numerical experiments

Implementation details

CDCS applies chordal decomposition to all PSD cones. Following [15], the sparsity pattern
of each PSD cone is chordal extended using the MATLAB function chol to compute a
symbolic Cholesky factorization of the approximate minimum-degree permutation of the
cone’s adjacency matrix, returned by the MATLAB function symamd. The maximal cliques
of the chordal extension are then computed using a .mex function from SparseCoLO [67].

As far as the steps of our ADMM algorithms are concerned, projections onto the
PSD cone are performed using the MATLAB routine eig, while projections onto other
supported cones only use vector operations. The Cholesky factors of the m×m linear
system coefficient matrix (permuted using symamd) are cached before starting the ADMM
iterations. The permuted linear system is solved at each iteration using the routines
cs_lsolve and cs_ltsolve from the CSparse library [81]. CDCS solves the decomposed
problems (3.12) and/or (3.13) using any of Algorithms 1–3, and then attempts to construct
a primal-dual solution of the original SDPs (3.1) and (3.1) with a maximum determinant
completion routine (see [23, Section 2], [15, Section 10.2]) adapted from SparseCoLO [67].

Adaptive penalty strategy

While the ADMM algorithms proposed in the previous sections converge independently
of the choice of penalty parameter ρ, in practice its value strongly influences the number
of iterations required for convergence. Unfortunately, analytic results for the optimal
choice of ρ are not available except for very special problems [82]. Consequently, in order
to improve the convergence rate and make performance less dependent on the choice
of ρ, CDCS employs the dynamic adaptive rule.

ρ(h+1) =


µρ(h) if ‖ε(h)

p ‖2 ≥ ν‖ε(h)
d ‖2,

µ−1ρ(h) if ‖ε(h)
d ‖2 ≥ ν‖ε

(h)
p ‖2,

ρ(k) otherwise.

Here, ε(h)
p and ε(h)

d are the primal and dual residuals at the h-th iteration, while µ and ν
are parameters no smaller than 1. Note that since ρ does not enter any of the matrices
being factorized/inverted, updating its value is computationally inexpensive. The adaptive
penalty strategy can bring certain convergence improvements in practice, but in theory it is
difficult to prove the convergence of the ADMM algorithm when ρ varies by iteration [72].

The idea of the rule above is to adapt ρ to balance the convergence of the primal and
dual residuals to zero; more details can be found in [72, Section 3.4.1]. Typical choices
for the parameters (the default in CDCS) are µ = 2 and ν = 10 [72].

3. Chordal decomposition in sparse semidefinite programs 57

Scaling the problem data

The relative scaling of the problem data also affects the convergence rate of ADMM
algorithms. CDCS scales the problem data after the chordal decomposition step us-
ing a strategy similar to [64]. In particular, the decomposed SDPs (3.12) and (3.13)
can be rewritten as:

minimize
x̂

ĉTx̂

subject to Âx̂ = b̂

x̂ ∈ Rn
2 ×K,

maximize
ŷ,ẑ

b̂Tŷ

subject to ÂTŷ + ẑ = ĉ

ẑ ∈ {0}n2 × K̂∗,

(3.52a,b)

where

x̂ =
[
x
s

]
, ŷ =

[
y
t

]
, ẑ =

[
0
z

]
, ĉ =

[
c
0

]
, b̂ =

[
b
0

]
, Â =

[
A 0
H −I

]
.

CDCS solves the scaled decomposed problems

minimize
x̂

σ(Dĉ)Tx̄

subject to EÂDx̄ = ρEb̂

x̄ ∈ Rn
2 ×K,

maximize
ŷ,ẑ

ρ(Eb)Tȳ

subject to DÂTEȳ + z̄ = σDĉ

z̄ ∈ {0}n2 ×K∗,

(3.53a,b)

obtained by scaling vectors b̂ and ĉ by positive scalars ρ and σ, and the primal and dual
equality constraints by positive definite, diagonal matrices D and E. Note that such
a rescaling does not change the sparsity pattern of the problem. As already observed
in [64], a good choice for E, D, σ and ρ is such that the rows of Ā and b̄ have Euclidean
norm close to one, and the columns of Ā and c̄ have similar norms. If D and D−1 are
chosen to preserve membership to the cone Rn2 × K and its dual, respectively (how
this can be done is explained in [64, Section 5]), an optimal point for (3.52) can be
recovered from the solution of (3.53):

x̂∗ = Dx̄∗

ρ
, ŷ∗ = Eȳ∗

σ
, ẑ∗ = D−1z̄∗

σ
.

3.6.2 Sparse SDPs from SDPLIB

Our first experiment is based on large-scale benchmark problems from SDPLIB [70]:
two Lovász ϑ number SDPs (theta1 and theta2), two infeasible SDPs (infd1 and infd2),
two MaxCut problems (maxG11 and maxG32), and two SDP relaxations of box-constrained
quadratic programs (qpG11 and qpG51). Table 3.1 reports the dimensions of these problems,
as well as chordal decomposition details. Problems theta1 and theta2 are dense, so have
only one maximal clique; all other problems are sparse and have many maximal cliques
of size much smaller than the original cone.

58 3.6. Implementation and numerical experiments

Table 3.1: Details of the SDPLIB problems considered in this chapter.

Small Infeasible Large and sparse
theta1 theta2 infd1 infd2 maxG11 maxG32 qpG11 qpG51

Original cone size, n 50 100 30 30 800 2 000 1 600 2 000
Affine constraints, m 104 498 10 10 800 2 000 800 1 000
Number of cliques, p 1 1 1 1 598 1 499 1 405 1 675
Maximum clique size 50 100 30 30 24 60 24 304
Minimum clique size 50 100 30 30 5 5 1 1

Table 3.2: Results for two small SDPs, theta1 and theta2, in SDPLIB.

theta1 theta2

Time (s) # Iter. Objective Time (s) # Iter. Objective
SeDuMi (high) 0.281 14 23.00 1.216 15 32.88
SeDuMi (low) 0.161 8 23.00 0.650 8 32.88
SCS (direct) 0.057 140 22.99 0.244 200 32.89
CDCS-primal 0.297 163 22.92 0.618 188 32.94
CDCS-dual 0.284 154 22.83 0,605 178 32.89
CDCS-hsde 0.230 156 23.03 0.392 118 32.88

The numerical results are summarized in Tables 3.2–3.5. Table 3.2 shows that the small
dense SDPs theta1 and theta2, were solved in approximately the same CPU time by all
solvers. Note that since these problems only have one maximal clique, SCS and CDCS-hsde
use similar algorithms, and performance differences are mainly due to the implementation
(most notably, SCS is written in C). Table 3.3 confirms that CDCS-hsde successfully
detects infeasible problems, while CDCS-primal and CDCS-dual do not have this ability.

The CPU time, number of iterations and terminal objective value for the four
large-scale sparse SDPs maxG11, maxG32, qpG11 and qpG51 are listed in Table 3.4. All
algorithms in CDCS were faster than either SeDuMi or SCS, especially for problems with
smaller maximum clique size as one would expect in light of the complexity analysis of
Section 3.5. Notably, CDCS solved maxG11, maxG32, and qpG11 in less than 100 s, a speedup
of approximately 9×, 43×, and 66× over SCS. In addition, even though FOMs are only

Table 3.3: Results for two infeasible SDPs in SDPLIB. An objective value of +Inf denotes
infeasiblity. Results for the primal-only and dual-only algorithms in CDCS are not reported since
they cannot detect infeasibility.

infp1 infp2

Time (s) # Iter. Objective Time (s) # Iter. Objective
SeDuMi (high) 0.127 2 +Inf 0.033 2 +Inf
SeDuMi (low) 0.120 2 +Inf 0.031 2 +Inf
SCS (direct) 0.067 20 +Inf 0.031 20 +Inf
CDCS-hsde 0.109 118 +Inf 0.114 101 +Inf

3. Chordal decomposition in sparse semidefinite programs 59

Table 3.4: Results for four large sparse SDPs in SDPLIB, maxG11, maxG32, qpG11 and qpG51.

maxG11 maxG32

Time (s) # Iter. Objective Time (s) # Iter. Objective
SeDuMi (high) 88.9 13 629.2 1 266 14 1 568
SeDuMi (low) 48.7 7 628.7 624 7 1 566
SCS (direct) 93.9 1 080 629.1 2 433 2 000 1 568
CDCS-primal 22.2 230 629.5 84 311 1 569
CDCS-dual 16.9 220 629.2 61 205 1 567
CDCS-hsde 10.9 182 629.3 56 291 1 568

qpG11 qpG51

Time (s) # Iter. Objective Time (s) # Iter. Objective
SeDuMi (high) 650 14 2 449 1 895 22 1 182
SeDuMi (low) 357 8 2 448 1 530 18 1 182
SCS (direct) 1 065 2 000 2 449 2 220 2 000 1 288
CDCS-primal 29 249 2 450 482 1 079 1 145
CDCS-dual 21 193 2 448 396 797 1 201
CDCS-hsde 16 219 2 449 865 2 000 1 182

Table 3.5: Average CPU time per iteration (in seconds) for the SDPs from SDPLIB.

theta1 theta2 maxG11 maxG32 qpG11 qpG51

SCS (direct) 4.0×10−4 1.2×10−3 0.087 1.216 0.532 1.110
CDCS-primal 1.8×10−3 3.3×10−3 0.076 0.188 0.101 0.437
CDCS-dual 1.8×10−3 3.4×10−3 0.064 0.174 0.091 0.484
CDCS-hsde 1.5×10−3 3.3×10−3 0.048 0.140 0.064 0.430

meant to provide moderately accurate solutions, the terminal objective value returned by

CDCS-hsde was always within 0.2% of the high-accuracy optimal value computed using

SeDuMi. This is an acceptable difference in many practical applications.

Finally, to offer a comparison of the performance of CDCS and SCS that is insensitive

both to problem scaling and to differences in the stopping conditions, Table 3.5 reports

the average CPU time per iteration required to solve the sparse SDPs maxG11, maxG32,

qpG11 and qpG51, as well as the dense SDPs theta1 and theta2. Evidently, all algorithms

in CDCS are faster than SCS for the large-scale sparse SDPs (maxG11, maxG32, qpG11 and

qpG51), and in particular CDCS-hsde improves on SCS by approximately 1.8×, 8.7×,

8.3×, and 2.6× for each problem, respectively. This is to be expected since the conic

projection step in CDCS is more efficient due to smaller semidefinite cones, but the results

are remarkable considering that CDCS is written in MATLAB, while SCS is implemented

in C. Additionally, the performance of CDCS could be improved even further with a

parallel implementation of the projections onto small PSD cones.

60 3.6. Implementation and numerical experiments

(a) rs35 (b) rs200 (c) rs228

(d) rs365 (e) rs1555 (f) rs1907

Figure 3.2: Aggregate sparsity patterns of the nonchordal SDPs in [25]; see Table 3.6 for the
matrix dimensions.

Table 3.6: Summary of chordal decomposition for the chordal extensions of the nonchordal SDPs
form [25].

rs35 rs200 rs228 rs365 rs1555 rs1907

Original cone size, n 2003 3025 1919 4704 7479 5357
Affine constraints, m 200 200 200 200 200 200
Number of cliques, p 588 1635 783 1244 6912 611
Maximum clique size 418 102 92 322 187 285
Minimum clique size 5 4 3 6 2 7

3.6.3 Nonchordal SDPs

In our second experiment, we solved six large-scale SDPs with nonchordal sparsity patterns
form [25]: rs35, rs200, rs228, rs365, rs1555, and rs1907. The aggregate sparsity patterns
of these problems, illustrated in Figure 3.2, come from the University of Florida Sparse
Matrix Collection [83]. Table 3.6 demonstrates that all six sparsity patterns admit chordal
extensions with maximum cliques that are much smaller than the original cone.

Total CPU time, number of iterations, and terminal objective values are presented
in Table 3.7. For all problems, the algorithms in CDCS (primal, dual and hsde) are all
much faster than either SCS or SeDuMi. In addition, SCS never terminates succesfully,
while the objective value returned by CDCS is always within 2% of the high-accuracy
solutions returned by SeDuMi (when this could be computed).

The advantages of the algorithms proposed in this work are evident from Table 3.8:
the average CPU time per iteration in CDCS-hsde is approximately 22×, 24×, 28×, and
105× faster compared to SCS for problems rs200, rs365, rs1907, and rs1555, respectively.
The results for average CPU time per iteration also demonstrate that the computational
complexity of all three algorithms in CDCS (primal, dual, and hsde) is independent of
the original problem size: problems rs35 and rs228 have similar cone size n and the same

3. Chordal decomposition in sparse semidefinite programs 61

Table 3.7: Results for large-scale SDPs with nonchordal sparsity patterns form [25]. Entries
marked *** indicate that the problem could not be solved due to memory limitations.

rs35 rs200

Time (s) # Iter. Objective Time (s) # Iter. Objective
SeDuMi (high) 1 391 17 25.33 4 451 17 99.74
SeDuMi (low) 986 11 25.34 2 223 8 99.73
SCS (direct) 2 378 2 000 25.08 9 697 2 000 81.87
CDCS-primal 370 379 25.27 159 577 99.61
CDCS-dual 272 245 25.53 103 353 99.72
CDCS-hsde 2 019 2 000 25.47 254 1 114 99.70

rs228 rs365

Time (s) # Iter. Objective Time (s) # Iter. Objective
SeDuMi (high) 1 655 21 64.71 *** *** ***
SeDuMi (low) 809 10 64.80 *** *** ***
SCS (direct) 2 338 2 000 62.06 34 497 2 000 44.02
CDCS-primal 94 400 64.65 321 401 63.37
CDCS-dual 84 341 64.76 240 265 63.69
CDCS-hsde 79 361 64.87 332 442 63.64

rs1555 rs1907

Time (s) # Iter. Objective Time (s) # Iter. Objective
SeDuMi (high) *** *** *** *** *** ***
SeDuMi (low) *** *** *** *** *** ***
SCS (direct) 139 314 2 000 34.20 50 047 2 000 45.89
CDCS-primal 1 721 2 000 61.22 330 349 62.87
CDCS-dual 317 317 69.54 271 252 63.30
CDCS-hsde 1 413 2 000 61.36 393 414 63.14

Table 3.8: Average CPU time per iteration (in seconds) for the nonchordal SDPs form [25].

rs35 rs200 rs228 rs365 rs1555 rs1907

SCS (direct) 1.188 4.847 1.169 17.250 69.590 25.240
CDCS-primal 0.944 0.258 0.224 0.715 0.828 0.833
CDCS-dual 1.064 0.263 0.232 0.774 0.791 0.920
CDCS-hsde 1.005 0.222 0.212 0.735 0.675 0.893

number of constraints m, yet the average CPU time for the latter is approximately 5×

smaller. This can be explained by noticing that for all test problems considered here

the number of constraints m is moderate, so the overall complexity of our algorithms is

dominated by the conic projection. As stated in Proposition 3.8, this depends only on

the size and number of the maximal cliques, not on the size of the original PSD cone. A

more detailed investigation of how the number of maximal cliques, their size, and the

number of constraints affect the performance of CDCS is presented next.

62 3.6. Implementation and numerical experiments

l blocks

d

d

h

h

Figure 3.3: Block-arrow sparsity pattern (dots indicate repeating diagonal blocks). The
parameters are: the number of blocks, l; block size, d; the width of the arrow head, h.

3.6.4 Random SDPs with block-arrow patterns

To examine the influence of the number of maximal cliques, their size, and the number
of constraints on the computational cost of Algorithms 1–3, we considered randomly
generated SDPs with a “block-arrow” aggregate sparsity pattern, illustrated in Figure 3.3.
Such a sparsity pattern is characterized by: the number of blocks, l; the block size,
d; and the size of the arrow head, h. The associated PSD cone has dimension ld + h.
The block-arrow sparsity pattern is chordal, with l maximal cliques all of the same size
d + h. The effect of the number of constraints in the SDP, m, is investigated as well,
and numerical results are presented below for the following scenarios:

1. Fix l = 100, d = 10, h = 20, and vary the number of constraints, m;

2. Fix m = 200, d = 10, h = 20, and vary l (hence, the number of maximal cliques);

3. Fix m = 200, l = 50, h = 10, and vary d (hence, the size of the maximal cliques).

In our computations, the problem data are generated randomly using the following
procedure. First, we generate random symmetric matrices A1, . . . , Am with block-arrow
sparsity pattern, whose nonzero entries are drawn from the uniform distribution U(0, 1)
on the open interval (0, 1). Second, a strictly primal feasible matrix Xf ∈ Sn+(E , 0) is
constructed as Xf = W + αI, where W ∈ Sn(E , 0) is randomly generated with entries
from U(0, 1) and α is chosen to guarantee Xf � 0. The vector b in the primal equality
constraints is then computed such that bi = 〈Ai, Xf〉 for all i = 1, . . . ,m. Finally, the
matrix C in the dual constraint is constructed as C = Zf +∑m

i=1 yiAi, where y1, . . . , ym

are drawn from U(0, 1) and Zf � 0 is generated similarly to Xf.
The average CPU time per 100 iterations for the first-order solvers is plotted in

Figure 3.4. As already observed in the previous sections, in all three test scenarios the
algorithms in CDCS are faster than SCS, when the latter is used to solve the original
SDPs (before chordal decomposition). Of course, as one would expect, the computational
cost grows when either the number of constraints, the size of the maximal cliques, or their

3. Chordal decomposition in sparse semidefinite programs 63

Figure 3.4: Average CPU time (in seconds) per 100 iterations for SDPs with block-arrow patterns.
Left to right: varying the number of constraints; varying the number of blocks; varying the block
size.

Table 3.9: Average CPU time (×10−2 s) required by the affine projection steps in CDCS-primal,
CDCS-dual, and CDCS-hsde as a function of the number of constraints (m) for l = 100, d = 10,
and h = 20.

m 200 239 286 342 409 489 585 699 836 1000
CDCS-primal 1.05 1.21 1.40 1.63 1.90 2.22 2.60 3.12 3.59 4.29
CDCS-dual 1.10 1.26 1.46 1.67 1.94 2.28 2.65 3.16 3.66 4.31
CDCS-hsde 1.84 2.14 2.55 2.95 3.50 4.12 4.85 5.80 6.81 8.04

number is increased. Note, however, that the CPU time per iteration of CDCS grows
more slowly than that of SCS as a function of the number of maximal cliques, which
is the benefit of considering smaller PSD cones in CDCS. Precisely, the CPU time per
iteration of CDCS increases linearly when the number of cliques l is raised, as expected
from Proposition 3.8; instead, the CPU time per iteration of SCS grows cubically, since
the eigenvalue decomposition on the original cone requires O(l3) flops (note that when d
and h are fixed, (ld+ h)3 = O(l3)). Finally, the results in Table 3.9 confirm the analysis
in Propositions 3.6 and 3.7, according to which the CPU time required in the affine
projection of CDCS-hsde was approximately twice larger than that of CDCS-primal or
CDCS-dual. On the other hand, the increase in computational cost with the number
of constraints m is slower than predicted by Propositions 3.6 and 3.7 due to the fact
that, contrary to the complexity analysis presented in Section 3.5, our implementation
of Algorithms 1–3 takes advantage of sparse matrix operations where possible.

3.6.5 Comparison with SparseCoLO

As our final experiment, we solved four large sparse SDPs in SDPLIB (maxG11, maxG32,
qpG11, and qpG51) using SparseCoLO and SeDuMi. SparseCoLO implements the conversion
techniques [23, 24] to exploit chordal decomposition properties. As listed in Table 3.10,

64 3.7. Conclusion

Table 3.10: Results for four large sparse SDPs in SDPLIB using SparseCoLO+SeDuMi. Entries
marked ∗ ∗ ∗ indicate that the problem could not be solved due to memory limitations.

m maxG11 maxG32 qpG11 qpG51

Time (s) 9.83 577.4 27.3 ***
Iter. 15 15 15 ***

Objective 629.2 1568 2449 ***

the conversion techniques in SparseCoLO can give speedups in some cases (maxG11 and
qpG11) when the additional number of equality constraints is moderate. However, the
failure to solve the problem qpG51 — due to memory overflow caused by the large number
of consensus constraints in the converted problem — highlights the drawbacks.

3.7 Conclusion

In this chapter, we have presented a conversion framework for large-scale SDPs charac-
terized by chordal sparsity. This framework is analogous to the conversion techniques
for IPMs of [23, 24], but is more suitable for the application of FOMs. We have then
developed efficient ADMM algorithms for sparse SDPs in either primal or dual standard
form, and for their homogeneous self-dual embedding. In all cases, a single iteration
of our ADMM algorithms only requires parallel projections onto small PSD cones and
a projection onto an affine subspace, both of which can be carried out efficiently. In
particular, when the number of constraints m is moderate the complexity of each iteration
is determined by the size of the largest maximal clique, not the size of the original
problem. This enables us to solve large, sparse conic problems that are beyond the reach
of standard interior-point and/or other first-order methods.

All our algorithms have been made available in the open-source MATLAB solver
CDCS. Numerical simulations on benchmark problems, including selected sparse problems
from SDPLIB, large and sparse SDPs with a nonchordal sparsity pattern, and SDPs with
a block-arrow sparsity pattern, demonstrate that our methods can significantly reduce
the total CPU time requirement compared to the state-of-the-art interior-point solver
SeDuMi [71] and the efficient first-order solver SCS [65].

3.8 Proofs of Chapter 3

3.8.1 Proof of Proposition 3.6

Since (3.18) and (3.27) are the same modulo scaling, we only consider the former. Also,
we drop the superscript (n) to lighten the notation. Recall that HT

k xk is an indexing

3. Chordal decomposition in sparse semidefinite programs 65

operation and requires no flops, and let

b̂ :=
p∑

k=1
HT
k

(
xk + ρ−1λk

)
− ρ−1c ∈ Rn

2
. (3.54)

After a suitable block elimination and writing AD−1AT = LLT, the solution of (3.18) is
given by

LLTy = AD−1b̂− b, (3.55a)

x = D−1
(
b̂−ATy

)
. (3.55b)

Computing x and y cost (4m+ p+ 3)n2 + 2m2 + 2nd flops, counted as the sum of:

1. (p+ 1)n2 + 2nd flops to form b̂: no flops to multiply by Hk, 2|Ck|2 flops to compute
xk + ρ−1λk, n2 flops to calculate ρ−1c, and (p− 1)n2 + n2 flops to sum all addends
in (3.54).

2. (2m + 1)n2 flops to compute AD−1b̂ − b: n2 flops to compute D−1b̂ since D is
diagonal, (2n2 − 1)m flops to multiply by A, and m flops to subtract b.

3. 2m2 flops to compute y via forward and backward substitutions using (3.55a).
4. (2m+ 1)n2 flops to compute x via (3.55b): (2m− 1)n2 flops to find ATy, n2 flops

to subtract it from b̂, and n2 flops to multiply by D−1.

3.8.2 Proof of Proposition 3.7

Consider the “inner” system (3.44) first. Partition the vectors σ1 and σ2 as

σ1 =
[
σ11
σ12

]
, σ2 =

[
σ21
σ22

]
,

where σ11 ∈ Rn2 , σ12, σ22 ∈ Rnd , and σ21 ∈ Rm. The vectors ν1 and ν2 on the right-
hand side of (3.44) can be partitioned in a similar way. Recalling the definition of
the matrix Â from (3.40), (3.45b) becomes[

σ21
σ22

]
=
[

ν21 −Aσ11
ν22 −Hσ11 + σ12

]
. (3.56)

To calculate σ11 and σ12 one needs to solve (3.45a), which after partitioning all vari-
ables can be rewritten as[(

I +D +ATA
)
−HT

−H 2I

] [
σ11
σ12

]
=
[
ν11 +ATν21 +HTν22

ν12 − ν22

]
. (3.57)

Eliminating σ12 from the first block equation results in(
I + 1

2D +ATA

)
σ11 = ν11 +ATν21 + 1

2H
T (ν12 + ν22) , (3.58a)

σ12 = 1
2(ν12 − ν22 +Hσ11). (3.58b)

66 3.8. Proofs of Chapter 3

After defining P := I+ 1
2D and η := ν11 +ATν21 + 1

2H
T (ν12 + ν22) to lighten the notation,

an application of the matrix inversion lemma to (3.58a) yields

σ11 = P−1η − P−1AT(I +AP−1AT)−1AP−1η. (3.59)

We are now in a position to count the flops required to solve the “inner” linear system. First,

computing σ11 via (3.59) requires a total (6m+p+3)n2+2m2−m flops, counted as follows:

1. (2m+ p+ 1)n2 flops to form η;

2. n2 flops to compute P−1η, since P is an n2 × n2 diagonal matrix;

3. (2n2 − 1)m flops to calculate AP−1η;

4. 2m2 flops to form the vector (I +AP−1AT)−1AP−1η using forward and backward

substitutions (we assume that the Cholesky decomposition I +AP−1AT = LLT has

been cached);

5. (2m− 1)n2 flops to find AT(I +AP−1AT)−1AP−1η;

6. 2n2 flops to compute σ11 via (3.59) given P−1η and AT(I +AP−1AT)−1AP−1η.

Once σ11 is known, σ12 is found from (3.58b) with 3nd flops because the product

Hσ11 is simply an indexing operation and costs no flops. Given σ11 and σ12, computing

σ21 and σ22 from (3.56) requires 2mn2 + 2nd flops, so the “inner” linear system (3.44)

costs a total of (8m + 2p + 3)n2 + 2m2 − m + 5nd flops.

After the inner system has been solved, we see that computing û1 from (3.43) requires

(8m + 2p + 9)n2 + 2m2 + 5m + 17nd − 1 flops in total:

1. 2(n2 + 2nd +m) flops to compute ω1 − ω2ζ;

2. (8m+2p+3)n2+2m2−m+5nd flops to solve the “inner” linear systemM−1(ω1−ω2ζ);

3. 2(n2 + 2nd +m)− 1 flops to compute ζTM−1(ω1 − ω2ζ) ∈ R;

4. n2 + 2nd +m flops to calculate ζ̂ · ζTM−1(ω1 − ω2ζ);

5. n2 + 2nd +m flops to compute û1 = M−1(ω1 − ω2ζ)− ζ̂ · ζTM−1(ω1 − ω2ζ).

Summing this to the 2(n2 + 2nd + m) flops required to calculate û2 using (3.42b)

yields the desired result.

3. Chordal decomposition in sparse semidefinite programs 67

3.8.3 Proof of Proposition 3.8

The conic projection (3.21) in Algorithm 1 amounts to projecting the matrices

mat
(
Hkx

(n+1) − ρ−1λ
(n)
k

)
∈ S|Ck|, k = 1, . . . , p

onto the PSD cone S|Ck|+ . Computing Hkx
(n+1) − ρ−1λ

(n)
k requires 2|Ck|2 flops, while

a PSD projection using a full eigenvalue decomposition costs O(|Ck|3) flops to leading
order, so the overall number of flops is O(∑p

k=1 |Ck|3). The same argument holds for
the conic projection (3.29) in Algorithm 2.

In Algorithm 3, instead, the projection is onto the cone K := Rn2×S×Rm×Rnd×R+.

Nothing needs to be done to project onto Rn2 , Rm and Rnd , while the projection of a ∈ R
onto R+ is given by maximize{0, a} and requires no flops according to our definition.
Finally, projecting onto S requires eigenvalue decompositions of the matrices mat(xk),
k = 1, . . . , p, with a leading-order cost of O(∑p

k=1 |Ck|3) flops.

4
Scalable systems analysis using CDCS

This chapter demonstrates the performance of CDCS for scalable analysis of linear
networked systems, including stability, H2 and H∞ performance. Our main strategy
is to exploit any sparsity within these analysis problems and use chordal decomposi-
tion. By choosing block-diagonal Lyapunov functions, we decompose large positive
semidefinite (PSD) constraints in all of the analysis problems into multiple smaller ones
depending on the maximal cliques of the system graph. This makes the solutions more
computationally efficient via CDCS.

4.1 Introduction

Large-scale networked systems, consisting of multiple subsystems over a network, have
received considerable attention [1]. One of the challenges arising in these systems is to
develop scalable methods that are able to solve the associated analysis and synthesis
problems efficiently. However, classical methods often suffer from a lack of scalability
for large systems, since their computational demand usually grows rapidly as the
system’s dimension increases.

In the literature, there are two groups of scalable analysis techniques for large-scale
networked systems: 1) compositional analysis [84–87]; and 2) positive system theory [49,
88–91]. The former method is usually carried out in the framework of dissipative systems,
while the latter method aims to solve a special type of dynamical systems. The main
strategy of compositional analysis is to find individual supply rate for each dissipative
subsystem and then to establish a global storage function as a combination of the local
storage functions [84, 85]. Recently, Meissen et al. employed a first-order method to
optimize the local supply rates for certifying stability of an interconnected system [86],
which might reduce the conservatism brought by individual storage functions. Anderson
and Papachristodoulou proposed a decomposition technique based on graph partition that
facilitates the compositional analysis [87]. Another group of scalable strategies focuses on a

69

70 4.2. Problem statement

particular class of systems, i.e., positive systems [88], where the system matrices only have
nonnegative off-diagonal entries. It is well-known that stability and performance of positive
systems can be verified using linear Lyapunov functions [89], which can be computed by
more scalable linear programs (LPs) instead of traditional semidefinite programs (SDPs).
Tanaka and Langbort showed that it is necessary and sufficient to use a diagonal Lyapunov
function in the KYP lemma for positive systems [90]. Sootla and Rantzer proposed scalable
model reduction techniques for positive systems using linear energy functions [91].

In contrast to the compositional analysis and positive system theory, our approach
focuses on the inherent structure and sparsity of networked systems and uses sparse
optimization techniques, particularly chordal decomposition, to solve the analysis problems
efficiently. This idea is in line with some of the early results in the field [13, 34,
41, 56]. Chordal decomposition is a celebrated result in linear algebra that connects
sparse positive semidefinite matrices and chordal graphs. As already discussed in the
previous chapters, there is a broad literature regarding the applications of chordal graph
properties in combinatorial problems, Cholesky factorization, matrix completion and
sparse semidefinite optimization.

In this chapter, we introduce a chordal decomposition approach based on CDCS for
scalable analysis of linear networked systems. We focus on the well-known convex
formulations of the analysis problems, i.e., stability, H2 and H∞ performance, and show
how to decompose large PSD constraints in all of the analysis problems into multiple
smaller ones, thus facilitating their solutions. By choosing block-diagonal Lyapunov
functions, we show that the graph structure of the networked system can be potentially
inherited in the resulting SDPs of the analysis problems. This allows us to decompose
a large PSD constraint into multiple smaller ones. Consequently, for sparse networked
systems, the decomposed analysis problems can be solved efficiently using CDCS.

The rest of this chapter is organized as follows. In Section 4.2, we present the problem
statement. Chordal decomposition in sparse SDPs is reviewed in Section 4.3. Section 4.4
presents the scalable analysis approach for stability H2 and H∞ performance. Numerical
results are shown in Section 4.5, and we conclude the chapter in Section 4.6.

4.2 Problem statement

We consider a network of linear heterogeneous subsystems interacting over a directed
graph G(V, E). Each node in V = {1, . . . , N} represents a subsystem, and the edge
(i, j) ∈ E means that subsystem i exerts dynamical influence on subsystem j. The
dynamics of subsystem i ∈ V are written as

ẋi(t) = Aiixi(t) +
∑
j∈Ni

Aijxj(t) +Biwi(t),

yi(t) = Cixi(t) +Diwi(t),
(4.1)

4. Scalable systems analysis using CDCS 71

where xi ∈ Rαi , yi ∈ Rdi , wi ∈ Rmi represent the local state, output and disturbance,
respectively, and Ni denotes the neighbours of node i. By collecting the subsystems’
states, the overall state-space model is then written concisely as

ẋ(t) = Ax(t) +Bw(t),

y(t) = Cx(t) +Dw(t),
(4.2)

where x = [xT
1 , x

T
2 , . . . , x

T
N]T, and the vectors y, w are defined similarly. The matrix A is

composed of blocks Aij , which exhibits a block sparsity pattern A ∈ RN×Nα (E , 0), where
α = {α1, . . . , αN} denotes a block partition. The matrices B,C,D have block-diagonal
structures with block dimensions matching the diagonal blocks of A.

In this chapter, we consider three analysis problems of the linear networked sys-
tem (4.2):

1. Verify the asymptotical stability when w = 0;

2. Calculate the H2 performance when D = 0;

3. Calculate the H∞ performance.

It is well-known that these three problems can be equivalently reformulated as certain
optimization problems [10]:
1) Stability: System (4.2) with w = 0 is asymptotically stable if and only if the Lyapunov
linear matrix inequality (LMI) is feasible

find P � 0,

subject to ATP + PA ≺ 0.
(4.3)

2) H2 performance: The H2 performance of system (4.2) with D = 0 can be computed as

minimize
P

Trace(BTPB)

subject to ATP + PA+ CTC � 0,

P � 0.

(4.4)

where ‖C(sI −A)−1B‖H2 =
√
Trace(BTPB).

3) H∞ performance: The H∞ performance of system (4.2) can be computed as

minimize
P

γ

subject to

ATP + PA PB CT

BTP −γI DT

C D −γI

 ≺ 0,

P � 0.

(4.5)

where ‖C(sI − A)−1B + D‖H∞ = γ.

72 4.3. Chordal decomposition in sparse SDPs

Problems (4.3)-(4.5) are convex, and ready to solve via existing interior-point solvers,
such as SeDuMi [71]. The main difficulty is that standard interior-point solvers do not
scale well for large problem instances. One major reason is that the constraints in (4.3)-
(4.5) are imposed on the global system and consequently the computational complexity
grows very quickly as the number of subsystems increases. Typically, the system graph
G is sparse for practical large-scale systems, meaning that each subsystem only has
physical connections with a few other subsystems. In this chapter, we aim to exploit
this sparsity via CDCS to solve (4.3)-(4.5) efficiently.

Remark 4.1. Note that there are also other efficient formulations to test stability and
to compute H2 and H∞ performance [10]. One additional benefit of problems (4.3)-
(4.5) is that we can get a proper Lyapunov function, defined by V (x) = xTPx. Also,
problems (4.3)-(4.5) are helpful for some standard static synthesis problems via a standard
change of variables. In this chapter, we will focus on (4.3)-(4.5), and use CDCS to solve
them efficiently when the system graph G is sparse.

4.3 Chordal decomposition in sparse SDPs

In this section, we focus on the SDP formulations of the optimization problems (4.3)-(4.5),
and briefly review the idea of Chapter 3 to decompose them using chordal graph theory.
For convenience, we recall that the standard primal form of an SDP is

minimize
X

〈A0, X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X � 0,

(4.6)

and its standard dual form is

maximize
y,Z

〈b, y〉

subject to Z +
m∑
i=1

yiAi = A0,

Z � 0,

(4.7)

where X is the primal variable, y, Z are the dual variables, and b ∈ Rm, Ai ∈ SN , i =
0, 1, . . . ,m are problem data.

Suppose the data matrices in (4.6) and (4.7) have an aggregate sparsity pattern:
A0, A1, . . . , Am ∈ SNα (E , 0). It is assumed that the pattern E is chordal with a set of
maximal cliques C1, C2, . . . , Cp. Note that the cost function and equality constraints
in (4.6) only depend on the entries Xij on the diagonal and (i, j) ∈ E . The remaining
elements simply guarantee that the matrix is PSD. Also, in (4.7) any feasible solution

4. Scalable systems analysis using CDCS 73

Z satisfies the sparsity pattern SNα (E , 0). Recalling the definition of SNα,+(E , ?) and

according to Theorems 2.17 and 2.18, we can rewrite the primal SDP (4.6) and dual

SDP (4.7), respectively, as

minimize
X,Xk

〈A0, X〉

subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

Xk = ECk,αXE
T
Ck,α, k = 1, . . . , p,

Xk ∈ S|Ck|α+ , k = 1, . . . , p,

(4.8)

and
maximize
y,Zk,Vk

〈b, y〉

subject to
p∑

k=1
ET
Ck,αVkECk,α +

m∑
i=1

yiAi = A0,

Zk = Vk, k = 1, . . . , p,

Zk ∈ S|Ck|α+ , k = 1, . . . , p.

. (4.9)

In (4.8) and (4.9), the original single large PSD cone has been replaced by multiple

smaller PSD cones, coupled by a set of consensus variables. Then, first-order methods

can be applied to the decomposed formulations (4.8) and (4.9), or their homogeneous

self-dual embedding, which leads to algorithms only involving parallel PSD projections

onto p smaller cones and a projection onto an affine set at each iteration. If the size

of the largest maximal clique is small, then the reduction of cone dimensions enables

us to compute PSD projections much more efficiently. Consequently, the application of

first-order methods in the decomposed problems (4.8) and (4.9) improves the scalability

to solve sparse SDPs when seeking a solution of moderate accuracy. The interested reader

is referred to Chapter 3 or [36, 38] for details. The MATLAB package CDCS [35] provides

an efficient implementation of the above decomposition method.

4.4 Scalable performance analysis of sparse systems

This section applies the chordal decomposition techniques in stability, H2 and H∞ analyses

of linear networked systems. Our strategy is to restrict the sparsity pattern of P , such

that the sparsity structure of the dynamical system is preserved in the SDP formulations

of (4.3)-(4.5). This allows one to decompose a single large PSD constraint into multiple

smaller ones using chordal decomposition, thus facilitating their solutions using CDCS.

We note that the proposed method of this section may introduce certain conservatism

for general networked systems since we use a structured Lyapunov function.

74 4.4. Scalable performance analysis of sparse systems

4.4.1 Stability verification

We first show that the sparsity pattern of ATP + PA reflects the aggregate sparsity
pattern of the resulting SDP formulation. Let us write the Lyapunov LMI as[

−P 0
0 ATP + PA

]
≺ 0. (4.10)

There are up to m = N(N+1)
2 free variables in matrix P . We denote W1,W2, . . . ,Wm as

the standard basis matrices for SN , and define the matrices A1, A2, . . . , Am ∈ S2N as

Ai =
[
−Wi 0

0 ATWi +WiA

]
, i = 1, 2, . . . ,m. (4.11)

Then, (4.10) can be reformulated into a standard dual SDP

maximize
y,Z

〈b, y〉

subject to Z +
m∑
i=1

yiAi = A0

Z � 0

, (4.12)

where y ∈ Rm, Z ∈ S2N
+ , A0 = −εI, ε > 0, b = 0, and Ai is defined in (4.11). At this

point, we know that the aggregate sparsity pattern of (4.12) is

P(A0) ∪ P(A1) ∪ · · · ∪ P(Am) = P
([
−P 0
0 ATP + PA

])
,

where P(·) denotes the sparsity pattern of a matrix. The aggregate sparsity pattern
of (4.12) directly depends on the sparsity patterns of P and ATP + PA.

For a networked system (4.2), system matrix A has an inherent structure described
by G(V, E), i.e., A ∈ RN×Nα (E , 0), where α = {α1, α2, . . . , αn} denotes the dimensions
of local states. Apparently, a dense P has no conservatism in certifying stability, but
leads to a full pattern of ATP + PA. To preserve the physical sparsity structure G, we
consider the following problem: Given a sparse A ∈ RN×Nα (E , 0), find a sparsity pattern
of P , such that the pattern of ATP + PA is still sparse.

We note that a complete answer to this question is difficult for general systems, espe-
cially considering the relationship between sparsity (i.e., efficiency) and conservativeness.
One trivial choice is a block-diagonal P with block sizes compatible with the subsystem
sizes αi. To handle the symmetry in ATP + PA, we introduce mirror graphs as follows.

Definition 4.2. (Mirror Graph) Let G(V, E) be a directed graph. We define Er as a set
of reverse edges of G obtained by reversing the order of nodes in all the pairs in E . The
mirror of G is a directed graph in the form Gr(V, Er) with the same set of nodes V and
the set of reverse edges Er.

4. Scalable systems analysis using CDCS 75

Then, the graph structure in the dynamical system (4.1) is naturally inherited in (4.12),

i.e.,

ATP + PA ∈ SNα (E ∪ Er, 0). (4.13)

We note that the existence of block-diagonal P is investigated in [49], and diagonal P

is necessary and sufficient to certify stability of positive systems [89]. Other choices of

P are available for special graphs G, such as trees and cycles [13].

In this chapter, we assume the pattern of ATP + PA can be described by a chordal

graph Gc(V, Ec) with a set of maximal cliques C1, . . . , Cp. As mentioned above, one basic

choice is a block-diagonal P . If E ∪ Er is non-chordal, then we can make a chordal

extension to get Ec. This chapter aims to highlight the computational benefits brought by

subsequent chordal decomposition, and we leave the discussion of non-block diagonal P

to our future work. In (4.12), the single large PSD cone Z � 0 has two blocks, where the

upper-left one corresponds to block-diagonal P and the bottom-right one can be replaced

by SNα,+(Ec, 0). Then, SNα,+(Ec, 0) can be subsequently decomposed into multiple smaller

cones using chordal decomposition (see the reformulations (4.8) and (4.9)). Consequently,

if the largest maximal clique is small, the SDP formulation (4.12) can be expected to

solve efficiently for sparse systems using CDCS.

4.4.2 H2 performance

Similar to the stability analysis, the H2 optimization problem (4.4) can be reformulated

into a standard SDP of primal form (4.6) or dual form (4.7). The aggregate sparsity pattern

of the resulting SDP is determined by the pattern of ATP + PA + CTC. Considering

the structure of networked system (4.1), we have

P(ATP + PA+ CTC) = P(ATP + PA). (4.14)

Then, the argument for stability analysis can be applied to H2 analysis for the purpose

of scalable computation. We assume the pattern of ATP + PA can be described by

a chordal graph Gc(V, Ec), leading to

ATP + PA+ CTC ∈ SNα (Ec, 0).

Consequently, the sparse optimization technique [35] is ready to solve the decomposed

version of (4.4). Note that we can only obtain an approximated (upper bound) H2

performance in general due to using a sparse P .

76 4.4. Scalable performance analysis of sparse systems

4.4.3 H∞ performance

When reformulating the H∞ analysis problem (4.5) into a standard SDP, the aggregate
sparsity pattern depends on the pattern of the following matrix

M =

ATP + PA PB CT

BTP −γI DT

C D −γI

 . (4.15)

According to the inherent structure in (4.1), we know A ∈ RN×Nα (E , 0) with α =
{α1, α2, . . . , αn} corresponding to the dimensions of local states, and B,C,D are block-
diagonal. Consequently, the second main block γI on the diagonal has a partition
θ = {m1,m2, . . . ,mn} that corresponds to the dimensions of local disturbances, and
the third main block γI has a partition δ = {d1, d2, . . . , dn} that corresponds to the
dimensions of local outputs.

If we restrict P to be block-diagonal with compatible block sizes, then the entry PB
is also block-diagonal. The sparsity pattern of the first block on the diagonal is

ATP + PA ∈ SNα (Ec, 0),

where Ec is the chordal extension of E∪Er, defined in Section 4.4.1. Then, we have the follow-
ing result.

Theorem 4.3. Consider a networked system with dynamics (4.2) and a block-diagonal
P . Suppose that the sparsity pattern of ATP + PA has p maximal cliques C1, C2, . . . , Cp,
and the cardinality of the largest maximal clique is h. Then,

1. the block matrix M in (4.15) has a partition

α̂ = {α1, α2, . . . , αn,m1,m2, . . . ,mn, d1, d2, . . . , dn};

2. the sparsity pattern of M , denoted as M ∈ SN̂α̂ (Ê , 0), has p + n maximal cliques,
and the cardinality of the largest maximal clique is maximize{h, 3}.

Proof. According to (4.1), we know A ∈ RN×Nα (Ec, 0), and B,C,D are block-diagonal.
Then, it is straightforward to see that the block matrix M in (4.15) has a partition
α̂ = {α1, α2, . . . , αn,m1,m2, . . . ,mn, d1, d2, . . . , dn}, where αi,mi, di(i = 1, . . . , n) are the
dimensions of local states, disturbances and outputs, respectively.

Let us first consider the following block

M1 =
[
ATP + PA PB

BTP −γI

]
∈ SN̂1

α̂1
(Ê1, 0), (4.16)

4. Scalable systems analysis using CDCS 77

1 2

3 4

(a)

9 10

5 1 2 6

7 3 4 8

11 12
(b)

Figure 4.1: (a) Sparsity pattern of ATP + PA with maximal cliques C1 = {1, 2, 4} and C2 =
{1, 3, 4}. (b) Corresponding sparsity pattern of the H∞ performance matrix (4.15), where the
maximal cliques are C1 = {1, 2, 4}, C2 = {1, 3, 4}, C3 = {1, 5, 9}, C4 = {2, 6, 10}, C5 = {3, 7, 11} and
C6 = {4, 8, 12}.

where the partition α̂1 = {α1, α2, . . . , αn,m1,m2, . . . ,mn} and N̂1 = ∑n
i=1(αi+mi). Since

the matrices PB and γI are block diagonal, every node i ∈ {n + 1, . . . , n + n} is only
connected to one node i− n. Then, the edge set for M1 is shown as

Ê1 = Ec
⋃
{(i, i+ n) | i = 1, . . . , n} , (4.17)

indicating that the maximal cliques of Ê1 are given by

C1, . . . , Cp, Cp+i = {i, i+ n}, i = 1, . . . , n. (4.18)

Next, according to (4.15) and (4.16), we know

M =
[
M1 H
HT −γI

]
∈ SN̂α̂ (Ê , 0), (4.19)

where HT =
[
C D

]
and N̂ = ∑n

i=1(αi +mi + di). Since the matrices C,D and γI are
block diagonal, every node i ∈ {2n+ 1, . . . , 2n+ n} is connected to another two nodes
i− n, i− 2n. Consequently, the edge set for M is given by

Ê = Ê1
⋃
{(i, i+ 2n), (i+ n, i+ 2n) | i = 1, . . . , n} . (4.20)

According to the edge set Ê1 (4.17), we know that in the edge set Ê , {i, i + n, i + 2n}
forms a maximal clique. This implies that the maximal cliques of Ê are (see Figure 4.1
for illustration)

C1, . . . , Cp, Cp+i = {i, i+ n, i+ 2n}, i = 1, . . . , n. (4.21)

Therefore, the sparsity pattern of M , SN̂α̂ (Ê , 0), has p+ n maximal cliques, and the
cardinality of the largest maximal clique is maximize{h, 3}. �

78 4.5. Numerical simulations

Although H∞ analysis problem (4.5) appears to be more complex than the Lyapunov
LMI (4.3), Theorem 4.3 shows that the underlying maximal cliques are similar and
that the cardinality of the largest maximal clique for (4.5) and (4.3) is almost identical.
Therefore, the strategy for stability analysis can be applied to H∞ analysis problem (4.5):
the single large PSD cone can be decomposed into p + n smaller ones, and the sparse
optimization technique [35] can be used to solve the decomposed problem in a scalable
fashion. Figure 4.1 shows an instance of Theorem 4.3: the pattern of the Lyapunov
LMI (4.3) in Figure 4.1 (a) with p = 2 maximal cliques is extended to that in Figure 4.1
(b) with p + n = 6 maximal cliques for H∞ analysis.

4.5 Numerical simulations

To show the efficiency of the chordal decomposition approach, we consider a chain of
n subsystems, and a networked system over a scale-free graph. We solved the SDP
formulations of stability analysis (4.3), H2 performance (4.4), and H∞ performance (4.5)
using standard dense solvers: SeDuMi [71] and SCS [65], as well as using the sparse
conic solver CDCS [35] that exploits chordal sparsity. Block-diagonal P was used in
the formulations, which were reformulated into standard SDPs using YALMIP [79]. For
the interior-point solver SeDuMi, we used its default parameters, and the first-order
solvers SCS and CDCS were called with termination tolerance 10−4 and number of
iterations limited to 2000. All simulations were run on a PC with a 2.8 GHz Intel
Core i7 CPU and 8GB of RAM.

4.5.1 A chain of subsystems

We first consider a chain of n subsystems, where each subsystem has physical interactions
with its two neighbouring ones except the first and last subsystem, which only interacts
with one neighbouring subsystem; see Figure 4.2 (a) for illustration. The simplification of
this chain is shown in Figure 4.2 (b). In this case, the maximal cliques of the graph in
Figure 4.2 (b) are {i, i+ 1}, i = 1, . . . , n− 1, and the cardinality of the largest maximal
clique is only 2. We can expect that the chordal decomposition strategy gains significant
speed-up for solving the analysis problems in this case.

In the simulations, the state dimension ni was chosen randomly from 5 to 10, and
the dimensions of output and disturbance (di,mi) were chosen randomly from 1 to 5.
Then, we generated random matrices Aii, Aij , Bi, Di and imposed the global state matrix
A with negative eigenvalues by setting A := A − (λmax + 5)I, where λmax denotes the
maximum real part of the eigenvalues of A. Figure 4.3 shows the CPU time in seconds
required by the solvers for testing stability, and computing approximated H2 and H∞

4. Scalable systems analysis using CDCS 79

G1 G2 . . . Gn
x1

x2

x2

x3

xn−1

xn

(a)

1 2 . . . n

(b)

Figure 4.2: A chain of n subsystems: (a) each subsystem Gi has physical interactions with its
nearest two neighbouring ones, except the first one and the last one which only interacts with one
nearest neighbouring subsystem; (b) a simplified line graph illustration.

Figure 4.3: CPU time in seconds required by SeDuMi, SCS and CDCS to solve the SDP
formulations of the analysis problems of a chain of subsystems. CDCS exploits the chordal
decomposition in solving sparse SDPs.

performance. The chordal decomposition approach (via CDCS) took significantly less time

than standard dense methods (using either SeDuMi or SCS). Moreover, the CPU time

required by CDCS seems to grow linearly as the system size increases. This is expected

since the size of the largest maximal clique is fixed for a line graph, indicating that the size

of the PSD cones after decomposition is fixed and only the number of PSD cones increases

linearly as growth of the graph size. Finally, Table 4.1 lists the H2 and H∞ performance

computed by different solvers. We can see that although first-order methods are only

meant to provide solutions of moderate accuracy, the value returned CDCS was very

close to the one computed by SeDuMi (within 1%). Also, as shown in Table 4.1, the H∞
performance computed using a block-diagonal P is close to the one returned by MATLAB

routine norm(sys,inf) without any assumption on P (we refer to this as the accurate

result). In fact, the minor differences in the H∞ case is due to numerical errors returned

by different solvers. This is because the numerical examples were positive systems (the off-

diagonal elements in the matrix A is nonnegative), for which it is sufficient to use diagonal

Lyapunov functions to certificate the H∞ norm [89, 90]. For general linear systems, using

(block)-diagonal Lyapunov functions could bring certain conservatism for both H2 and

H∞ cases. A detailed investigation of the conservatism deserves further investigation.

80 4.5. Numerical simulations

Table 4.1: Approximated H2 and H∞ performance of a chain of subsystems computed by
different solvers.

H2 H∞
n † SeDuMi SCS CDCS ‡ SeDuMi SCS CDCS

20 9.70 17.73 17.73 17.73 3.65 3.66 3.70 3.66
40 11.66 20.07 20.07 20.07 3.67 3.68 3.74 3.68
60 14.72 25.78 25.79 25.78 3.75 3.77 3.85 3.77
80 16.85 28.70 28.71 28.69 4.32 4.34 4.37 4.34
100 18.08 29.88 29.91 29.88 3.91 3.92 3.96 3.92
120 19.71 32.10 32.12 32.09 4.02 4.03 4.10 4.04
140 21.51 35.59 35.64 35.58 4.09 4.10 4.16 4.11
160 24.64 40.65 40.73 40.65 4.07 4.08 4.18 4.09
†: Accurate H2 performance returned by the MATLAB routine norm(sys,2).
‡: Accurate H∞ performance returned by the MATLAB routine norm(sys,inf).

(a)

0 5 10 15 20 25

Size of maximal cliques

0

20

40

60

80

100

N
u

m
b

e
r

o
f

m
a

x
im

a
l
c
liq

u
e

s

(b)

Figure 4.4: (a) A scale free graph of 200 nodes in our experiment. The chordal extension has
178 maximal cliques and the size of the largest maximal clique is 23 (highlighted in blue); (b)
Distribution of the maximal clique size in a chordal extension of the scale-free graph.

4.5.2 Networked systems over a scale-free graph

In our next experiment, we consider a network of subsystems interacting over a randomly
generated scale-free graph. A scale-free graph is a graph that exhibits a power-law degree
distribution, defined as P (k) ∼ k−β , where P (k) denotes the probability of a node with k
links to other nodes (i.e. degree k) and β is a parameter typically varying from 2 to 3.

We conduct experiments on a network of 200 subsystems. The underlying scale-free
graph was generated using the B-A algorithm [92], where the initial graph was a line
with five nodes and the number of links a new node can connect was two. The resulting
scale-free graph is shown in Figure 4.4(a), where β = −2.187 in its power-law degree
distribution. In this graph, the number of nodes with degree < 5, < 10 and ≥ 10 are
163, 23 and 14, respectively, indicating that the connections of this graph are very sparse.
Also, we can build a sparse chordal extension for the scale-free graph, and Figure 4.4(b)
shows the distribution of the maximal clique size. There are 178 maximal cliques, all
of which are much smaller compared to the original graph size. In our experiment, the

4. Scalable systems analysis using CDCS 81

Table 4.2: Performance of different solvers to solve the analysis problems for a system of 200
subsystems over a scale-free netowrk.

Time (s) Value
sedumi SCS CDCS sedumi SCS CDCS

Stability 115.0 108.9 40.6 — — —
H2 805.0 556.1 147.4 10.31 10.36 10.30
H∞ 3 374.8 2 130.2 172.0 1.90 2.72 1.91

—: Stability test is a feasibility problem, where the optimal objective is zero.
**: The accurate H2 performance returned by norm(sys,2) is 5.61, and the accurate H2 performance
returned by norm(sys,inf) is 1.89.

dynamical data was generated randomly in a way similar to Section 4.5.1, where the state
dimension ni was chosen as 5, and the dimensions of output and disturbance (di,mi) were
set to 2. Table 4.2 lists the average CPU time in seconds required by different solvers
over five random instances. It can be seen that the chordal decomposition approach was
much faster than the standard dense methods using either SeDuMi or SCS. In particular,
for the H∞, exploiting chordal decomposition via CDCS was more than 10 times faster
than the standard dense methods. In these cases, the optimality loss is very small in
computing H∞ performance using block-diagonal Lyapunov functions.

4.6 Conclusion

In this chapter, we have shown that by restricting the sparsity pattern of the Lyapunov
matrix P , the SDP formulations of stability, H2 and H∞ analysis problems can potentially
inherit the graph structure of the networked system. This allows one to decompose the
single large PSD cone in all of the analysis problems into multiple smaller ones, which
can be solved efficiently using CDCS. When the largest maximal clique is small, the
chordal decomposition approach is significantly faster than the standard dense method, as
demonstrated by several numerical examples. This makes it a promising approach
for large sparse systems analysis.

Note that first-order methods are typically appealing to obtain solutions with moderate
accuracy, and this feature has two implications: 1) the objective is moderately accurate,
and 2) the constraints are only loosely satisfied up to certain tolerance (e.g., ε = 10−3 in
the simulations of this chapter). Thus, the solutions from CDCS can be used to estimate
H2 or H∞ performance bounds of certain linear networked systems, as we demonstrated in
this chapter. When it comes to the problem of synthesizing controllers, however, solutions
with moderate accuracy might be not suitable in practice, since recovering the controller
normally requires to invert a certain positive definite matrix. The inversion operation
may amplify the numerical errors coming from the first-order methods. In Part II of
this thesis, we develop customized algorithms to take advantage of chordal structures
in the LMIs arising in the distributed control of networked systems.

Part II

Distributed Control of Networked
Systems

83

5
Scalable design using chordal decomposition

Part I of this thesis has demonstrated the potential of chordal decomposition in operator-
splitting algorithms for general sparse SDPs. The resulting solutions are typical of
moderate accuracy, which might be not suitable for synthesizing controllers directly. This
part of the thesis (Chapters 5 and 6) focuses on exploiting chordal decomposition to
develop customized algorithms in distributed control of networked systems. The focus is
especially on solution scalability and model privacy, and we take advantage of systems’
sparsity and apply Theorem 2.17 to decompose LMIs arising in structured stabilization
and decentralized optimal control of networked systems.

The primal objective of Chapter 5 is scalability (although model privacy can be
maintained as a byproduct), and a sequential design method is proposed for structured
stabilization based on the clique-intersection property of a clique tree. Chapter 6 mainly
focuses on model privacy in solving an optimal decentralized control problem, where an
ADMM algorithm is introduced to deal with the consensus of overlapping subsystems.
One distinct difference between Chapter 5 and Chapter 6 lies in how to handle the
overlapping elements among different maximal cliques: Chapter 5 applies an equal
splitting strategy, and each maximal clique only needs to solve a subproblem once, then
passes information along the clique tree, while Chapter 6 uses a “negotiating” process
based on the ADMM framework, and each maximal clique solves subproblems iteratively
to reach consensus among overlapping variables.

5.1 Introduction

Controller synthesis for interconnected systems, where multiple subsystems are interacting
over a network with limited communication, has received considerable attention in
recent years [93–95]. This problem arises in several applications, such as the smart
grid [96], unmanned aerial vehicles [97], and automated highways [98]. One key challenge
in the case of decentralized systems is the design of structured control policies based

85

86 5.1. Introduction

on local information, aiming to stabilize the overall system and further minimize a
certain cost function.

The general problem of designing linear feedback gains with structured constraints is
computationally hard. In particular, it is proved that the problem of finding a decentralized
static output feedback with a norm bound is NP-hard [99]. Previous approaches to
synthesize decentralized controllers with information structures can be categorized into
three cases: 1) finding exact solutions for special classes of structures [5, 100, 101]; 2)
seeking tractable design approaches, using convex approximations [102, 103]; and 3)
obtaining suboptimal solutions using non-convex optimization [104, 105]. In the first case,
for the class of systems that are quadratically invariant, it is possible to find optimal
decentralized controllers in the frequency domain via a Youla parametrization [5], which
in general results in infinite-dimensional convex programs. In another special class of
structures modeled by partially ordered sets [100], Shah and Parrilo derived explicit
state-space solutions by solving a number of uncoupled Ricatti equations when the
performance metric was H2 norm. More recently, Kim and Lall [101] presented a new
factorization condition to split the overall decentralized control problem into independent
subproblems, which can be explicitly solved. In the second case, the strategy is to derive
a convex relaxation of the original problem, and obtain an approximate solution. For
example, decentralized control can be cast as a rank-constrained semidefinite program
in the discrete-time and linear-quadratic setting: a convex relaxation can be obtained
by dropping the rank constraint [102]. An alternative convex optimization objective is
formulated in [103], which has the potential to solve problems with arbitrary structures.
The third case concerns approaches which try to search for structured controllers by directly
solving the original non-convex problem, using, e.g., augmented Lagrangian [104] and
alternating direction method of multipliers (ADMM) approaches [105]. Additionally, the
notions of implementability and realizability over arbitrary graphs have been introduced
in [106], where the Youla parametrization is used to characterize the set of stabilizing
controllers that are implementable.

The aforementioned diverse body of research provides powerful tools for structured
controller synthesis of networked systems. However, there is less focus on the algorithmic
aspects that could make these methods practical for realistic large-scale systems, e.g.,
systems having thousands of nodes interacting over a network. Consequently, most
examples in the literature are relatively small-scale systems. In contrast, some practical
networked systems, such as the electrical power grid [107] and mass transportation
systems [108], could involve thousands of states and controls or more. Here, we consider
the problem of designing static state feedback gains with a priori structural constraints,
and propose a sequential algorithm based on local model information for designing

5. Scalable design using chordal decomposition 87

large-scale structured controllers via chordal decomposition, bringing together positive
semidefinite matrices and chordal sparsity.

As discussed in Section 2.2, chordal graphs are well studied in graph theory [14,
15]. Several important problems, which are hard on general graphs, can be solved in
polynomial time when the graph is chordal, e.g., graph colouring and finding maximal
cliques [16]. Also, chordal graph theory has been widely applied to a number of fields.
For example, the properties of chordal graphs were exploited to facilitate the solution of
sparse linear systems via sparse Cholesky factorization [17]. For problems in inference and
machine learning, chordal graphs have been applied to maximum likelihood estimation
for sparse graphical models [18], and to generalize the message passing algorithms to
graphs with cycles [109]. In the context of SDPs, Grone et al. [19] and Agler et al. [20]
proved two important results (i.e., Theorems 2.10 and 2.13 in Chapter 2), which relate
chordal graphs to the decomposition of sparse positive semidefinite matrices. Moreover,
Fukuda et al. [23] and Kim et al. [24] showed that the results in [19, 20] could be
used to decompose the semidefinite constraints of primal and dual SDPs, respectively.
These results have been recently applied to stability analysis of large-scale linear systems
in [13], obtaining significantly faster solutions than using standard methods. Andersen
et al. have used ideas from chordal graphs to improve the efficiency of robust stability
analysis of large-scale uncertain systems [34].

In this chapter, we develop a scalable sequential design algorithm to synthesize
structured feedback gains for large-scale networked systems. We use a plant graph and a
communication graph to represent networked systems. This naturally results in block
structured constraints in controller synthesis. Our approach exploits block matrices with
chordal structure to efficiently compute structured feedback gains for large-scale systems.
More specifically, we apply the block-chordal decomposition (i.e., Theorem 2.17) to design
structured controllers for large-scale systems in a sequential fashion. This method first uses
a block-diagonal Lyapunov matrix assumption [110] to restrict the design of structured
feedback gains into a convex problem that inherits the sparsity pattern of the original
problem. Then, by equally splitting the effects of overlapping subsystems in the chordal
decomposition, we propose a sequential method to solve the structured feedback gains
clique-by-clique over a clique tree. This strategy greatly improves the computational
efficiency for large-scale sparse systems, as demonstrated by numerical experiments.

The rest of this chapter is organized as follows. Section 5.2 presents the problem
statement. In Section 5.3, we introduce a simple assumption to restrict the design of
structured feedback gains into a convex problem. Section 5.4 introduces the scalable
sequential design algorithm, and Section 5.5 presents several illustrative examples. We
conclude the chapter in Section 5.6.

88 5.2. Problem statement

1

2 3 4

5 6 7 8

(a)

1

2 3 4

5 6 7 8

(b)

Figure 5.1: Example of hierarchical systems: (a) plant graph Gp(V, Ep) where only the subsystems
in upper layer have dynamical influence on those in lower layer; (b) communication graph Gc(V, Ec),
where only the nodes in upper layer can use the state information of the nodes in lower layer.

5.2 Problem statement

We consider interconnected systems of heterogeneous subsystems over graphs with vertex
set V: each vertex in V represents a subsystem and a corresponding controller. In
principle, a large-scale system consists of two underlying graph structures (see an example
of hierarchical systems in Figure 5.1): 1) a plant graph Gp(V, Ep), determining the dynamic
coupling of subsystems; 2) a communication graph Gc(V, Ec), indicating the allowable
communication of local controllers between subsystems.

In general, Gp and Gc are different directed graphs. Some previous work focused on
special graph structures. For example, it is assumed that Gp is contained in the transitive
closure of Gc in [94]; Gp and Gc share the same graph structure in [106]. Shah and Parrilo
assumed these graphs could be modelled by partial order sets [100]. In particular, there
are no edges in Gp for dynamically decoupled plants, such as in the platoon control
problem [111]. Similarly, Gc has no edges if there exists no communication between
subsystems (known as fully decentralized systems).

For each subsystem i ∈ V, the state xi(t) ∈ Rαi evolves according to

ẋi(t) = Aiixi(t) +
∑
j∈Npi

Aijxj(t) +Biui(t),

where ui(t) ∈ Rmi is the control input, and Npi denotes the neighbours of vertex vi in
Gp, i.e., those vertices that exert influence on the dynamics of vertex i. The overall
state-space system is then given by

ẋ(t) = Ax(t) +Bu(t), (5.1)

where x(t) = [x1(t)T, . . . , xN (t)T]T and similarly for u(t). Upon defining a partition
α = {α1, α2, . . . , αn} according to the state dimension of subsystems, and N = ∑n

i αi,
we have A ∈ RNα (Ep, 0). Similarly, the matrix B has a block-diagonal structure, i.e.,
B = diag{B1, . . . , BN}.

5. Scalable design using chordal decomposition 89

Our goal is to stabilize (5.1) by designing u(t) based on local communication defined

by Gc. In this chapter, we use a static state feedback, and we assume communication

conditions are perfect, i.e., there are no time-delays or bandwidth restrictions. As a

result, we are looking for local controllers of the form

ui(t) = kiixi(t) +
∑
j∈Nci

kijxj(t), (5.2)

where Nci denotes the neighbours of vertex i in graph Gc, i.e., those vertices that send

their state information to vertex i. A compact form of the overall controller is

u(t) = Kx(t), K ∈ K, (5.3)

where K encodes the block information structure defined by Gc(V, Ec), i.e.,

K = {K ∈ Rm̂×N | Kij = 0, if j /∈ Nci},

with m̂ = ∑n
i=1mi. Then, the closed-loop system is

ẋ(t) = (A+BK)x(t), A ∈ RNα (Ep, 0),K ∈ K. (5.4)

Concisely, this chapter considers the following stabilization problem

Find K ∈ K,

such that A+BK is asymptotically stable.
(5.5)

Without the structural constraintK, there exist well-known methods for solving (5.5). How-

ever, sparsity constraints arise naturally for synthesizing decentralized control systems. In

general, such seemingly mild and natural requirements make the problem challenging [100,

104]. Previous work imposed either special structures or used certain relaxation techniques

to solve this problem with a certain cost function (typically H2 or H∞ norm) [5, 100–104].

This chapter shows that the system’s sparsity in (5.4) have the potential to bring

certain benefits from the perspective of numerical computations. The speed of numerically

computing a controller can be improved if this sparsity is taken advantage of. Besides,

it is favourable to exploit the sparsity in Gp,Gc such that the feedback gains can be

computed locally. Specifically, this chapter focuses on the structured stabilization problem

(5.5), and propose a scalable sequential algorithm to solve (5.5) by exploiting properties

between chordal graphs and sparse positive semidefinite matrices.

90 5.3. Design of structured feedback gains using convex restriction

5.3 Design of structured feedback gains using convex restric-
tion

In this section, we present a classical restriction technique [110] to convert problem (5.5)
into an LMI which inherits the problem’s sparsity. Accordingly, the scalable design
algorithm that uses chordal decomposition can be applied.

Recall that conditions for stability can be equivalently expressed as{
QAT +AQ+RTBT +BR ≺ 0,
RQ−1 ∈ K, Q � 0.

(5.6)

The steps to obtain (5.6) are well-known, which use a Lyapunov function V (x) =
xTPx, P � 0 and introduce a change of variables Q = P−1, and R = KQ.

In (5.6), the structural constraint introduced by Gc, which is nonlinear, can be
relaxed if we assume that Q (and hence Q−1) is block diagonal with size compatible
to each subsystem, resulting in the following equivalence: RQ−1 ∈ K ⇔ R ∈ K. This
assumption convexifies the problem (5.6) into

QAT +AQ+RTBT +BR ≺ 0,
Q � 0, Q is block diagonal,
R ∈ K,

(5.7)

but this is still centralized. The assumption that the closed-loop system admits a block-
diagonal Lyapunov function would introduce conservativeness for general systems. Our
motivation is that the block-diagonal assumption not only leads to a convex problem (5.7)
but also endows that (5.7) has the same sparsity pattern with (5.5), allowing the subsequent
chordal decomposition. Note that a notion of strongly decentralized stabilization was
introduced in [110], which requires the closed-loop system to admit a block-diagonal
Lyapunov function. In Appendix A, we will present some sufficient conditions to guarantee
the existence of block-diagonal Lyapunov functions.

Remark 5.1. The convex problem (5.7) can be solved using general conic solvers, such as
SeDuMi [71]. However, both the computational efficiency and quality of the solution will
degrade for larger systems. Note that (5.7) inherits the original sparsity pattern in (5.5).
There are some techniques [24, 25] that exploit chordal sparsity to improve the efficiency
of solving general sparse SDPs, such as SparseCoLO [24], SMCP [25], SDPA-C [112].
Using these techniques, the efficiency of solving (5.7) can be improved to some extent. In
the next section, we establish a scalable sequential algorithm based on the block-chordal
decomposition Theorem 2.17 to solve (5.7) locally for sparse Gp and Gc.

5. Scalable design using chordal decomposition 91

5.4 Scalable solution via chordal decomposition

In this section, we first present a chordal characterization of system data in (5.7),
directly leading to a decomposition of the PSD constraints by applying Theorem 2.17. A
sequential method is then derived by a priori equally dividing the overlapping elements
in the decomposed subsystems, which is able to compute the feedback gains locally
in a clique-by-clique fashion.

5.4.1 Chordal characterization of system data

Matrices A,K in (5.5) have sparsity patterns defined by Gp and Gc, respectively. However,
the sparsity pattern in the Lyapunov condition (5.7) is one of an undirected super-graph
covering both Gp and Gc. Precisely, thanks to the block diagonal assumption on Q, we have

AQ ∈ RNα (Ep, 0), BR ∈ RNα (Ec, 0). (5.8)

To handle the symmetry in the Lyapunov condition, we use the Definition 4.2 of mirror
graphs Gr(V, Er). For example, the graphs in Figure 5.1 (a) and (b) are mirror graphs
to each other. Then, we have

QAT ∈ RNα (Epr , 0), RTBT ∈ RNα (Ecr , 0), (5.9)

where Gpr (V, Epr),Gcr(V, Ecr) are the mirror graphs of Gp and Gc, respectively. We further
define a undirected super-graph Gs(V, Es) to cover both the dynamical coupling of plants
and communication connections of controllers:

Gs := Gp ∪ Gpr ∪ Gc ∪ Gcr , (5.10)

where Es := Ep ∪ Epr ∪ Ec ∪ Ecr . Combining (5.8) and (5.9) leads to

QAT +AQ+RTBT +BR ∈ SNα (Es, 0).

Next, we construct a chordal graph Gex(V, Eex) by making a chordal extension to
Gs. Define a graph G0(V, E0) which only contains nodes, but no edges. Then, (5.7)
can be rewritten into (5.11),

−(QAT +AQ+RTBT +BR+ εI) ∈ SNα,+(Eex, 0),
Q− εI ∈ SNα,+(E0, 0),
R ∈ RNm,n(Ec, 0),

(5.11)

where ε is a small positive number. Figure 5.2 illustrates the construction steps. For
example, Figure 5.3 (a) shows a chordal graph Gex for the system shown in Figure 5.1.

92 5.4. Scalable solution via chordal decomposition

i) Gp

��

Gc

��
ii) Gpr

Gcr

~~
iii) Gs

��
iv) Gex

Figure 5.2: Illustrative diagram for the steps of chordal characterization. i) Define Gp,Gc for
plant and communication structure; ii) Get mirror graphs Gpr ,Gcr ; iii) Define a super-graph Gs to
characterize the whole structure; iv) Finally, obtain Gex by making a chordal extension to Gs.

5.4.2 Decomposition of positive semidefinite constraints

Having established the chordal characterization, we now turn to apply Theorem 2.17
to decompose the large PSD constraint in (5.11).

Let Γ = {C1, C2, . . . , Cp} be the set of maximal cliques in graph Gex, and T = (Γ,Ξ)
with Ξ ⊆ Γ × Γ be a clique tree that satisfies the clique intersection property. In
(5.11), for notational simplicity, define

JQ,R := −(QAT +AQ+RTBT +BR+ εI).

Then, according to Theorem 2.17, we can equivalently reduce (5.11) into

∑p
k=1E

T
Ck,αJkECk,α = JQ,R,

Jk ∈ S|Ck|α+ , k = 1, . . . , p,
Q− εI ∈ SNα,+(E0, 0),
R ∈ K.

(5.12)

Note that (5.12) only involves a set of PSD constraints of small size (corresponding to
maximal cliques) instead of one large PSD constraint in (5.11). The price is that additional
equality constraints are added in (5.12). We further relax these equality constraints,
resulting in the sequential design method in the next subsection.

5.4.3 Sequential design over a clique tree

Our sequential design method involves solving the feedback gains that only correspond
to one maximal clique each time. The order of the design sequence corresponds to a
clique tree that satisfies the clique intersection property.

Note that the additional equality constraints in (5.12) only affect overlapping elements
in Gex. If there are no overlapping elements, meaning that the maximal cliques are

5. Scalable design using chordal decomposition 93

1

2 3 4

5 6 7 8

(a)

C1 = {1, 2, 3}

C2 = {2, 3, 6} C3 = {1, 3, 4} C4 = {2, 5}

C5 = {3, 4, 7} C6 = {4, 8}

(b)

Figure 5.3: Chordal extension and clique tree for the hierarchical system in Figure 5.1. (a)
Chordal graph Gex, where two undirected edges (in blue) are added. (b) a clique tree. For the
breadth-first tree traversal, we start from the root node C1, and then explore the neighbouring
cliques C2, C3, C4 in the second layer before moving to the next level neighbours C5, C6.

disjoined, then the design of structured feedback gains can be naturally decomposed
into several small sub-problems according to the maximal cliques. In general cases, we
equally split the coupling dynamic effect into several parts according to the maximal
cliques that contain those overlapping elements. Essentially, we a priori choose the
overlapping elements for the equality constraints ∑p

k=1E
T
Ck,αJkECk,α = JQ,R in (5.12)

such that this constraint is satisfied.
Here, we introduce a formal description of the aforementioned idea:
Step 1: Obtain an averaging factor for overlapping elements
Given Γ = {C1, C2, . . . , Cp} as the set of maximal cliques in Gex, we define γ ∈ Sn as{

γii = the number of times node i appears in Γ,
γij = the number of times nodes i, j appears in Γ.

It is not difficult to see that γ ∈ Sn(Eex, 0). Accordingly, we define an averaging
factor β ∈ SNα (Eex, 0) as βij = 1

γij
1αi×αj , if γij 6= 0,

βij = 0αi×αj , otherwise .

where 1αi×αj is an αi × αj matrix with all entries being 1.
Step 2: Derive a set of LMIs over maximal cliques.
In this step, we a priori choose Jk in (5.12) as

Jk := ET
Ck,α(JQ,R ◦ β)ECk,α, k = 1, . . . , p, (5.13)

where ◦ denotes the Hadamard product. Based on this construction, we naturally have∑p
k=1 Jk = JQ,R. Thus, (5.12) is reduced into a set of small-size LMIs Lk, k = 1, . . . , p

over maximal cliques, where each Lk is defined as

Lk :
{
ET
Ck,α(JQ,R ◦ β)ECk,α � 0,

Qj − εI � 0, j ∈ Ck,
(5.14)

94 5.4. Scalable solution via chordal decomposition

Step 3: Sequential solution over a clique tree
The dimension of Lk depends on the size of clique Ck. There may exist some common

design parameters among different Lk. We can solve them clique-by-clique over a clique
tree T in a sequential way. Starting from the root clique in T , we perform a tree traversal
by embedding the overlapping parameters from cliques on the layer above. Thanks
to the clique intersection property, the ordering of the maximal cliques suggested by
T guarantees that there always exist free parameters in Lk when computing feedback
gains sequentially. There are two major strategies for tree traversal: 1) depth-first,
which starts at the root, and explores as far as possible along each branch before
backtracking; 2) breadth-first, which starts at the root, and explores the neighbour
nodes first before moving to the next level.

For our problem, any strategy for tree traversal with low complexity is applicable. In
the simulation, we used the breadth-first strategy. To demonstrate this strategy, consider
the example shown in Figure 5.3. We first solve the root clique C1 = {1, 2, 3} to get the
feedback gains in nodes 1, 2, 3. Embedding these gains to the cliques in the second layer of
the clique tree, i.e., C2, C3, C4, we can get the feedback gains corresponding to nodes 6, 4 and
5, respectively. For the breadth-first strategy, the maximal cliques in the same layer can be
computed in a parallel way, in addition to sequentially. This is due to the fact that all the
overlapping elements among such cliques belong to the neighbouring clique in the upper
layer where the parameters have already been computed. Besides, any clique can serve
as a root clique due to the structure of the clique tree, which means that this sequential
design can start from any maximal clique and then explore other maximal cliques.

In the sequential design, the size of the resulting SDPs is determined by the size of
maximal cliques. When the largest maximal clique size is bounded, the computational
complexity of each small-scale problem Lk in (5.14) is constant. Also, chordal graphs
have at most n maximal cliques [15]. Thus, the computational complexity of solving
the SDP sequentially scales linearly with the graph size.

Remark 5.2. Our sequential method heavily depends on a clique tree of the chordal
graph. The structure of clique tree may affect the feasibility of our approach due to the
equal splitting strategy. Given a chordal graph, its clique tree is not unique. In principle,
we can search for a clique tree with small tree depth (i.e., small number of layers), since
it would reduce the iterations of message-passing. The detailed relationship between a
clique tree and the feasibility of the sequential design is beyond the scope of current work.
We notice that the clique tree structure has also been used to compute search directions
distributedly for SDPs in [113].

5. Scalable design using chordal decomposition 95

5.4.4 Guaranteed minimum decay rate

One straightforward extension of the sequential design method is to add a guaranteed
performance of minimum decay rate, using the following result:

Lemma 5.3. Suppose there is a function V and constant α > 0 such that V is positive
definite and V̇ (x) ≤ −αV (x) for all x. Then, there is an M such that every solution of
ẋ = f(x) satisfies ‖x(t)‖ ≤Me−

α
2 t‖x(0)‖.

Under the block-diagonal Lyapunov matrix assumption, it is easy to derive the
following convex problem for the system described in (5.1).

(AQ+BR) + (AQ+BR)T + αQ ≺ 0,
Q � 0, Q is block diagonal,
R ∈ K.

(5.15)

Also, this formulation has the same sparsity pattern with (5.7), and the proposed sequential
design can be applied here. If it is feasible, the resulting controller K = RQ−1 guarantees
the closed-loop system has a certain minimum decay rate.

In addition, we can add certain bounds on local feedback gains

Qi � κQI,
[
−κRI RT

ij

Rij −I

]
≺ 0, (5.16)

where κR > 0, κQ > 0 are constant numbers. Then, we have

kTijkij = Q−1
i RTijRijQ

−1
i ≺

κR
κ2
Q

I.

This means the local feedback gains are all upper bounded. In Section 5.5.2, a network
of coupled inverted pendula is used to demonstrate this extension of guaranteed decay
rate and bounded feedback gains.

5.5 Illustrative examples

In this section, we present three illustrative examples to demonstrate the scalability of
the proposed sequential design method1. In particular, we consider special hierarchical
systems, a network of coupled inverted pendula, and general decentralized systems over
directed graphs. All simulations were run on a computer with an Intel(R) Core(TM)
i7 CPU, 2.8 GHz processor and 8GB of RAM. The SDPs were considered to be solved
when the primal-dual gap had been reduced to less then 10−8.

96 5.5. Illustrative examples

Table 5.1: Computing sequences, structured gains and computing time for the hierarchical
system shown in Figure 5.1.

Seq. Cliques Embedding
parameters

Adjustable
parameters Computed gains Time (s)

1 C1 ∅ Q1, Q2, Q3,
R11, R12, R13, R22, R33


k11 = −

[
30.83 7.26

]
, k12 = −

[
1.64 1.30

]
k13 = −

[
1.19 0.98

]
, k22 = −

[
9.05 5.88

]
k33 = −

[
9.99 6.28

] 0.0339

2 C2
Q2, Q3,

R22, R33
Q6, R66, R26, R36

{
k66 = −

[
6.75 4.51

]
, k26 = −

[
0.08 0.13

]
k36 = −

[
0.06 0.25

] 0.0307

3 C3
Q1, Q3,

R11, R33, R13
Q4, R44 k44 = − [9.15 5.77] 0.0313

4 C4 Q2, R22 Q5, R55, R25 k55 = − [6.64 4.41] , k25 = − [0.12 0.23] 0.0310

5 C5
Q3, Q4,

R33, R44
Q7, R77, R37, R47

{
k77 = −

[
6.74 4.50

]
, k37 = −

[
0.03 0.13

]
k47 = −

[
0.04 0.29

] 0.0316

6 C6 Q4, R44 Q8, R48 k88 = − [6.57 4.32] , k48 = − [0.01 0.15] 0.0302

5.5.1 Hierarchical systems

Consider the hierarchical system shown in Figure 5.1. As used in [105], we assume each
node is a second order unstable system coupled with its neighbouring nodes through an
exponentially decaying function of the Euclidean distance α(i, j) between them,

ẋi =
[
1 1
1 2

]
xi +

∑
j∈Npi

e−α(i,j)xj +
[
0
1

]
ui, (5.17)

where α(i, j) is 1
10(i − j)2 in the simulation. We first computed structured feedback

gains for this problem in a centralized way (see Section 5.3), which took about 0.087
s to get a stabilizing controller as follows:

• node 1: k11 = −[22.3, 6.07], k12 = −[1.05, 1.09], k13 = −[0.77, 0.81], k14 = −[0.46, 0.50],

• node 2: k22 = −[9.77, 4.88], k25 = −[0.25, 0.48], k26 = −[0.09, 0.24],

• node 3: k33 = −[9.75, 4.84], k36 = −[0.23, 0.47], k37 = −[0.10, 0.23],

• node 4: k44 = −[9.64, 4.79], k47 = −[0.23, 0.46], k48 = −[0.11, 0.23],

• node 5: k55 = −[6.57, 4.32],

• node 6: k66 = −[6.58, 4.34],

• node 7: k77 = −[6.58, 4.34],

• node 8: k88 = −[6.55, 4.29].

Then, we used the proposed sequential design method to solve this problem. The
corresponding chordal extension and clique tree are shown in Figure 5.3. Table 5.1 lists
the solving sequences, computed feedback gains and time consumption for each clique.

1The numerical examples presented in this section and additional examples are available from https:
//github.com/zhengy09/sdsc.

https://github.com/zhengy09/sdsc
https://github.com/zhengy09/sdsc

5. Scalable design using chordal decomposition 97

(a) (b)

Figure 5.4: (a) Hierarchical systems over a circular tree with 4 layers and 3 branches. The
information flow is bottom-up but only dynamics of nodes in the upper layer have influence on
those in the lower layer. (b) Time consumption (in seconds) comparison for solving the structured
feedback gains over circular trees.

The total time was 0.233 s using the sequential design method. For this special small-size
problem, computing the gains in a centralized way was faster than that using sequential
design. However, it took less time for solving each maximal clique, as confirmed in
Table 5.1. The sequential design method is more beneficial when the system size is large.

To illustrate this point, we considered another class of hierarchical systems over a
circular tree (see Figure 5.4(a)). The dynamics flow is top-down, while the information flow
is bottom-up. Each node is assumed to have dynamics evolving as in (5.17). Figure 5.4(b)
shows a comparison between the centralized method (Section 5.3) and the sequential
method (Section 5.4) for different number of layers (where each node has two branches).
In the simulation, we used two different ways, i.e., SeDuMi and SparseCoLO+SeDuMi, to
solve the resulting SDP in the centralized method. SparseCoLO can detect chordal sparsity
in general SDPs and then call SeDuMi to solve the problem. As shown in Figure 5.4(b),
even though chordal sparsity has been exploited in SparseCoLO, the proposed sequential
method is more efficient in computing structured gains for large-scale systems.

5.5.2 A practical example: coupled inverted pendula

Here, we consider a practical example — a network of three coupled inverted pendula
(see Figure 5.5) — to demonstrate the extension with minimum decay rate and bounds on
the feedback gains. The linearized dynamics around the upright equilibrium point
can be described as [114]:

Ai =


0 1 0 0

Mi+m
Mil

g 0 ki
Mil

ci+bi
Mil

0 0 0 1
− m
Mi
g 0 − ki

Mi
− ci+bi

Mi

 , Aij =


0 0 0 0
0 0 kij

Mil
bij
Mil

0 0 0 0
0 0 kij

Mi

bij
Mi

 , Bi =


0
− 1
Mil

0
1
Mi

 ,

98 5.5. Illustrative examples

Figure 5.5: A network of three coupled inverted pendula.

1 2 3

(a)

C1 = {1, 2}

C2 = {2, 3}

(b)
Figure 5.6: Chordal decomposition of the coupled inverted pendula: (a) maximal cliques; (b)
clique tree.

for i = 1, 2, 3; (i, j) = (1, 2), (2, 1), (2, 3), (3, 2), where ki = ∑
j∈Npi

kij , bi = ∑
j∈Npi

bij

Here, the local state variable is xi = [θi, θ̇i, yi, ẏi]T, and ci, bij = bji, kij = kji are
friction, damper and spring coefficients, respectively. We have assumed that the moments
of inertia of the pendula are zero.

The plant graph for this example is a chain of three nodes. We assume that the
communication graph coincides with its plant graph, indicating each node has access to
its nearest neighbor’s state information. Figure 5.6 shows the chordal decomposition.
The parameters in our simulations are M1 = 0.6,M2 = 0.8,M3 = 1,m = 0.1, g = 10, l =
0.5, k12 = k21 = 0.2, k23 = k32 = 0.4, b12 = b21 = 0.4, b23 = b32 = 0.2, c1 = 1, c2 = 0.2 and
c3 = 1. The requirement of minimum decay rete is set as α = 0.5 and bounds on feedback
gains are κR = 10 and κQ = 0.1. Then, we can compute the structured feedback gain by
solving (5.15) centrally. This way requires all of the model information. Alternatively,
we can solve (5.15) according to the clique tree shown in Figure 5.6 (b): for clique 1, we
only need the model information of node 1 and node 2, while only the models of node 2
and node 3 are required for clique 2. In our simulation, both these two cases are feasible,
and Figure 5.7 shows the performance of the computed structured controllers for the
initial condition x1(0) = [0.2, 0, 0.5, 0], x2(0) = 0 and x3(0) = 0.

5.5.3 General networked systems

Finally, we present simulation results for networked systems over general directed graphs. It
is assumed that each node is an unstable second order system coupled with its neighbouring
nodes, as shown in (5.17). In the simulation, we first generated a random chordal graph
G1 = (V, E1) with a bound on its largest maximal clique size, and then randomly removed

5. Scalable design using chordal decomposition 99

0 5 10 15 20

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
 o

f
e

rr
o

r
|x

(t
)|

Centralized

Sequential

Guaranteed performance

Figure 5.7: Exponential decay of ‖x(t)‖ using the centralized computation and the sequential
computation.

(a) (b)

Figure 5.8: Time consumption (in seconds) comparison for solving structured feedback gains:
(a) general systems with bounded maximal clique size (the largest maximal clique size is five); (b)
general systems with 100 nodes when varying the largest maximal clique size.

some edges of G1 to form the plant graph Gp. We ensured that the communication
graph satisfies Ep ⊆ Ec ⊆ E1. Under these constructions, Gp,Gc are general directed
graphs such that the largest maximal clique of Gex has a bounded size. When this value
is set as five, Figure 5.8(a) shows a comparison between the centralized method and
sequential method for different graph sizes. The result clearly shows the efficiency of
our sequential method for large-scale systems.

Next, we consider 100-node graphs, and vary the size of the largest maximal clique.
As shown in Figure 5.8(b), the time consumption increases as the largest maximal clique
size increases for the centralized method and sequential design. As expected, the efficiency
of the sequential design method becomes worse as the size of largest maximal clique
increases. This illustrates that the efficiency of the proposed sequential design method
is determined by the largest maximal clique size in the extended graph. If this is small
and independent of graph size, the sequential design method scales a lot better.

100 5.6. Conclusion

5.6 Conclusion

This chapter considered the synthesis of structured static feedback gains for large-
scale systems over directed graphs. A sequential design method has been proposed
by exploiting the chordal decomposition of block PSD matrices, which greatly improves
the computational scalability for large-scale applications. However, it should be noted
that the sequential design indeed brings some conservatism, particularly in the equal
splitting strategy. This strategy may compromise the feasibility of (5.7): the feasibility
of the sequential design leads to the feasibility of (5.7), while the converse is not true
for general networked systems. This is mainly due to the unidirectional solving process,
i.e., the information is non-reversing, passing down along the clique tree.

In the next chapter, we will introduce a negotiating process based on the ADMM
framework, which can preserve the feasibility of (5.7) and incorporate certain global
performance index, such as H2 norm.

6
Distributed design of decentralized controllers

Synthesizing decentralized controllers in a distributed fashion is desirable due to privacy
concerns of model data in certain complex systems. In this chapter, we propose a
distributed design method for optimal decentralized control by exploiting the underlying
sparsity properties of the problem. Our method is based on chordal decomposition of
sparse block matrices and the alternating direction method of multipliers (ADMM). We
first apply a classical parameterization technique to restrict the optimal decentralized
control into a convex problem that inherits the sparsity pattern of the original problem.
Then, chordal decomposition allows us to decompose the convex restriction into a problem
with partially coupled constraints, and the framework of ADMM enables us to solve the
decomposed problem in a distributed fashion. Consequently, the subsystems only need to
share their model data with their direct neighbours, not centrally or globally.

6.1 Introduction

When regulating a complex system of multiple interconnected subsystems, it is sometimes
advantageous to design control laws relying only on the local subsystem’s state or
output due to implementation and/or operation costs. This approach is known as the
decentralized control of complex systems [1], which has attracted research attention
since the late seventies.

Early efforts have centered on decentralized stabilization and its algebraic characteri-
zation of decentralized fixed modes [115]. One seminal result is that a system is stabilizable
by a decentralized controller if and only if its decentralized fixed modes have negative
real parts [115]. Since then, a wide range extensions of decentralized control have been
investigated, either by considering various types of performance guarantees [110] or by
taking into account neighbouring information for feedback [116]. Several classes of plants
have been identified, which allow convex formulations for the design of decentralized H∞
and H2 controllers, such as quadratic invariant systems [5] and poset-casual systems [100].

101

102 6.1. Introduction

Also, some numerical approaches have been proposed to find an approximate solution
to the optimal decentralized control problem [102, 104]. A common assumption made in
these papers is that a central model of the global plant is available, indicating that the
design is performed in a centralized fashion even though the implementation of controllers
is decentralized (a notable exception is in [100], which obtained independent decoupled
problems by utilizing the properties of posets). However, this may be impractical for certain
complex systems that are shared between private individuals, such as transportation
systems and power-grids. For example, the formation control of autonomous vehicles is
to regulate and maintain a desired distance between adjacent vehicles. In this case, a
complete platoon model may not be available due to privacy concerns of model information
among the vehicles. In addition, it could be desirable to design controllers based on local
model information to reduce the effects of merging with other vehicles and splitting
platoons on controller synthesis.

In fact, a notion of distributed design of controllers relying on limited model information
has been introduced in [117], where performance bounds of designing linear quadratic
regulators distributedly were discussed for systems with invertible input matrix (early
discussions can be traced back to [118]). This framework has been used to discuss the
best closed-loop performance achievable by distributed design strategies for a class of
fully actuated discrete-time systems [119]. Also, numerical algorithms for distributed
design have been proposed using dual decomposition and gradient descent methods in the
framework of model predictive control [120, 121]. More recently, Ahmadi et al. proposed a
distributed synthesis method for linear continuous time systems based on the framework
of dissipative systems [122], and Wang et al. introduced a separable and localized design
method for linear discrete time systems based on the system level approach [123].

In this chapter, we propose a new distributed design method for optimal decentralized
control by exploiting the sparsity structure of the system. Our idea originates from the
connection between sparse positive semidefinite matrices and chordal graphs [19, 20].
The celebrated chordal decomposition in graph theory [19, 20] allows us to decompose a
large sparse positive semidefinite cone into a set of smaller and coupled ones, and has
been successfully applied in optimization to decompose sparse semidefinite programs
(SDPs) [23, 25, 36]. These results have recently been used for performance analysis of
sparse linear systems [13, 34], leading to significantly faster solutions than using standard
dense methods. In Chapter 5, a sequential approach has been introduced for scalable
design of structured controllers using the properties of clique trees in chordal graphs.

This chapter extends the scope of [13, 34] and Chapter 5 on exploiting chordal decom-
position to distributed design of optimal decentralized control. Our main contribution is
to combine chordal decomposition with a first-order algorithm to synthesize decentralized

6. Distributed design of decentralized controllers 103

controllers in a distributed fashion. Specifically, by using a classical parameterization
technique [110], the optimal decentralized control can be restricted to a convex problem
that inherits the original sparsity pattern in the system. Upon assuming that an
undirected version of the system graph is chordal, the convex restriction can be equivalently
decomposed into a problem with partially coupled constraints. Then, we introduce a
distributed algorithm to solve the decomposed problem using ADMM. In our algorithm,
no central model of the global plant is required and the subsystems only need to share
their model data with their neighbours, which helps preserve the privacy of model data.

The rest of this chapter is organized as follows. In Section 6.2, we present the problem
formulation. Chordal decomposition in optimal decentralized control is discussed in
Section 6.3. Section 6.4 introduces a distributed algorithm, and numerical examples are
given in Section 6.5. We conclude this chapter in Section 6.6.

6.2 Problem statement

We consider a complex system consisting of N subsystems. The interactions between
subsystems are modeled by a plant graph Gp(V, Ep), in which each node in V denotes
a subsystem, and the edge (i, j) ∈ Ep means that subsystem i has dynamical influence
on subsystem j. The dynamics of each subsystem i ∈ V are

ẋi(t) = Aiixi(t) +
∑
j∈Ni

Aijxj(t) +Biui(t) +Midi(t), (6.1)

where xi ∈ Rαi , ui ∈ Rmi , di ∈ Rqi denote the local state, input and disturbance of
subsystem i, respectively, and Ni denotes the set of neighbouring nodes that influence
node i. In (6.1), Aii ∈ Rαi×αi , Bi ∈ Rαi×mi ,Mi ∈ Rαi×qi represent local dynamics, and
Aij ∈ Rαi×αj represents the interaction with neighbors. In this chapter, we refer to
Aii, Bi,Mi, Aij as model data of the system.

By collecting the subsystems’ states, the overall system can be described compactly as

ẋ(t) = Ax(t) +Bu(t) +Md(t), (6.2)

where x := [xT
1 , x

T
2 , . . . , x

T
N]T, and the vectors u, d are defined similarly. The matrix A is

composed of blocks Aij , which has a block sparsity pattern, i.e., A ∈ Rn×n(Ep, 0). The
matrices B,M enjoy block-diagonal structures. Our goal is to design a decentralized
static state feedback

ui(t) = −Kixi(t), i = 1, . . . , N (6.3)

104 6.3. Chordal decomposition in optimal decentralized control

such that the H2 norm of the transfer function Tdz from disturbance d to a certain per-
formance output z is minimized. In (6.3), the global K has an information structure K, de-
fined as

K ∈ K =

? . . .
?

 , (6.4)

where ? denotes a nonzero block of compatible dimensions.
Then, the problem considered in this chapter is

minimize
K

‖Tdz‖2

subject to K ∈ K,
(6.5)

where ‖ · ‖ is the H2 norm of a transfer function. In this chapter, the performance
output z is chosen as

z =
[
Q

1
2

0

]
x+

[
0
R

1
2

]
u,

where Q := diag(Q1, . . . , QN) and R := diag(R1, . . . , RN) denote the state and control
performance weights, respectively, and diagonal block Qi � 0, Ri � 0 correspond to
the subsystem i. Adopting the same terminology in [1, 110], we refer to (6.5) as the
optimal decentralized control problem.

The constraint K in fact makes the optimal decentralized problem (6.5) non-convex,
which is challenging to solve exactly in general. Some previous work either imposed special
structures on the system [5, 100], or used certain relaxation techniques [102, 110], or
applied non-convex optimization directly [104] to address this problem. These techniques,
however, are essentially performing a centralized design of decentralized controllers, since
they typically require a central unit to collect the global model data, i.e., A,B,M in (6.2).
We note that a few recent papers were focused on distributed synthesis using limited
model information; e.g., [117, 119, 122, 123].

In this chapter, we introduce a new algorithm that realizes distributed design of
decentralized controllers by combining chordal decomposition with ADMM. In our
algorithm, no centralized model data are required; instead, the knowledge about global
model (6.2) can be distributed among subsystems depending on the maximal cliques
of an undirected version of plant graph Gp(V, Ep).

6.3 Chordal decomposition in optimal decentralized control

In this section, similar to Chapter 5, we first employ a classical parameterization
trick [110] to derive a convex restriction of (6.5). Then, we apply the block-chordal
decomposition (i.e., Theorem 2.17) in the relaxed problem, leading to a problem with
partially coupled constraints.

6. Distributed design of decentralized controllers 105

6.3.1 Convex restriction of the optimal decentralized control problem

Lemma 6.1 ([10]). Consider a stable linear system ẋ(t) = Ax(t) +Md(t), z(t) = Cx(t).
The H2 norm of the transfer function from d to z can be computed by

‖Gdz‖2 = inf
X�0
{Trace

(
CXCT) | AX +XAT +MMT � 0}.

When applying the decentralized controller (6.3), the closed-loop system of (6.2) be-
comes

ẋ(t) = (A−BK)x(t) +Md(t),

z(t) =
[

Q
1
2

−R
1
2K

]
x(t),K ∈ K.

According to Lemma 6.1, the optimal decentralized control problem (6.5) can be equiv-
alently reformulated as

minimize
X,K

Trace
(
(Q+KTRK)X

)
subject to (A−BK)X +X(A−BK)T +MMT � 0,

X � 0,K ∈ K.

(6.6)

The first inequality in (6.6) does not linearly depend on X and K. A standard change
of variables Z = KX leads to

minimize
X,Z

Trace
(
QX +RZX−1ZT

)
subject to (AX −BZ) + (AX −BZ)T +MMT � 0,

X � 0, ZX−1 ∈ K.

(6.7)

To handle the nonlinear constraint ZX−1 ∈ K, a classical parameterization idea [110]
is to assume a block diagonal X = diag(X1, . . . , XN) with block size compatible to the
subsystem’s dimensions, resulting in the following equivalence:

ZX−1 ∈ K ⇔ Z ∈ K.

Considering the block-diagonal structures of Q,R, we have

Trace
(
QX +RZX−1ZT

)
=

N∑
i=1

Trace
(
QiXi +RiZiX

−1
i ZT

i

)
.

By introducing Yi � ZiX−1
i ZT

i and using the Schur complement [10], a convex restriction
to (6.5) is derived:

minimize
Xi,Yi,Zi

N∑
i=1

Trace (QiXi +RiYi)

subject to (AX −BZ) + (AX −BZ)T +MMT � 0, (6.8a)[
Yi Zi
ZT
i Xi

]
� 0, Xi � 0, i = 1, . . . , N. (6.8b)

106 6.3. Chordal decomposition in optimal decentralized control

Problem (6.8) is convex and ready to be solved using general conic solvers, and the
decentralized controller is recovered as Ki = ZiX

−1
i , i = 1, . . . , N . However, solving (6.8)

directly requires the global model knowledge, implicitly assuming the existence of
a central entity to collect the complete model data. In this chapter, we make the
following assumption.

Assumption 6.2. Problem (6.8) is feasible, or equivalently system (6.2) is strongly
decentralized stabilizable [110].

Remark 6.3. The block-diagonal strategy was formally discussed in early 1990s [110],
which was later implicitly or explicitly used in the field of decentralized stabilization [1, 41,
122]. This strategy essentially requires the closed-loop system to admit a block-diagonal
Lyapunov function V (x) = xTXx = ∑N

i=1 x
T
i Xixi. As in Chapter 5, our motivation here

is to obtain a convex restriction of the non-convex problem (6.5) that inherits the original
sparsity pattern, facilitating a distributed algorithm for the solution. In Appendix A, we
present more discussions on block-diagonal Lyapunov functions.

6.3.2 Chordal decomposition of the restriction problem

In (6.8), the variables Xi, Yi, Zi are coupled by the inequality (6.8a) only, while the rest
of constraints and the objective function are naturally separable due to the separable
performance weights Q,R. Meanwhile, thanks to the block-diagonal assumption on
X, the coupled linear matrix inequality has a structured sparsity pattern characterized
by an undirected version of graph Gp(V, Ep). Precisely, we define an undirected graph
Gu(V, Eu) with Eu = Ep ∪ Er, where Er denotes the edge set of the mirror graph of
Gp (see Definition 4.2).

Here, we make the following assumption.

Assumption 6.4. Graph Gu is chordal.

Remark 6.5. Similar to Chapter 5, if Gu is not chordal, we can add suitable edges to Eu
to obtain a chordal graph [15]. In this case, sharing model data with directed neighbours
in Gp is not sufficient for the proposed distributed solution. Still, privacy of model data is
maintained within each maximal clique Ck.

We denote by C1, . . . , Cp the maximal cliques of Gu. Considering the inherent structure
of system (6.1), it is straightforward to see that

(AX −BZ) + (AX −BZ)T +MMT ∈ SN (Eu, 0).

To ease the exposition, we define

F (X,Z) := −(AX −BZ)− (AX −BZ)T −MMT. (6.9)

6. Distributed design of decentralized controllers 107

Then, according to the block-chordal Theorem 2.17, F (X,Z) � 0 is equivalent to the
condition that there exist Jk ∈ S|Ck|α+ , k = 1, . . . , p, such that

F (X,Z) =
p∑

k=1
ET
Ck,αJkECk,α. (6.10)

Therefore, (6.8) can be equivalently decomposed into

minimize
Xi,Yi,Zi,Jk

N∑
i=1

Trace (QiXi +RiYi)

subject to
p∑

k=1
ET
Ck,αJkECk,α = F (X,Z),[

Yi Zi
ZT
i Xi

]
� 0, Xi � 0, i = 1, . . . , N,

Jk � 0, k = 1, . . . , p.

(6.11)

One notable feature of (6.11) is that the global constraint (6.8a) is replaced by a set of
small coupled constraints (6.10). In other words, (6.11) has partially coupled constraints,
which can be solved in a distributed way by introducing appropriate consensus variables.

6.4 A distributed solution via ADMM

This section introduces an ADMM algorithm to solve (6.11), which leads to local
subproblems for maximal cliques and overlapping elements in Gu. ADMM is a first-
order operator-splitting method that solves an optimization problem of the form [72]

minimize
x,y

f(x) + g(y)

subject to Ex+ Fy = c,
(6.12)

where x ∈ Rnx , y ∈ Rny are decision variables, f and g are real valued convex functions,
and E ∈ Rnc×nx , F ∈ Rnc×ny and c ∈ Rnc are problem data. Given a penalty parameter
ρ > 0, the scaled ADMM algorithm solves (6.12) using the following iterations

x(h+1) = argmin
x

f(x) + ρ

2‖Ex+ Fy(h) − c+ λ(h)‖2,

y(h+1) = argmin
y

g(y) + ρ

2‖Ex
(h+1) + Fy − c+ λ(h)‖2,

λ(h+1) = λh + Ex(h+1) + Fy(h+1) − c,

where λ ∈ Rnc is a scaled dual variable, and h denotes the iteration index.
If there is no overlapping among the cliques C1, . . . , Cp (i.e., the system (6.2) is

composed by dynamically disjoint components), then (6.11) is trivially decomposed
into p decoupled subproblems of decentralized optimal control, which can be solved by
cliques C1, . . . , Cp independently. In the case where different cliques share some common
nodes with each other, we can introduce appropriate auxiliary variables to achieve a
distributed solution using ADMM.

108 6.4. A distributed solution via ADMM

6.4.1 A simple example

For the convenience of illustration, we first consider an interconnected system characterized
by a chain of three nodes. In this case, the model data are B = diag{B1, B2, B3},M =
diag{M1,M2,M3} and

A =

A11 A12 0
A21 A22 A23
0 A32 A33

 .
There are two cliques in this case, and Jk, k = 1, 2 in (6.10) are in the following form

J1(X1, X2, Z1, J22,1) := −
[
J11 A12X2 +X1AT

21
∗ J22,1

]
,

J2(X2, X3, Z3, J22,2) := −
[
J22,2 A23X3 +X2AT

32
∗ J33

]
,

where ∗ denotes the corresponding symmetric part and

J11 := A11X1 −B1Z1 + (A11X1 −B1Z1)T +M1M
T
1 ,

J33 := A33X3 −B3Z3 + (A33X3 −B3Z3)T +M3M
T
3 .

The coupling effect is imposed on the overlapping node 2:

J22,1 + J22,2 =A22X2 −B2Z2 + (A22X2 −B2Z2)T +M2M
T
2 . (6.13)

For any coupling variables that appear in two cliques, we introduce auxiliary variables.
For this case, we introduce auxiliary variables for node 2

J22,1 = Ĵ22,1, J22,2 = Ĵ22,2, X2 = X2,1, X2 = X2,2. (6.14)

Also, we split the variables according to the cliques and the overlapping node

Node 2: y := {X2, Y2, Z2, Ĵ22,1, Ĵ22,2},

Clique C1: xC1 := {X1, Y1, Z1, X2,1, J22,1},

Clique C2: xC2 := {X3, Y3, Z3, X2,2, J22,2}.

Next, we show that (6.11) can be rewritten into the standard ADMM form (6.12) by
defining indicator functions as

ISk(xCk) :=
{

0, xCk ∈ Sk,
+∞, otherwise,

IL(y) :=
{

0, yl ∈ L,
+∞, otherwise,

(6.15)

6. Distributed design of decentralized controllers 109

for k = 1, 2, where sets S1,S2 are defined as

S1 :=
{
xC1

∣∣∣∣J1(X1, X2,1, Z1, J22,1) � 0, X1 � 0,
[
Y1 Z1
ZT

1 X1

]
� 0 are feasible

}
,

S2 :=
{
xC2

∣∣∣∣J2(X2,2, X3, Z3, J22,2) � 0, X3 � 0,
[
Y3 Z3
ZT

3 X3

]
� 0 are feasible

}
,

and L is defined by

L :=
{
y

∣∣∣∣Ĵ22,1 + Ĵ22,2 = A22X2 −B2Z2 + (A22X2 −B2Z2)T +M2M
T
2 ,

X2 � 0,
[
Y2 Z2
ZT

2 X2

]
� 0 are feasible

}
.

This allows us to rewrite (6.11) as an optimization problem in the form of (6.12):

minimize
2∑

k=1
fk(xCk) + g(y)

subject to (6.14) holds,
(6.16)

where functions f1(xC1), f2(xC2) based on each clique are defined as

f1(xC1) := Trace (Q1X1 +R1Y1) + IS1(xC1), (6.17a)

f2(xC2) := Trace (Q3X3 +R3Y3) + IS2(xC2), (6.17b)

and g(y) based on the overlapping node 2 is defined as

g(y) := Trace (Q2X2 +R2Y2) + IL(y). (6.18)

Upon denoting x̂Ck as the variables in xCk that appears in the consensus con-
straint (6.14), and yl(Ck) as the corresponding local copies, e.g., x̂C1 = {X2,1, J22,1}, y(C1) =
{X2, Ĵ22,1}, the ADMM algorithm for (6.16) takes the following distributed form:

ADMM algorithm for the distributed design

1. x-update: for each clique k, solve the local problem:

x
(h+1)
Ck = arg min

xCk
fk(xCk) + ρ

2‖x̂Ck − y
(h)(Ck) + λ

(h)
Ck ‖

2. (6.19)

2. y-update: solve the following problem to update local variables

y(h+1) = arg min
y
g(y) + ρ

2

2∑
k=1
‖x̂(h+1)
Ck − y(Ck) + λ

(h)
Ck ‖

2. (6.20)

3. λ-update: Update the dual variable

λ
(h+1)
Ck = λ

(h)
Ck + x̂

(h+1)
Ck − y(h+1)(Ck), k = 1, 2. (6.21)

110 6.4. A distributed solution via ADMM

1 2

2 3

C1

C2

Figure 6.1: Illustration of the ADMM algorithm for solving (6.16): cliques C1 = {1, 2} and
C2 = {2, 3} can serve as two computing agents and the overlapping node 2 plays a role of
coordination by updating the axillary variables.

At each iteration h, subproblem (6.19) only depends on each clique Ck. Consequently,
the cliques can serve as computing agents to solve subproblem (6.19) in parallel. For
example, clique C1 needs to solve the following convex problem

minimize
xC1

Trace (Q1X1 +R1Y1) + ρ

2‖x̂C1 − y(h)(C1) + λ
(h)
C1
‖2

subject to
[
J11 A12X2,1 +X1AT

21
∗ J22,1

]
� 0,[

Y1 Z1
ZT

1 X1

]
� 0, X1 � 0.

The subproblems (6.20) and (6.21) can be solved by node 2. Figure 6.1 illustrates the
distributed nature of this algorithm.

Remark 6.6 (Privacy of model data). At each iteration, the coordinator (i.e., node 2)
only requires model data of itself A22, B2,M2 and the local copies X(h+1)

2,k , J
(h+1)
22,k from

clique Ck, k = 1, 2 to solve (6.20) and (6.21). Therefore, the proposed ADMM algorithm
for solving (6.11) has a distributed nature (see Figure 6.1 for illustration): cliques C1 and
C2 can solve (6.19) based on the model data within each clique in parallel, and node 2 plays
a role of coordination by updating the auxiliary variables and dual variables. Consequently,
the model data of node 1 (i.e., A11, B1,M1, A12, A21) are private to clique C1 only, while
clique C2 holds the model data of node 3 (i.e., A33, B3,M3, A32, A23), exclusively.

Remark 6.7 (Privacy and maximal cliques). In our ADMM algorithm, the privacy of
model data are maintained within each maximal clique of Gu. Therefore, the level of
privacy depends on the sparsity of Gu. For highly interconnected systems with only one
maximal clique, the decomposition (6.10) brings no benefit for privacy, and a global model
is still required. In practice, if the plant graph Gp is a chain or star graph, and the model
data privacy can be therefore maintained to a large extent.

Remark 6.8 (Convergence of the ADMM algorithm). Note that the general ADMM
algorithm is guaranteed to converge for convex problems under very mild conditions [72,
Section 3.2]. For our application, under the feasibility assumption of (6.8), the proposed

6. Distributed design of decentralized controllers 111

ADMM algorithm (6.19)-(6.21) is guaranteed to find a solution as h→∞. In practical
examples, ADMM typically found a solution with moderate accuracy (in the sense of
normal stopping criteria [72, Section 3.3]) within a few hundred iterations (see Section 6.5).

6.4.2 The general case

The idea above can be extended to solve (6.11) with a general chordal graph pattern.
First, we define a set N0 := {i ∈ V | ∃q, k = 1, . . . , p, such that i ∈ Cq ∩ Ck} that contains
the overlapping nodes, and a set E0 := {(i, j) ∈ Eu | ∃q, k = 1, . . . , p, such that (i, j) ∈
(Cq × Cq) ∩ (Ck × Ck)} that contains the overlapping edges. For the example in Figure 6.1,
we have N0 = {2} and E0 = ∅. Also, we define Ni := {k | i ∈ Ck, k = 1, . . . , p}, and
Eij := {k | (i, j) ∈ Ck × Ck, k = 1, . . . , p}.

In fact, the elements in N0 and E0 make the constraint (6.10) coupled among different
maximal cliques. Similar to (6.14), for each overlapping node i ∈ N0, we introduce
local consensus constraints

Xi = Xi,k, Ĵii,k = Jii,k,∀k ∈ Ni. (6.22)

For each overlapping edge (i, j) ∈ E0, we introduce local consensus constraints

Xij = Xi,k, Ĵij,k = Jij,k,∀(i, j) ∈ Eij . (6.23)

Then, the variable xCk for each maximal clique k = 1, . . . , p includes

• Xi, Yi, Zi, i ∈ Ck \ N0 that belongs to clique Ck exclusively;

• Xi,k, Jii,k, i ∈ Ck ∩N0 that corresponds to overlapping nodes in Ck ;

• Jij,k, (i, j) ∈ (Ck × Ck) ∩ E0 that corresponds to overlapping edges in Ck;

We also collect the local copies Xi, Yi, Zi, Ĵii,k, i ∈ N0 and Ĵij,k, Xij,k, (i, j) ∈ E0 as
the consensus variable y.

Then, (6.11) can be written into the canonical ADMM form:

minimize
p∑

k=1
fk(xCk) + g(y)

subject to (6.22) and (6.23) hold,
(6.24)

where the clique function fk(xCk) is defined as

fk(xCk) :=
∑

i∈Ck\N0

Trace (QiXi +RiYi) + ISk(xCk), (6.25)

and g(y) is defined as

g(y) :=
∑
i∈N0

Trace (QiXi +RiYi) + IL(y). (6.26)

112 6.5. Numerical examples

In (6.25), set Sk is defined as

Sk :=
{
xCk

∣∣∣∣Jk(xCk) � 0, Xi � 0,
[
Yi Zi
ZT
i Xi

]
� 0, i ∈ Ck \ N0 are feasible

}
,

and in (6.26), set L is defined as

L :=
{
y

∣∣∣∣ ∑
k∈Ni

Ĵii,k = AiiXi −BiZi + (AiiXi −BiZi)T +MiM
T
i , Xi � 0,

[
Yi Zi
ZT
i Xi

]
� 0, i ∈ N0,

∑
k∈Eij

Ĵij,k = AijXij +XjiA
T
ji,

(i, j) ∈ E0 are feasible
}
.

By applying the ADMM to (6.24), we obtain iterations that are identical to (6.19)-

(6.21). Note that the set L can be equivalently rewritten as a product of sets defined

by Xi, Yi, Zi, Ĵii,k, i ∈ N0 and Ĵij,k, Xij , (i, j) ∈ E0. For each i ∈ N0, the set for

Xi, Yi, Zi, Ĵii,k is defined as

Li : =
{

(Xi, Yi, Zi, Ĵii,k)
∣∣∣∣ ∑
k∈Ni

Ĵii,k = AiiXi −BiZi+

(AiiXi −BiZi)T +MiM
T
i , Xi � 0,

[
Yi Zi
ZT
i Xi

]
� 0

}
.

This means that y-update (6.20) can be distributed among the overlapping nodes N0

and overlapping edges E0. Therefore, similar to the example in Section 6.4.1, variables

xhCk can be updated on each clique in parallel, and the overlapping elements in N0 and

E0 can update yhCk , λ
h
Ck individually until convergence.

Here, as stated in Remark 6.6, we emphasize that the main interest of our algorithm

is the ability of distributing the computation to cliques and overlapping elements, thus

preserving the privacy of model data in the problem.

6.5 Numerical examples

Three numerical examples are used to demonstrate the effectiveness of the proposed

distributed design method1. We ran the ADMM algorithm with termination tolerance

10−3. In our simulations, SeDuMi [71] was used to solve the subproblems within each

clique and overlapping elements.

6. Distributed design of decentralized controllers 113

2

1

4

C1

2

3

4

C2

Figure 6.2: Illustration of the ADMM algorithm for solving (6.8) corresponding to the
example (6.27): the cliques C1 = {1, 2, 4} and C2 = {2, 3, 4} can serve as two computing agents
and the overlapping nodes play a role of coordination by updating the axillary variables.

6.5.1 First-order systems with acyclic directed graphs

As our first numerical example, we consider a network of four coupled unstable first-order
subsystems, where the plant graph Gp is a directed acyclic graph, and the global dynamics
are

ẋ(t) =


1 0 0 0
1 2 0 0
0 2 3 4
1 2 0 4

x(t) + u(t) + d(t). (6.27)

We chose Qi = 1 and Ri = 1, i ∈ V in our simulation. When the global dynamics are
available, solving (6.8) directly returned a decentralized controller K11 = 7.34;K22 =
11.38;K33 = 6.16,K44 = 13.48 with an H2 performance of 5.36.

Instead, when the privacy of model data is concerned, the proposed ADMM algorithm
can solve (6.8) in a distributed fashion. As shown in Figure 6.2, for clique 1, only the
model data of nodes 1, 2, 4 are required, while clique 2 only needs the model data of nodes
2, 3, 4, and the overlapping nodes 2 and 4 play a role of coordinations in the algorithm. In
this way, the model of node 1 can be kept private within clique 1 and the model of node
3 is known within clique 2 exclusively. For this instance, after 54 iterations, the ADMM
algorithm returned the following decentralized controller K11 = 7.35;K22 = 11.41;K33 =
6.16,K44 = 13.49 with an H2 performance of 5.37. This controller is almost identical to
that obtained by solving (6.8) directly in a centralized fashion, and the minor difference
is due to the stopping criterion of moderate accuracy in the ADMM algorithm.

6.5.2 Coupled inverted pendula

We first consider a network of three coupled inverted pendula, as in Chapter 5 (see Fig-
ure 5.5). The linearized dynamics around the upright equilibrium point of each pendulum
are

Ai =


0 1 0 0

mi+m
mil

g 0 ki
mil

ci+bi
mil

0 0 0 1
− m
mi
g 0 − ki

mi
− ci+bi

mi

 , Aij =


0 0 0 0
0 0 kij

mil
bij
mil

0 0 0 0
0 0 kij

mi

bij
mi

 , Bi =


0
− 1
mil

0
1
mi

 ,
1Code is available via https://github.com/zhengy09/distributed_design_methods

https://github.com/zhengy09/distributed_design_methods

114 6.5. Numerical examples

0 2 4 6 8 10
-2

-1

0

1

2

3

4

5

Pendulum 1

Pendulum 2

pendulum 3

(a)

0 5 10 15

-0.1

0

0.1

0.2

0.3

0.4

0.5

Pendulum 1

Pendulum 2

Pendulum 3

(b)

Figure 6.3: Response of the closed-loop inverted pendula using the decentralized controller
computed by the ADMM algorithm: (a) vertical angle θi of each pendulum; (b) horizontal
displacement yi of each pendulum.

for i = 1, 2, 3; (i, j) = (1, 2), (2, 1), (2, 3), (3, 2), where ki = ∑
j∈Ni kij , bi = ∑

j∈Ni bij . The
local state variable is xi = [θi, θ̇i, yi, ẏi]T, and ci, bij = bji, kij = kji are friction, damper
and spring coefficients, respectively. The plant graph for this example is a chain of
three nodes, and its chordal decomposition is shown in Figure 6.1. The parameters in
the simulation were m1 = 0.6,m2 = 0.8,m3 = 1,m = 0.1, g = 10, l = 0.5, k12 = k21 =
0.2, k23 = k32 = 0.4, b12 = b21 = 0.4, b23 = b32 = 0.2, c1 = 1, c2 = 0.2 and c3 = 1. We aim
to compute a decentralized controller (6.3) by solving (6.5) with Qi = I,Ri = I, i = 1, 2, 3.

Using the proposed ADMM algorithm, we solved this problem in a distributed fashion:
for clique 1, only the models of pendulum 1 and pendulum 2 are required, while clique
2 only needs the model data of pendulum 2 and pendulum 3. In the simulation, the
algorithm returned a decentralized controller after 418 iterations with an H2 performance
of 6.65 for the closed-loop system. Figure 6.3 shows the closed-loop response for the
initial condition x1(0) = [0.172, 0, 0.2, 0], x2(0) = 0 and x3(0) = 0.

6.5.3 A chain of unstable second-order coupled systems

Next, we use a chain of five nodes (see Figure 6.4) to provide a comparison between the
proposed ADMM algorithm and the following three approaches:

1. A sequential approach (see Chapter 5), which exploits the properties of clique trees
in chordal graphs;

2. Localized LQR design [118, Section 7.3], which computes a local LQR controller for
each subsystem independently by ignoring the coupling terms Aij ;

3. Truncated LQR design, which computes a centralized LQR controller using the
global model data and only keeps the diagonal blocks for decentralized feedback.

6. Distributed design of decentralized controllers 115

1 2 3 4 5
(a)

1 2

2 3

3 4

4 5(b)
Figure 6.4: (a) A chain of five nodes, where each subsystem is a second-order unstable subsystem
coupled with its neighbours, as shown in (6.28); (b) Four maximal cliques in this system Ci =
{i, i+ 1}, i = 1, 2, 3, 4, which serve as four computing agents relying only on the model data within
each clique; the overlapping nodes 2, 3, 4 play a role of coordination.

Table 6.1: Comparison of the proposed ADMM algorithm, sequential approach [41], localized
LQR and truncated LQR design for system (6.28).

ADMM Sequential� Localized LQR Truncated LQR
pct.‡ 100% 72% 54% 62%
H2† 6.06 6.36 6.50 6.49
‡: Successful percentage of returning a stabilizing decentralized controller.
†: Average H2 performance of the closed-loop system based on common successful instances.
�: This refers to the sequential approach in Section 5.4.3.

It is assumed that each node is an unstable second order system coupled with
its neighbouring nodes,

ẋi =
[
1 1
1 2

]
xi +

∑
j∈Ni

Aijxj +
[
0
1

]
(ui + di), (6.28)

where the entries of coupling term Aij were generated randomly from −0.5 to 0.5. In this
example, there are four maximal cliques Ci = {i, i+ 1}, i = 1, 2, 3, 4. The model data can
be kept private within each clique, and the overlapping nodes (i.e., 2, 3, 4) coordinate
the consensus variables among maximal cliques. In the simulation, the state and control
weights were Qi = I and Ri = I for each subsystem.

We generated 100 random instances of this interconnected system (6.28). The
performance comparison between the four methods is listed in Table 6.1. The proposed
ADMM algorithm was able to return stabilizing decentralized controllers for all 100 tests,
while the sequential approach, localized LQR and truncated LQR design only succeeded
for 72%, 54%, 62% of the tests, respectively. This is expected since the conservatism
of the ADMM algorithm only comes from the block-diagonal assumption that leads
to a convex problem. The sequential approach requires an additional equal-splitting
assumption among maximal cliques, and the applicability of localized LQR and truncated
LQR design depends on the coupling strength among subsystems. Also, the average H2

116 6.6. Conclusion

Figure 6.5: Cumulative plot of the fraction of 100 random trails of (6.28) that required a given
number of iterations to converge.

performance for the common succeeded instances by the ADMM algorithm is the lowest.
Finally, Figure 6.5 shows the cumulative plot of convergence performance of the ADMM
algorithm, where 90% of the tests required less than 150 iterations.

6.6 Conclusion

In this chapter, we have introduced a distributed design method for optimal decentralized
control that relies on local model information only. Our main strategy is consistent with the
recent general idea of exploiting sparsity in systems theory via chordal decomposition [13,
34, 39, 41]. In this chapter, we have further demonstrated the potential of chordal
decomposition in the distributed design of decentralized controllers, by combining it
with the ADMM algorithm.

Part III

Large-scale Sum-of-squares (SOS)
Programs

117

7
Partial orthogonality in general SOS programs

Part I and Part II of this thesis have demonstrated the high potential of chordal sparsity
in improving the scalability of solving SDPs, including some LMIs arising in analysis
and synthesis of large-scale networked systems. As shown in Example 2.3, polynomial
sum-of-squares (SOS) constraints can be reformulated into certain LMIs as well.

This part of the thesis, Chapters 7 — 9, focuses on exploiting sparsity in optimization
problems with SOS constraints, called SOS programs, to facilitate the solution scalability.
In particular, Chapter 7 reveals an inherent structural property, called partial orthogonality,
that naturally arises in the SDPs when recasting general SOS programs using the
standard monomial basis, and presents a fast ADMM algorithm that exploits partial
orthogonality. In Chapter 8, we introduce an extension of the chordal decomposition
Theorems 2.10 and 2.13 to sparse polynomial matrices. Finally, Chapter 9 reveals the
relationship between chordal decomposition in SOS programs with two recent scalable
techniques – DSOS/SDSOS [124].

7.1 Introduction

Optimizing the coefficients of a polynomial in n variables, subject to a nonnegativity
constraint on the entire space Rn or on a semialgebraic set S ⊆ Rn (i.e., a set defined
by a finite number of polynomial equations and inequalities), is a fundamental problem
in many fields. For instance, linear, quadratic and mixed-integer optimization problems
can be recast as polynomial optimization problems (POPs) of the form [125]

minimize
x∈S

p(x), (7.1)

where p(x) is a multivariate polynomial and S ⊆ Rn is a semialgebraic set. Problem (7.1)
is clearly equivalent to

maximize γ

subject to p(x)− γ ≥ 0 ∀x ∈ S,
(7.2)

119

120 7.1. Introduction

so POPs of the form (7.1) can be solved globally if a linear cost function can be optimized
subject to polynomial nonnegativity constraints on a semialgebraic set.

Another important example is the construction of a Lyapunov function V (x) to
certify that an equilibrium point x∗ of a dynamical system dx(t)

dt = f(x(t)) is locally
stable. Taking x∗ = 0 without loss of generality, given a neighbourhood D of the origin,
local stability follows if V (0) = 0 and

V (x) > 0, ∀x ∈ D \ {0}, (7.3a)

−f(x)T∇V (x) ≥ 0, ∀x ∈ D. (7.3b)

Often, the vector field f(x) is polynomial [126] and, if one restricts the search to polynomial
Lyapunov functions V (x), conditions (7.3a)-(7.3b) amount to a feasibility problem over
nonnegative polynomials.

Testing for nonnegativity, however, is NP-hard for polynomials of degree as low
as four [52]. This difficulty is often resolved by requiring that the polynomials under
consideration are a sum of squares (SOS) of polynomials of lower degree. In fact, checking
for the existence (or lack) of an SOS representation amounts to solving a semidefinite
program (SDP) [52]. In particular, consider a polynomial of degree 2d in n variables,

p(x) =
∑

α∈Nn,|α|≤2d
pαx

α1
1 . . . xαnn .

The key observation in [52] is that an SOS representation of p(x) exists if and only if
there exists a positive semidefinite matrix X such that

p(x) = vd(x)TXvd(x), (7.4)

where
vd(x) = [1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

d
n]T (7.5)

is the vector of monomials of degree no larger than d. Upon equating coefficients on both
sides of (7.4), testing if p(x) is an SOS reduces to a feasibility SDP of the form

find X

subject to 〈Bα, X〉 = pα, α ∈ Nn2d,

X � 0,

(7.6)

where Nn2d is the set of n-dimensional multi-indices with length at most 2d, Bα are
known symmetric matrices indexed by such multi-indices (see Section 7.2 for more
details), and 〈A,B〉 = trace(AB) is the standard Frobenius inner product of two
symmetric matrices A and B.

7. Partial orthogonality in general SOS programs 121

Despite the tremendous impact of SOS techniques in the fields of polynomial op-
timization [127] and systems analysis [9], the current poor scalability of second-order
interior-point algorithms for semidefinite programming prevents the use of SOS methods
to solve POPs with many variables, or to analyse dynamical systems with many states.
The main issue is that, when the full monomial basis (7.5) is used, the linear dimension
of the matrix X and the number of constraints in (7.6) are N =

(n+d
d

)
and m =

(n+2d
2d
)
,

respectively, both of which grow quickly as a function of n and d.

7.1.1 Related work

One strategy to mitigate the computational cost of optimization problems with SOS
constraints (hereafter called SOS programs) is to replace the SDP obtained from the
basic formulation outlined above with one that is less expensive to solve using second-
order interior-point algorithms. Facial reduction techniques [128], including the Newton
polytope [129] and diagonal inconsistency [130], and symmetry reduction strategies [131]
can be utilised to eliminate unnecessary monomials in the basis vd(x), thereby reducing
the size of the positive semidefinite (PSD) matrix variable X. Correlative sparsity [31]
can also be exploited to construct sparse SOS representations, wherein a polynomial
p(x) is written as a sum of SOS polynomials, each of which depends only on a subset
of the entries of x. This enables one to replace the large PSD matrix variable X

with a set of smaller PSD matrices, which can be handled more efficiently. Further
computational gains are achievable if one replaces any PSD constraints—either the
original condition X � 0 in (7.6) or the PSD constraints obtained after applying the
aforemention techniques—with the stronger constraints the PSD matrices are diagonally or
scaled-diagonally dominant [124]. These conditions can be imposed with linear and second-
order cone programming, respectively, and are therefore less computationally expensive.
However, while the conservativeness introduced by the requirement of diagonal dominance
can be reduced with a basis pursuit algorithm [132], it cannot generally be removed.

Another strategy to enable the solution of large SOS programs is to replace the
computationally demanding interior-point algorithms with first-order methods, at the
expense of reducing the accuracy of the solution. The design of efficient first-order
algorithms for large-scale SDPs has recently received increasing attention: Wen et al.
proposed an alternating-direction augmented-Lagrangian method for large-scale dual
SDPs [62]; O’Donoghue et al. developed an operator-splitting method to solve the
homogeneous self-dual embedding of conic programs [64], which has recently been extended
by the authors to exploit aggregate sparsity via chordal decomposition [36–38]. Algorithms
that specialize in SDPs from SOS programming exist [133, 134], but can be applied only
to unconstrained POPs—not to constrained POPs of the form (7.2), nor to the Lyapunov

122 7.1. Introduction

conditions (7.3a)-(7.3b). First-order regularization methods have also been applied to
large-scale constrained POPs, but without taking into account any problem structure [135].
Finally, the sparsity of the matrices Bα in (7.6) was exploited in [48] to design an operator-
splitting algorithm that can solve general large-scale SOS programs, but fails to detect
infeasibility (however, recent developments [75, 76] may offer a solution for this issue).

7.1.2 Main contributions

One major shortcoming of all but the last of these recent approaches is that they can only be
applied to particular classes of SOS programs. For this reason, in this chapter we develop a
fast first-order algorithm, based on the alternating direction method of multipliers, for the
solution of generic large-scale SOS programs. Our algorithm exploits a particular structural
property of SOS programs and can also detect infeasibility. Precisely, our contributions are:

1. At the modeling level, we highlight a structural property of SDPs derived from SOS
programs using the standard monomial basis: the equality constraints are partially
orthogonal. Notably, the SDPs formulated by common SOS modeling toolboxes [79,
80, 136] possess this property.

2. At the computational level, we show how partial orthogonality leads to a “diagonal
plus low rank” matrix structure in the ADMM algorithm of [64], so the matrix
inversion lemma can be applied to reduce its computational cost. Precisely, a system
of m×m linear equations to be solved at each iteration can be replaced with a t× t
system, often with t� m.

3. We demonstrate the efficiency of our method—available as a new package in the
MATLAB solver CDCS [35]— compared to many common interior-point solvers
(SeDuMi [71], SDPT3 [137], SDPA [112], CSDP [138], Mosek [139]) and to the
first-order solver SCS [65]. Our results on large-scale SOS programs from constrained
POPs and Lyapunov stability analysis of nonlinear polynomial systems suggest that
the proposed algorithm will enlarge the scale of practical problems that can be
handled via SOS techniques.

7.1.3 Outline

The rest of this chapter is organized as follows. Section 7.2 briefly reviews SOS programs
and their reduction to SDPs. Section 7.3 discusses partial orthogonality in the equality
constraints of SDPs arising from SOS programs, while Section 7.4 shows how to exploit it
to facilitate the solution of large-scale SDPs using ADMM. Sections 7.5 and 7.6 extend
our results to matrix-valued SOS programs and weighted SOS constraints. Numerical
experiments are presented in Section 7.7, and Section 7.8 concludes the chapter.

7. Partial orthogonality in general SOS programs 123

7.2 Preliminaries

The sets of nonnegative integers and real numbers are, respectively, N and R. For x ∈ Rn

and α ∈ Nn, the monomial xα = xα1
1 xα2

2 · · ·xαnn has degree |α| := ∑n
i=1 αi. Given d ∈ N,

we let Nnd = {α ∈ Nn : |α| ≤ d} and R[x]n,2d be the set of polynomials in n variables with
real coefficients of degree 2d or less. A polynomial p(x) ∈ R[x]n,2d is a sum-of-squares
(SOS) if p(x) = ∑q

i=1[fi(x)]2, for some polynomials fi ∈ R[x]n,d, i = 1, . . . , q. We denote
by Σ[x]n,2d the set of SOS polynomials in R[x]n,2d. Finally, Sn+ is the cone of n × n
PSD matrices and Ir×r is the r × r identity matrix.

7.2.1 General SOS programs

Consider a vector of optimization variables u ∈ Rt, a cost vector w ∈ Rt, and note
that any polynomial pj(x) ∈ R[x]n,2dj whose coefficients depend affinely on u can be
written as pj(x) = gj0(x)−∑t

i=1 uig
j
i (x) for a suitable choice of polynomials or monomials

gj0, . . . , g
j
t ∈ R[x]n,2dj . We consider SOS programs written in the standard form

minimize
u, s1,...,sk

wTu

subject to sj(x) = gj0(x)−
t∑
i=1

uig
j
i (x) ∀j = 1, . . . , k,

sj ∈ Σ[x]n,2dj , j = 1, . . . , k.

(7.7)

Note that any linear optimization problem with polynomial nonnegativity constraints
on fixed semialgebraic sets can be relaxed into an SOS program of the form (7.7). For
instance, when S ≡ Rn problem (7.2) can be relaxed as [52]

minimize
γ,s

− γ

subject to s(x) = p(x)− γ,

s ∈ Σ[x]n,2d.

(7.8)

Similarly, the global stability of the origin for a polynomial dynamical system such that
f(0) = 0 may be established by looking for a polynomial Lyapunov function of the
form V (x) = −∑t

i=1 uigi(x), where g1(0) = · · · = gt(0) = 0. With D ≡ Rn, and after
subtracting xTx from the left-hand side of (7.3a) to ensure strict positivity away from
the origin [9], suitable values ui can be found via the SOS feasibility program

find u, s1, s2

subject to s1(x) = −xTx−
t∑
i=1

uigi(x),

s2(x) =
t∑
i=1

uif(x)T∇gi(x),

s1, s2 ∈ Σ[x]n,2d.

(7.9)

124 7.2. Preliminaries

It can be checked that SOS programs arising from polynomial nonnegativity constraints
over fixed semialgebraic sets, such as Lasserre’s relaxations of constrained POPs [127]
and SOS relaxations of local Lyapunov inequalities [126, 140], can also be recast as
in (7.7) by adding extra polynomials to represent the SOS multipliers introduced after
applying the Positivstellensatz [126].

To simplify the exposition in the rest of this work, instead of (7.7) we will con-
sider the basic problem

minimize
u, s

wTu

subject to s(x) = g0(x)−
t∑
i=1

uigi(x),

s ∈ Σ[x]n,2d.

(7.10)

All of our results extend to (7.7) when k > 1, as well as to SOS programs with
additional linear constraints on u, because each of s1, . . . , sk enters one and only
one equality constraint.

7.2.2 SDP formulation

The SOS program (7.10) can be converted into an SDP upon fixing a basis to represent the
SOS polynomial variables. The simplest and most common choice to represent a degree-2d
SOS polynomial is the basis vd(x) of monomials of degree no greater than d, defined
in (7.5). As discussed in [52] and [141], the polynomial s(x) in (7.10) is SOS if and only if

s(x) = vd(x)TXvd(x) =
〈
X, vd(x)vd(x)T

〉
, X � 0. (7.11)

Let Bα be the 0/1 indicator matrix for the monomial xα in the outer product ma-
trix vd(x)vd(x)T, i.e.,

(Bα)β,γ =
{

1 if β + γ = α,

0 otherwise,
(7.12)

where the natural ordering of multi-indices β, γ ∈ Nnd is used to index the entries of Bα.
Then,

vd(x)vd(x)T =
∑
α∈Nn2d

Bαx
α. (7.13)

Upon writing gi(x) = ∑
α∈Nn2d

gi,αx
α for each i = 0, 1, . . . , t, and representing s(x) as

in (7.11), the equality constraint in (7.10) becomes

∑
α∈Nn2d

(
g0,α −

t∑
i=1

uigi,α

)
xα =

〈
X, vd(x)vd(x)T

〉
=

∑
α∈Nn2d

〈Bα, X〉xα. (7.14)

7. Partial orthogonality in general SOS programs 125

Matching the coefficients on both sides yields

g0,α −
t∑
i=1

uigi,α = 〈Bα, X〉, ∀α ∈ Nn2d. (7.15)

We refer to (7.15) as the coefficient matching conditions [48]. The SOS program (7.10)
is then equivalent to the SDP

minimize
u;X

wTu

subject to 〈Bα, X〉+
t∑
i=1

uigi,α = g0,α ∀α ∈ Nn2d,

X � 0.

(7.16)

As already mentioned in Section 7.1, when the full monomial basis vd(x) is used to
formulate the SDP (7.16), the size of X and the number of constraints are, respectively,
N =

(n+d
d

)
and m =

(n+2d
2d
)
. The size of SDP (7.16) may be reduced (often significantly)

by eliminating redundant monomials in vd(x) based on the structure of the polynomials
g0(x), . . . , gt(x); the interested reader is referred to Refs. [128–131].

7.3 Partial orthogonality in SOS programs

For simplicity, we re-index the coefficient matching conditions (7.15) using integers
i = 1, . . . ,m instead of the multi-indices α. Let vec : SN → RN2 map a matrix to the
stack of its columns and define A1 ∈ Rm×t and A2 ∈ Rm×N2 as

A1 :=

 g1,1 · · · gt,1
...

g1,m · · · gt,m

 , A2 :=

vec(B1)T

...
vec(Bm)T

 . (7.17)

In other words, A1 collects the coefficients of polynomials gi(x) column-wise, and A2

lists the vectorized matrices Bα (after re-indexing) in a row-wise fashion. Finally, let
S+ be the vectorized positive semidefinite cone, such that vec(X) ∈ S+ if and only
if X � 0, and define

A := [A1, A2] ∈ Rm×(t+N2), (7.18a)

b := [g0,1, . . . , g0,m]T ∈ Rm, (7.18b)

c :=
[
wT, 0, . . . , 0

]T
∈ Rt+N

2
, (7.18c)

ξ :=
[
uT, vec(X)T

]T
∈ Rt+N

2
, (7.18d)

K := Rt × S+ . (7.18e)

126 7.3. Partial orthogonality in SOS programs

(a) (b) (c)

Figure 7.1: Sparsity patterns for (a) AAT, (b) A1A
T
1 , and (c) A2A

T
2 for problem sosdemo2 in

SOSTOOLS [80].

Then, noticing from the definition of the trace inner product of matrices that 〈Bm, X〉 =
vec(Bm)Tvec(X), we can rewrite (7.16) as the primal-form conic program

minimize
ξ

cTξ

subject to Aξ = b,

ξ ∈ K.

(7.19)

The key observation at this stage is that the rows of the constraint matrix A are
partially orthogonal. We show this next, assuming without loss of generality that t < m.
In fact, we often have t � m in practice (cf. Tables 7.1 and 7.3 in Section 7.7).

Proposition 7.1. Let A = [A1, A2] be the constraint matrix in the conic formula-
tion (7.17) of a SOS program modeled using the monomial basis. The m ×m matrix
AAT is of the “diagonal plus low rank” form. Precisely, D := A2AT

2 is diagonal and
AAT = D +A1AT

1 .

Proof. The definition of A implies AAT = A1AT
1 +A2AT

2 , so we need to show that A2AT
2

is diagonal. This follows from the definition (7.12) of the matrices Bα: if an entry of Bα
is nonzero, the same entry in Bβ, α 6= β, must be zero. Upon re-indexing the matrices
using integers i = 1, . . . , m as explained above and letting ni be the number of nonzero
entries in Bi, it is clear that vec(Bi)Tvec(Bj) = ni if i = j, and zero otherwise. Thus,
A2AT

2 = diag(n1, . . . , nm). �

In essence, Proposition 7.1 states that the constraint sub-matrices corresponding to the
matrix X in the SOS decomposition (7.11) are orthogonal. This fact is a basic structural
property for any SOS program formulated using the usual monomial basis. It is not difficult
to check that Proposition 7.1 also holds when the full monomial basis vd(x) is reduced
using any of the techniques implemented in any of the modeling toolboxes [79, 80, 136].

Remark 7.2. In general, the product A1AT
1 has no particular structure, and AAT is

not diagonal except for very special problem classes. For example, Figure 7.1 illustrates
the sparsity pattern of AAT, A1AT

1 , and A2AT
2 for sosdemo2 in SOSTOOLS [80], an SOS

7. Partial orthogonality in general SOS programs 127

formulation of a Lyapunov function search: A2AT
2 is diagonal, but A1AT

1 and AAT are
not. This makes the algorithms proposed in [133, 134] inapplicable, as they require that
AAT is diagonal.

Remark 7.3. Using the monomial basis to formulate the coefficient matching condi-
tions (7.15) makes the matrix A sparse, because only a small subset of entries of the matrix
vd(x)vd(x)T are equal to a given monomial xα. In particular, the density of the nonzero
entries of A2 is O(n−2d) [48]. However, the aggregate sparsity pattern of SDP (7.19) is
dense, so methods that exploit aggregate sparsity in SDPs [23, 36–38] are not useful for
general SOS programs.

7.4 A fast ADMM-based algorithm

Partial orthogonality of the constraint matrix A in conic programs of the form (7.19)
allows for the extension of a first-order, ADMM-based method proposed in [64]. To make
this chapter self-contained, we summarize this algorithm first.

7.4.1 The ADMM algorithm

The algorithm in [64] solves the homogeneous self-dual embedding [77] of the conic
program (7.19) and its dual,

maximize
y,z

bTy

subject to ATy + z = c.

z ∈ K∗,

(7.20)

where the cone K∗ is the dual of K. When strong duality holds, optimal solutions
for (7.19) and (7.20) or a certificate of primal or dual infeasibility can be recovered from
a nonzero solution of the homogeneous linear systemzs

κ

 =

 0 −AT c
A 0 −b
−cT bT 0


ξy
τ

 , (7.21)

provided that it also satisfies (ξ, y, τ) ∈ K × Rm × R+ and (z, s, κ) ∈ K∗ × {0}m × R+.
The interested reader is referred to [64] and references therein for more details. Con-
sequently, upon defining

u :=

ξy
τ

 , v :=

zs
κ

 , Q :=

 0 −AT c
A 0 −b
−cT bT 0

 , (7.22)

128 7.4. A fast ADMM-based algorithm

and introducing the cones C := K×Rm×R+ and C∗ := K∗×{0}m×R+ to ease notation,
a primal-dual optimal point for problems (7.19) and (7.20) or a certificate of infeasibility
can be computed from a nonzero solution of the homogeneous self-dual feasibility problem

find (u, v)

subject to v = Qu,

(u, v) ∈ C × C∗.

(7.23)

It was shown in [64] that (7.23) can be solved using a simplified version of the classical
ADMM algorithm (see e.g., [72]), whose k-th iteration consists of the following three
steps (PC denotes projection onto the cone C, and the superscript (k) indicates the value
of a variable after the k-th iteration):

û(k) = (I +Q)−1
(
u(k−1) + v(k−1)

)
, (7.24a)

u(k) = PC
(
û(k) − v(k−1)

)
, (7.24b)

v(k) = v(k−1) − û(k) + u(k). (7.24c)

Practical implementations of the algorithm rely on being able to carry out these steps
at moderate computational cost. We next show that partial orthogonality allows for an
efficient implementation of (7.24a) when (7.23) represents an SOS program.

7.4.2 Application to SOS programming

Each iteration of the ADMM algorithm requires: a projection onto a linear subspace
in (7.24a) through the solution of a linear system with coefficient matrix I+Q; a projection
onto the cone C in (7.24b); and the inexpensive step (7.24c). The conic projection (7.24b)
can be computed efficiently when the cone size is not too large. On the other hand,
Q ∈ St+N2+m+1 and m = O(n2d) are extremely large in SDPs arising from SOS programs.
For instance, an SOS program with polynomials of degree 2d = 6 in n = 16 variables
has a PSD variable of size N = 969 and m = 74 613 equality constraints. This makes
step (7.24a) computationally expensive not only if I +Q is factorized directly, but also
when applying the strategies proposed in [64]. Fortunately, Q is highly structured and,
in the context of SOS programming, the block-entry A has partially orthogonal rows
(cf. Propositions 7.1 and 7.6). As we will now show, these properties can be taken
advantage of to achieve substantial computational savings.

To show how partial orthogonality can be exploited, we begin by noticing that (7.24a)
requires the solution of a linear system of equations of the form I −AT c

A I −b
−cT bT 1


û1
û2
û3

 =

ω1
ω2
ω3

 . (7.25)

7. Partial orthogonality in general SOS programs 129

After letting

M :=
[
I −AT

A I

]
, ζ :=

[
c
−b

]
,

and eliminating û3 from the first and second block-equations in (7.25) we obtain

(M + ζζT)
[
û1
û2

]
=
[
ω1
ω2

]
− ω3ζ. (7.26a)

û3 = ω3 + cTû1 − bTû2. (7.26b)

Applying the matrix inversion lemma [3] to (7.26a) yields[
û1
û2

]
=
[
I − (M−1ζ)ζT

1 + ζT(M−1ζ)

]
M−1

[
ω1 − cω3
ω2 + bω3

]
. (7.27)

Note that the first matrix on the right-hand side of (7.27) only depends on problem data,
and can be computed before iterating the ADMM algorithm. Consequently, all that is
left to do at each iteration is to solve a linear system of equations of the form[

I −AT

A I

] [
σ1
σ2

]
=
[
ω̂1
ω̂2

]
. (7.28)

Eliminating σ1 from the second block-equation in (7.28) gives
σ1 = ω̂1 +ATσ2, (7.29a)

(I +AAT)σ2 = −Aω̂1 + ω̂2. (7.29b)

It is at this stage that partial orthogonality comes into play: by Propositions 7.1 and 7.6,
there exists a diagonal matrix P such that I +AAT = I +A1AT

1 +A2AT
2 = P +A1AT

1 .
Recalling from Section 7.3 that A1 ∈ Rm×t with t� m for typical SOS programs (e.g.,
t = 3 and m = 58 for problem sosdemo2 in SOSTOOLS), it is therefore convenient to
apply the matrix inversion lemma to (7.29b) and write

(I +AAT)−1 = (P +A1A
T
1)−1

= P−1 − P−1A1(I +AT
1P
−1A1)−1AT

1P
−1.

Since P is diagonal, its inverse is immediately computed. Then, σ1 and σ2 in (7.29)
are found upon solving a t × t linear system with coefficient matrix

I +AT
1P
−1A1 ∈ St, (7.30)

plus relatively inexpensive matrix-vector, vector-vector, and scalar-vector operations.
Moreover, since the matrix I + AT

1P
−1A1 depends only on the problem data and does

not change at each iteration, its preferred factorization can be cached before iterating
steps (7.24a)-(7.24c). Once σ1 and σ2 have been computed, the solution of (7.25) can
be recovered using vector-vector and scalar-vector operations.

130 7.5. Matrix-valued SOS programs

Remark 7.4. In [64], system (7.28) is solved either through a “direct” method based
on a cached LDLT factorization, or by applying the “indirect” conjugate-gradient (CG)
method to (7.29b). Both these approaches are reasonably efficient, but exploiting partial
orthogonality is advantageous because only a smaller linear system with size t× t need to
be solved, with t ≤ m and typically t� m. When sparsity is ignored, each iteration of
our method to solve (7.28) requires O(t2 +mN2 +mt) floating-point operations (flops),
compared to O((t + N2 + m)2) flops for the “direct” method of [64] and O(ncgm2 +
mN2 +mt) flops for the “indirect” method with ncg CG iterations. Of course, practical
implementations of the methods of [64] exploit sparsity and have a much lower complexity
than stated, but the results in Section 7.7 confirm that the strategy outlined in this work
remains more efficient.

7.5 Matrix-valued SOS programs

Up to this point, we have discussed partial orthogonality for scalar-valued SOS pro-
grams, but our results and the algorithm proposed in Section 7.4 extend also to the
matrix-valued case. Given symmetric matrices Cα ∈ Sr, we say that the symmetric
matrix-valued polynomial

P (x) :=
∑
α∈Nn2d

Cαx
α

is an SOS matrix if there exits a q × r polynomial matrix H(x) such that P (x) =
H(x)TH(x). Clearly, an SOS matrix is positive semidefinite for all x ∈ Rn. It is known
that the problem of checking wether P (x) is SOS can be cast as an SDP.

Lemma 7.5 ([131, 142, 143]). P is an SOS matrix if and only if there exists a PSD
matrix Q ∈ Sl+ with l = rN and N =

(n+d
d

)
such that

P (x) = (Ir ⊗ vd(x))TQ (Ir ⊗ vd(x)) , (7.31)

where vd(x) = [1, x1, x2, . . . , xn, x2
1, x1x2, . . . , xdn]T is the vector of monomials of degree up

to d and ⊗ denotes the Kronecker product.

Similar to (7.10), we consider the matrix-valued SOS program

minimize
u

wTu

subject to P (x) = P0(x)−
t∑

h=1
uhPh(x),

P (x) is SOS,

(7.32)

where P0(x), . . . , Pt(x) are given symmetric polynomial matrices. Using (7.31), matching
coefficients, and vectorizing, the matrix-valued SOS program (7.32) can be recast as a
conic program of standard primal-form (7.19), for which the following proposition holds.

7. Partial orthogonality in general SOS programs 131

Proposition 7.6. The constraint matrix A in the conic program formulation of the matrix-
valued SOS problem (7.32) has partially orthogonal rows, i.e., it can be partitioned into
A =

[
A1A2

]
such that A2AT

2 is diagonal.

Proof. First, introduce matrices Cα(u), affinely dependent on u, such that

P0(x)−
t∑

h=1
uhPh(x) =

∑
α∈Nn2d

Cα(u)xα.

By virtue of (7.13), the SOS representation (7.31) of P (x) can be written as

P (x) =
∑
α∈Nn2d

〈Y11, Bα〉 . . . 〈Y1r, Bα〉
...

〈Yr1, Bα〉 . . . 〈Yrr, Bα〉

xα,
where Yij ∈ SN , i, j = 1, . . . , r is the (i, j)-th block of matrix Y ∈ Sl+. Then, the equality
constraints in (7.32) require

Cα(u) =

〈Y11, Bα〉 . . . 〈Y1r, Bα〉
...

〈Yr1, Bα〉 . . . 〈Yrr, Bα〉

 , ∀α ∈ Nn2d. (7.33)

Upon vectorization, this set of affine equalities can be written compactly as

[
A1 A2

] [u
vec(Y)

]
= b (7.34)

for suitably defined matrices A1, A2 and a vector b.
The matrix A1 depends on the matrices Cα(u), and generally has no particular

structure. Instead, A2 has orthogonal rows, hence A2AT
2 is diagonal. To see this, let

ei ∈ Rr be the standard unit vector in the i-th direction and define

Ei := ei ⊗ IN ∈ Rl×N ,

so ET
i Y Ej = Yij selects the (i, j)-th N × N block of Y . Moreover, let (Cα)ij denote

the (i, j)-th element of the matrix Cα. The linear equalities (7.33) require that, for all
i, j = 1, . . . , r and all α ∈ Nn2d,

〈ET
i Y Ej , Bα〉 = (Cα)ij . (7.35)

Vectorization of the left-hand side yields

vec(Bα)T(ET
j ⊗ ET

i)vec(Y) = (Cα)ij .

It is then not difficult to see that the rows of the matrix A2 in (7.34) are the vectors
vec(Bα)T · (ET

j ⊗ET
i) for all triples (α, i, j) (the precise order of the rows is not important).

132 7.6. Weighted SOS constraints

To show that A2AT
2 is diagonal, therefore, it suffices to show that, for any two different

triples (α1, i1, j1) and (α2, i2, j2),

0 = vec(Bα1)T(ET
j1 ⊗ E

T
i1)(Ej2 ⊗ Ei2)vec(Bα2)

= vec(Bα1)T(ET
j1Ej2 ⊗ E

T
i1Ei2)vec(Bα2), (7.36)

where the second equality follows from the properties of the Kronecker product. To
show (7.36), we invoke the properties of the Kronecker product once again to write

ET
i Ej = (eT

i ej)⊗ IN =
{
IN , if i = j,

0, otherwise,
(7.37a)

vec(Bα)Tvec(Bβ) =
{
nα, if α = β,

0, otherwise,
(7.37b)

where nα is the number of nonzeros in Bα. It is then clear that (7.36) holds if, and in
fact only if, (α1, i1, j1) 6= (α2, i2, j2). Consequently, A2AT

2 is diagonal. �

Proposition 7.6 reveals an inherent structural property of SDPs derived from matrix-
valued SOS programs using the monomial basis, and the algorithm of Section 7.4 applies
verbatim because the conic program representation of scalar- and matrix-valued SOS
programs has the same general form.

7.6 Weighted SOS constraints

The discussion of Section 7.3 is general and encompasses all SOS programs once they are
recast in the form (7.7). As already mentioned in Section 7.2.1, handling SOS constraints
over semialgebraic sets through (7.7) requires introducing extra optimization variables,
which is not desirable in practice. To overcome this difficulty, we show here that partial
orthogonality holds also for so-called “weighted” SOS constraints. Specifically, consider
a family of fixed polynomials g0, . . . , gt ∈ R[x]n,2d, a second family of fixed polynomials
p1 ∈ R[x]n,d1 , . . . , pk ∈ R[x]n,dk , and let ωi := bd− di/2c for each i = 1, . . . , k. (We have
assumed that d1, . . . , dk ≤ 2d without loss of generality.) We say that the polynomial

g(x) := g0(x)−
t∑
i=1

uigi(x) (7.38)

is a weighted SOS with respect to p1, . . . , pk if there exist SOS polynomials s0 ∈ Σ[x]n,2d
and si ∈ Σ[x]n,2ωi , i = 1, . . . , k, such that

g(x) = s0(x) +
k∑
i=1

pi(x)si(x). (7.39)

7. Partial orthogonality in general SOS programs 133

It is not difficult to see that if g(x) is a weighted SOS with respect to p1, . . . , pk, then it
is non-negative on the semialgebraic set S := {x ∈ Rn : p1(x) ≥ 0, . . . , pk(x) ≥ 0}. Thus,
weighted SOS constraints arise naturally when polynomial inequalities on semialgebraic
sets are cast as SOS conditions using the Positivstellensatz [126].

To put (7.39) in the form used by the standard conic program (7.19), we begin by
introducing Gram matrix representations for each SOS poynomial. That is, we consider
matrices X0 ∈ SN0

+ , X1 ∈ SN1
+ , . . . , Xk ∈ SNk+ , with N0 :=

(n+d
d

)
and Ni =

(n+ωi
ωi

)
for

i = 1, . . . , k, and rewrite (7.39) as

g(x) = 〈vd(x)vd(x)T, X0〉+
k∑
i=1

pi(x)〈vωi(x)vωi(x)T, Xi〉. (7.40)

In this expression, the vector vd(x) is as in (7.5) and, similarly, vωi(x) lists the monomials
of degree no larger than ωi.

At this stage, let Bα be the mutually orthogonal 0/1 indicator matrix for the monomial
xα in the outer product matrix vd(x)vd(x)T, defined as in (7.12), such that (7.13) holds.
Similarly, introduce symmetric indicator matrices B(i)

α such that

pi(x)vωi(x)vT
ωi(x) =

∑
α∈Nn2d

B(i)
α xα.

Note that the matrices B(i)
α are not pairwise orthogonal in general: their nonzero

entries overlap to some extent because the entries of the matrix pi(x)vωi(x)vT
ωi(x) are

typically polynomials rather than simple monomials. Pairwise orthogonality holds for
B

(i)
α if pi is a monomial, but this is uncommon in practice. Using such indicator

matrices, (7.40) can be written as

g(x) =
∑
α∈Nn2d

(
〈Bα, X0〉+

k∑
i=1
〈B(i)

α , Xi〉
)
xα, (7.41)

and we require that the coefficients of the monomials xα on both sides of this expression
match. To do this in compact notation, we index the monomials xα using integers
1, . . . , m as in Section 7.3 and define the m ×∑k

i=1N
2
i matrix

A2 :=


vec(B(1)

1)T · · · vec(B(k)
1)T

...
...

vec(B(1)
m)T · · · vec(B(k)

m)T

 , (7.42)

the m × N2
0 matrix

A3 :=

vec(B1)T

...
vec(Bm)T

 , (7.43)

134 7.6. Weighted SOS constraints

and the vector

χ :=
[
vec(X1)T, · · · , vec(Xk)T

]T
. (7.44)

Recalling the definition of g(x) in (7.38), we can then use the m× t matrix A1 defined
in (7.17) and the vector b in (7.18b) to write the coefficient matching conditions obtained
from (7.41) in the matrix-vector form

[
A1 A2 A3

]  u
χ

vec(X0)

 = b. (7.45)

As already noticed in Section 7.3, nonzero entries in Bi must be zero in Bj if
i 6= j, so the rows of A3 are mutually orthogonal. Since (7.45) corresponds to the
equality constraints in the conic program formulation of a weighted SOS constraint,
we obtain the following result.

Proposition 7.7. The constraint matrix in the conic program formulation of the weighted
SOS constraint (7.39) has partially orthogonal rows, i.e., it can be partitioned as[
A1A2A3

]
such that A3AT

3 is diagonal.

In other words, partial orthogonality obtains also when weighted SOS constraints are
dealt with directly. Thus, the ADMM algorithm descibed in Section 7.4 can in principle be
applied to solve SOS programs with weighted SOS constraints. Applying the matrix inver-
sion lemma as proposed in Section 7.4 is advantageous if t+∑k

i=1N
2
i < m, meaning that the

degree ω1, . . . , ωk of the SOS polynomials s1, . . . , sk in (7.39) should be small such that

t+
k∑
i=1

(
n+ ωi
ωi

)
<

(
n+ 2d

2d

)
=: m. (7.46)

Table 7.1 confirms that this is not unusual for typical problems. When (7.46) does not hold,
instead of implementing weighted SOS constraints directly, it may be more convenient to
introduce extra polynomials s1, . . . , sk, and to consider the equivalent problem

find s0, s1, . . . , sk, r1, . . . , rk

subject to g(x) = s0(x) +
k∑
i=1

ri(x)pi(x),

sj(x) = rj(x), j = 1, . . . , k,

s0 ∈ Σ[x]n,2d,

sj ∈ Σ[x]n,2ωj , j = 1, . . . , k.

(7.47)

This can be written in the form (7.7) for a suitable set of polynomials {gji }. Consequently,
the partial orthogonality property holds for the reformulation (7.47). Note that while the
introduction of extra polynomials allows one to reformulate weighted SOS constraints
in the framework given by (7.7), it may be undesirable in practice because it increases
the number of optimization variables.

7. Partial orthogonality in general SOS programs 135

7.7 Numerical experiments

We implemented the algorithm of [64], extended to take into account partial orthogonality
in SOS programs, as a new package in the open-source MATLAB solver CDCS [35]. Our
implementation, which we refer to as CDCS-sos, solves step (7.24a) using a sparse permuted
Cholesky factorization of the matrix in (7.30). The source code can be downloaded from

https://github.com/oxfordcontrol/cdcs.
We tested CDCS-sos on a series of SOS programs and our test scripts are available

from https://github.com/zhengy09/sosproblems. CPU times were compared to the
direct and indirect implementations of the algorithm of [64] provided by the solver
SCS [65], referred to as SCS-direct and SCS-indirect, respectively. In our experiments, the
termination tolerance for CDCS-sos and SCS was set to 10−3, and the maximum number
of iterations was 2 000. Since first-order methods only aim at computing a solution of
moderate accuracy, we assessed the suboptimality of the solution returned by CDCS-sos by
comparing it to an accurate solution computed with the interior-point solver SeDuMi [71].
Besides, to demonstrate the low memory requirements of first-order algorithms, we also
tested the interior-point solvers SDPT3 [137], SDPA [112], CSDP [138] and Mosek [139]
for comparison. All interior-point solvers were called with their default parameters
and their optimal values (when available) agree to within 10−8. All computations were
carried out on a PC with a 2.8 GHz Intel® Core™ i7 CPU and 8GB of RAM; memory
overflow is marked by ** in the tables below.

7.7.1 Constrained polynomial optimization

As our first numerical experiment, we considered the constrained quartic polynomial
minimization problem

minimize
x

∑
1≤i<j≤n

(xixj + x2
ixj − x3

j − x2
ix

2
j)

subject to
n∑
i=1

x2
i ≤ 1.

(7.48)

We used the Lasserre relaxation of order 2d = 4 and the parser GloptiPoly [136] to
recast (7.48) into an SDP.

Table 7.1 reports the CPU time (in seconds) required by each of the solvers we tested
to solve the SDP relaxations as the number of variables n was increased. CDCS-sos is the
fastest method in all cases. For large-scale POPs (n ≥ 29), the number of constraints in
the resulting SDP is over 40, 000, and all interior-point solvers (SeDuMi, SDPT3, SDPA,
CSDP and Mosek) ran out of memory on our machine. The first-order solvers do not
suffer from this limitation, and for POPs with n ≥ 29 variables our MATLAB solver was

https://github.com/oxfordcontrol/cdcs
https://github.com/zhengy09/sosproblems

136 7.7. Numerical experiments

T
able

7.1:
C
PU

tim
e
(in

seconds)
to

solve
the

SD
P

relaxations
of

(7.48).
N

is
the

size
ofthe

largest
PSD

cone,
m

is
the

num
ber

ofconstraints,
tis

the
size

ofthe
m
atrix

factorized
by

C
D
C
S-sos.

D
im

ensions
C
PU

tim
e
(s)

n
N

m
t

SeD
uM

i
SD

PT
3

SD
PA

C
SD

P
M
osek

SC
S-direct

SC
S-indirect

C
D
C
S-sos

10
66

1000
66

2.6
2.1

1.6
2.5

0.8
0.4

0.4
0.4

12
91

1819
91

12.3
7.0

5.7
4.0

2.4
0.7

0.8
0.7

14
120

3059
120

68.4
24.2

18.1
13.5

6.5
1.7

1.7
1.4

17
171

5984
171

516.9
129.6

97.9
75.8

38.1
4.6

4.4
3.5

20
231

10625
231

2547.4
494.1

452.7
374.2

178.9
10.6

10.6
8.5

24
325

20474
325

**
**

2792.8
2519.3

1398.3
32.0

31.2
22.8

29
465

40919
465

**
**

**
**

**
125.9

126.3
67.1

35
666

82250
666

**
**

**
**

**
425.3

431.3
216.9

42
946

163184
946

**
**

**
**

**
1415.8

1436.9
686.6

7. Partial orthogonality in general SOS programs 137

Table 7.2: Terminal objective value from interior-point solvers, SCS-direct, SCS-indirect and
CDCS-sos for the SDP relaxation of (7.48).

n †Interior-point solvers SCS-direct SCS-indirect CDCS-sos
10 −9.11 −9.12 −9.13 −9.10
12 −11.12 −11.10 −11.10 −11.11
14 −13.12 −13.09 −13.09 −13.12
17 −16.12 −16.09 −16.09 −16.06
20 −19.12 −19.17 −19.17 −19.08
24 −23.12 −23.04 −23.04 −23.15
29 ** −28.17 −28.18 −28.17
35 ** −34.05 −34.05 −34.08
42 ** −41.21 −41.21 −41.05

approximately twice as fast as SCS. This is remarkable considering the SCS is written in
C, and is due to the fact that t� m, cf. Table 7.1, so the cost of the affine projection
step (7.24a) in CDCS-sos is greatly reduced compared to the methods implemented in
SCS. Figure 7.2(a) illustrates that, for all test problems, CDCS-sos was faster than both
SCS-direct and SCS-indirect also in terms of average CPU time per 100 iterations (this
metric is unaffected by differences in the termination criteria used by different solvers).
Finally, Table 7.2 shows that although first-order methods only aim to provide solutions
of moderate accuracy, the objective value returned by CDCS-sos and SCS was always
within 0.5% of the high-accuracy optimal value computed using interior-point solvers.
Such a small difference may be considered negligible in many applications.

7.7.2 Finding Lyapunov functions

In our next numerical experiment, we considered the problem of constructing Lyapunov
functions to verify local stability of polynomial systems, i.e., we solved the SOS relaxation
of (7.3a)-(7.3b) for different system instances. We used SOSTOOLS [80] to generate
the corresponding SDPs.

In the experiment, we randomly generated polynomial dynamical systems ẋ = f(x) of
degree three with an asymptotically stable equilibrium at the origin. We then checked
for local nonlinear stability in the ball D = {x ∈ Rn : ∑n

i=1 x
2
i ≤ 0.1} using a quadratic

Lyapunov function of the form V (x) = xTQx and Positivstellensatz to derive SOS
conditions from (7.3a) and (7.3b) (see e.g., [126] for more details). The total CPU
time required by the solvers we tested are reported in Table 7.3, while Figure 7.2(b)
shows the average CPU times per 100 iterations for SCS and CDCS-sos. As in our
previous experiment, the results clearly show that the iterations in CDCS-sos are faster
than in SCS for all our random problem instances, and that both first-order solvers
have low memory requirements and are able to solve large-scale problems (n ≥ 29)
beyond the reach of interior-point solvers.

138 7.7. Numerical experiments

T
able

7.3:
CPU

tim
e
(in

seconds)
to

solve
the

SD
P

relaxations
of

(7.3a)-(7.3b).
N

is
the

size
ofthe

largest
PSD

cone,
m

is
the

num
ber

ofconstraints,
t

is
the

size
ofthe

m
atrix

factorized
by

C
D
C
S-sos.

D
im

ensions
C
PU

tim
e
(s)

n
N

m
t

SeD
uM

i
SD

PT
3

SD
PA

C
SD

P
M
osek

SC
S-direct

SC
S-indirect

C
D
C
S-sos

10
65

1100
110

2.8
1.8

2.0
2.6

0.7
0.2

0.2
0.3

12
90

1963
156

6.3
4.9

3.5
1.0

2.1
0.3

0.3
0.4

14
119

3255
210

36.2
16.3

44.8
2.6

5.5
0.8

0.7
0.6

17
170

6273
306

265.1
78.0

204.7
9.5

26.9
1.3

1.3
1.1

20
230

11025
420

1346.0
361.3

940.5
40.4

112.5
3.1

3.0
2.4

24
324

21050
600

**
**

8775.5
238.4

632.2
15.1

6.6
5.1

29
464

41760
870

**
**

**
**

**
17.1

16.9
14.3

35
665

83475
1260

**
**

**
**

**
67.6

57.1
37.4

42
945

164948
1806

**
**

**
**

**
133.7

129.2
92.8

7. Partial orthogonality in general SOS programs 139

Figure 7.2: Average CPU time per 100 iterations for the SDP relaxations of: (a) the POP (7.48);
(b) the Lyapunov function search problem.

7.7.3 A practical example: Nuclear receptor signalling

As our last example, we considered a 37-state model of nuclear receptor signalling with a
cubic vector field and an equilibrium point at the origin [144, Chapter 6]. We verified its
local stability within a ball of radius 0.1 by constructing a quadratic Lyapunov function.
SOSTOOLS [80] was used to recast the SOS relaxation of (7.3a)-(7.3b) as an SDP with
constraint matrix of size 102 752 × 553 451 and a large PSD cone of linear dimension
741. Such a large-scale problem is currently beyond the reach of interior-point methods
on a regular desktop computer, and all of the interior point solvers we tested (SeDuMi,
SDPT3, SDPA, CSDP and Mosek) ran out of memory on our machine. On the other
hand, the first-order solvers CDCS-sos and SCS managed to construct a valid Lyapunov
function, with our partial-orthogonality-exploiting algorithm being more than twice as
fast as SCS (148 s vs. ≈ 400 s for both SCS-direct and SCS-indirect).

7.8 Conclusion

In this chapter, we proved that SDPs arising from SOS programs formulated using the
standard monomial basis possess a structural property that we call partial orthogonality.
We then demonstrated that this property can be leveraged to substantially reduce the
computational cost of an ADMM algorithm for conic programs proposed in [64]. Specifically,
we showed that the iterates of this algorithm can be projected efficiently onto a set defined
by the affine constraints of the SDP. The key idea is to exploit a “diagonal plus low
rank” structure of a large matrix that needs to be inverted/factorized, which is a direct
consequence of partial orthogonality. Numerical experiments on large-scale SOS programs
demonstrate that the method proposed in this chapter yield considerable savings compared
to many state-of-the-art solvers. For this reason, we expect that our method will facilitate
the use of SOS programming for the analysis and design of large-scale systems.

8
Decomposition and completion of sum-of-squares

matrices

This chapter introduces a notion of decomposition and completion of sum-of-squares (SOS)
matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns
can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero
only on a principal submatrix. Also, the completion of an SOS matrix is equivalent to
a set of SOS conditions on its principal submatrices and a consistency condition on the
Gram representation of the principal submatrices. These results are partial extensions of
chordal decomposition and completion of constant matrices to matrices with polynomial
entries. We apply the SOS decomposition result to exploit sparsity in matrix-valued
SOS programs. Numerical results demonstrate the high potential of this approach for
solving large-scale sparse matrix-valued SOS programs.

8.1 Introduction

Decomposition and completion of sparse positive semidefinite (PSD) matrices arise in a
wide range of applications, including systems analysis and synthesis [34, 39] or optimal
power flow [69], and have attracted considerable research attention [15, 19–21, 23, 25,
36, 38, 145, 146]. The concept of PSD decomposition refers to cases in which a sparse
PSD matrix can be written as a sum of two or more PSD matrices, each of which is
nonzero only on one principal submatrix. A simple example is2 1 0

1 1 1
0 1 2


︸ ︷︷ ︸

�0

=

2 1 0
1 0.5 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 0.5 1
0 1 2


︸ ︷︷ ︸

�0

. (8.1)

As one key ingredient of this thesis, it is known that this kind of decomposition always
exists for a class of PSD matrices with chordal sparsity patterns [20, 21] (recall the

141

142 8.1. Introduction

definition in Section 2.3). The PSD matrix completion problem, instead, asks whether
a partially specified symmetric matrix, for instance

Z =

2 1 ?
1 0.5 1
? 1 2

 , (8.2)

can be completed into a PSD matrix by a suitable choice of the unspecified entries
(indicated by the question mark ?). Clearly, a necessary condition for the existence of a PSD
completion is that the fully specified principal submatrices are PSD. It turns out that this
condition is also sufficient for matrices with chordal sparsity patterns [19] (see Theorem 2.13
in Chapter 2.3). The partial matrix in (8.2) has a chordal sparsity pattern and its specified
principal submatrices are PSD, so it admits a PSD completion. One such completion is

Z =

2 1 2
1 0.5 1
2 1 2

 � 0.

The decomposition and completion results for sparse PSD matrices mentioned above [19–
21] have a very important practical implication for optimization problems with PSD
matrices: they allow us to replace a large PSD constraint with an equivalent set of
smaller, coupled PSD constraints, thereby promising better computational scalability.
This feature indeed underpins the idea of this thesis, as well as much of the recent
research on exploiting sparsity in conic programs, either by interior-point methods [23,
25] or by first-order methods [26, 36, 38].

In this chapter, we provide a partial extension of the results in [19–21] to sparse
polynomial matrices, which are common in fields such as robust semidefinite program-
ming [142] and control theory [147]. Specifically, we consider the problem of decomposing
and completing sparse matrices whose entries are polynomials with real coefficients in
n variables x1, . . . , xn. For example, given the polynomial matrixx2 + 1 x 0

x x2 − 2x+ 3 x+ 1
0 x+ 1 x2 + 2

 , (8.3)

which has the same pattern as the matrix in (8.1) and is PSD for all x ∈ R, we
seek to determine whether it can be decomposed into a sum of two PSD polynomial
matrices of the form ∗ ∗ 0

∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

,

8. Decomposition and completion of sum-of-squares matrices 143

where ∗ denotes a polynomial in x. Also, we look for conditions under which a partially

specified polynomial matrix, for instancex2 + 1 x ?
x x2 − 2x+ 2.5 x+ 1
? x+ 1 x2 + 2

 , (8.4)

can be completed into a PSD polynomial matrix.

Since checking the positive semidefiniteness of a given symmetric polynomial matrix

is NP-hard in general [52], this chapter focuses on a subset of PSD matrices given by

sum-of-squares (SOS) matrices, which can be identified with polynomial-time algorithms

using semidefinite programs (SDPs) [131, 142, 143]. Our motivation is the fact that

SOS techniques are a powerful tool for systems analysis, control, and optimization (see,

e.g., [11, 52]), but they do not scale well with problem size. Most existing approaches to

mitigate the scalability issue are based on the SOS representations of scalar polynomials;

see [47] for an overview of recent advances. This chapter describes sufficient conditions

for the decomposition of sparse SOS matrices into smaller ones, and for the existence

of an SOS completion of a partial polynomial matrix. Thus, sparsity can be exploited

to reduce the cost of computing with large and sparse SOS matrices.

The notion of decomposition and completion of SOS matrices has not been reported

in the literature before. In this chapter, we use hyper-graphs to combine the Gram

representation of SOS matrices [131, 142, 143] with the normal decomposition and com-

pletion results [19–21]. We prove that 1) the decomposition results for scalar matrices [20,

21] can be extended to a subset of sparse SOS matrices, and 2) the conditions for the

existence of an SOS completion are similar to those for scalar matrices [19], with the

addition of a consistency condition. Due to the non-uniqueness of their Gram matrix

representation, however, our results of decomposition and completion for SOS matrices

are not identical to those for scalar matrices in [19–21]. As a direct application, we use the

new decomposition result to exploit sparsity in matrix-value SOS programs. Preliminary

numerical results show the effectiveness of this approach.

The rest of this chapter is organized as follows. Section 8.2 presents a brief review on

nonnegativity and sum-of-squares matrices. The results on decomposition and completion

of sparse SOS matrices are given in Section 8.3 and Section 8.4, respectively. Section 8.5

discusses an application to matrix-valued SOS programs, including preliminary numerical

examples. We conclude this chapter in Section 8.6.

144 8.2. Nonnegativity and sum-of-squares

8.2 Nonnegativity and sum-of-squares

For convenience, we recall some notation in this section. Let R[x]n,2d be the set of
polynomials in n variables with real coefficients of degree no more than 2d. The set of
q × r polynomial matrices with entries in R[x]n,2d is denoted by R[x]q×rn,2d. A polynomial
p ∈ R[x]n,2d is PSD if p(x) ≥ 0 for all x ∈ Rn, and a symmetric polynomial matrix
P (x) ∈ R[x]r×rn,2d is PSD if P (x) � 0 for all x ∈ Rn.

Checking positive semidefiniteness of a polynomial p(x) or a polynomial matrix P (x) is
NP-hard in general [52] and a popular tractable approach is to replace the PSD constraint
by a sum-of-squares (SOS) constraint. We say that p(x) ∈ R[x]n,2d is an SOS polynomial
if there exists polynomials fi(x) ∈ R[x]n,d, i = 1, . . . , s such that p(x) = ∑s

i=1 f
2
i (x).

Also, we define an SOS matrix as follows [131, 142, 143].

Definition 8.1. A symmetric polynomial matrix P (x) ∈ R[x]r×rn,2d is an SOS matrix if
there exists a polynomial matrix M ∈ R[x]s×rn,d such that P (x) = MT(x)M(x).

Clearly, the existence of an SOS representation ensures positive semidefiniteness. For
simplicity, we denote the set of r × r SOS matrices with entries in R[x]n,2d by Σr

n,2d. It
is known that the problem of checking membership of Σr

n,2d can be cast as an SDP; see
Lemma 7.5 for details. Recall that the matrix Q in (7.31) is called the Gram matrix
of the SOS representation and is usually not unique.

8.3 Decomposition of sparse SOS matrices

In practice, we may encounter sparse polynomial matrices in the sense that some entries
are zeros, e.g., (8.3). Similar to the sparse scalar matrix case in Section 2.3, we define
the set of sparse SOS matrices characterized by an undirected graph G(V, E) as

Σr
n,2d(E , 0) :=

{
P (x) ∈ Σr

n,2d | pij(x) = pji(x) = 0, if (i, j) /∈ E∗
}
.

Given a sparse SOS matrix P (x), Lemma 7.5 guarantees that its SOS represen-
tation can be written as

P (x) =

vd(x)TQ11vd(x) . . . vd(x)TQ1rvd(x)
...

vd(x)TQr1vd(x) . . . vd(x)TQrrvd(x)

 ,
where Qij ∈ RN×N , i, j = 1, . . . , r is the (i, j)-th block of the Gram matrix Q. If
P (x) ∈ Σr

n,2d(E , 0), then

pij(x) = vd(x)TQijvd(x) = 0 if (i, j) /∈ E∗, (8.5)

8. Decomposition and completion of sum-of-squares matrices 145

but Qij may be a nonzero matrix. Indeed, while Q is a symmetric matrix, the off-diagonal
block Qij need not be so. This means the Gram matrix Q for a sparse SOS matrix
P (x) ∈ Σr

n,2d(E , 0) can be dense. To maintain the sparsity of P (x) in the Gram matrix
Q, we consider the subset of SOS matrices

Σ̃r
n,2d(E , 0) :=

{
P (x) ∈ Σr

n,2d(E , 0) | P (x) admits a

Gram matrix Q � 0 with Qij = 0 when pij(x) = 0} .

With this restriction, the following result holds.

Theorem 8.2 (SOS matrix decomposition). Let G(V, E) be a chordal graph with maximal
cliques C1, . . . , Ct. Then, P (x) ∈ Σ̃r

n,2d(E , 0) if and only if there exist SOS matrices
Pk(x) ∈ Σ|Ck|n,2d, k = 1, . . . , t, such that

P (x) =
t∑

k=1
ET
CkPk(x)ECk .

Proof. The “if” part is obvious. To prove the “only if” part we combine the Gram
representation of SOS matrices with Theorem 2.10 in three steps.

Step 1 (Sparse Gram matrix): Since P (x) ∈ Σ̃r
n,2d(E , 0), the Gram matrix Q has a

block sparsity pattern defined by G(V, E). To describe the sparsity of Q in detail, we
define a hyper-graph G̃(Ṽ, Ẽ) with a hyper-node set defined as

Ṽ = {1, . . . , N,N + 1, . . . , 2N, . . . , (r − 1)N + 1, . . . , rN},

and a hyper-edge set defined as Ẽ = ⋃t
k=1 C̃k × C̃k, where each hyper-clique C̃k is defined

as
C̃k =

⋃
j∈Ck

{(j − 1)N + 1, . . . , jN}. (8.6)

The sparsity pattern of the Gram matrix Q is fully described by the graph G̃(Ṽ, Ẽ), that
is, Q ∈ SrN+ (Ẽ , 0). Moreover, since G(V, E) is chordal with maximal cliques C1, . . . , Ct by
assumption, the hyper-graph G̃(Ṽ, Ẽ) is also chordal and its maximal cliques are C̃1, . . . , C̃t,
as shown in Section 2.4.

Step 2 (Block chordal decomposition): Since the Gram matrix Q has a chordal sparsity
pattern, Theorem 2.10 guarantees that Q ∈ SrN+ (Ẽ , 0) if and only if

Q =
t∑

k=1
ET
C̃k
QkEC̃k

(8.7)

for some PSD matrices Qk ∈ S|C̃k|+ , k = 1, . . . , t.

146 8.3. Decomposition of sparse SOS matrices

Step 3 (SOS matrix decomposition): According to (8.6), it is not difficult to see that

EC̃k
= ECk ⊗ IN , k = 1, . . . , t. (8.8)

Combining this with (8.7) yields

P (x) = (Ir ⊗ vd(x))TQ (Ir ⊗ vd(x))

= (Ir ⊗ vd(x))T
(

t∑
k=1

ET
C̃k
QkEC̃k

)
(Ir ⊗ vd(x))

=
t∑

k=1

[
(Ir ⊗ vd(x))TET

C̃k
QkEC̃k

(Ir ⊗ vd(x))
]
. (8.9)

Furthermore, using the properties of the Kronecker product and (8.8) we obtain

EC̃k
(Ir ⊗ vd(x)) = (ECk ⊗ IN) · (Ir ⊗ vd(x))

= ECk ⊗ vd(x)

=
(
I|Ck| ⊗ vd(x)

)
· (ECk ⊗ 1)

=
(
I|Ck| ⊗ vd(x)

)
· ECk . (8.10)

Finally, substituting (8.10) into (8.9) we arrive at

P (x) =
t∑

k=1

[
ET
Ck

(
I|Ck| ⊗ vd(x)

)T
Qk
(
I|Ck| ⊗ vd(x)

)
ECk

]

=
t∑

k=1
ET
CkPk(x)ECk ,

where Pk(x) ∈ Σ|Ck|n,2d for all k = 1, . . . , t. �

Remark 8.3. The proof of Theorem 8.2 is based on hyper-graphs, combining the Gram
representation of SOS matrices (i.e., Lemma 7.5) with the normal chordal decomposition
result (Theorem 2.10). Alternatively, it is not difficult to see Q ∈ SNrα,+(E , 0), with partition
α = {N, . . . , N}. Then one can also prove Theorem 8.2 directly using the block chordal
decomposition result (Theorem 2.17).

Theorem 8.2 states a necessary and sufficient condition for checking membership to
Σ̃r
n,2d(E , 0), which is a strict subset of the cone of SOS matrices since, as discussed previ-

ously, pij(x) = 0 does not require Qij = 0 in general. In addition, given P (x) ∈ Σ̃r
n,2d(E , 0),

the proof of Theorem 8.2 offers a method to construct the small SOS matrices Pk(x):

1. Find a sparse Gram matrix Q ∈ SrN+ (Ẽ , 0);

2. Find a chordal decomposition Q = ∑t
k=1E

T
C̃k
QkEC̃k

(see, e.g., [15, Chapter 9]);

8. Decomposition and completion of sum-of-squares matrices 147

3. Let Pk(x) =
(
I|Ck| ⊗ vd(x)

)T
Qk
(
I|Ck| ⊗ vd(x)

)
for each k = 1, . . . , t.

For example, consider the polynomial matrix in (8.3). The relevant vector of monomials
is vd(x) = [1, x]T and there exists a sparse Gram matrix with zero (1, 3) and (3, 1) blocks,

Q =



1 0 0 0.4 0 0
0 1 0.6 0 0 0
0 0.6 3 −1 1 0.8

0.4 0 −1 1 0.2 0
0 0 1 0.2 2 0
0 0 0.8 0 0 1


∈ S6

+(Ẽ , 0).

Thus, the matrix in (8.3) belongs to Σ̃3
1,2 and Theorem 8.2 applies. In particular, the

Gram matrix above can be decomposed as Q = ET
C̃1
Q1EC̃1

+ ET
C̃2
Q2EC̃2

with

Q1 =


1 0 0 0.4
0 1 0.6 0
0 0.6 1.11 −0.545

0.4 0 −0.545 0.56

 ∈ S4
+.

Q2 =


1.89 −0.455 1 0.8
−0.455 0.44 0.2 0

1 0.2 2 0
0.8 0 0 1

 ∈ S4
+.

Then, an SOS decomposition for (8.3) is given as

P1(x) =
[
x2 + 1 x
x 0.56x2 − 1.09x+ 1.11

]
∈ Σ2

1,2

P2(x) =
[
0.44x2 − 0.91x+ 1.89 x+ 1

x+ 1 x2 + 2

]
∈ Σ2

1,2

We emphasize that the main interest of Theorem 8.2 is not on computing an actual
SOS decomposition. Instead, this theorem offers a computationally efficient way to
check if a matrix P (x) belongs to Σ̃r

n,2d(E , 0), enabling the solution of large matrix-
valued SOS programs (see Section 8.5).

8.4 Completion of sparse SOS matrices

Here, we give an analogue result to Theorem 2.13 for partial SOS matrices. Given a
graph G(V, E), we say P (x) is a partial symmetric polynomial matrix if pij(x) = pji(x) are
given when (i, j) ∈ E∗. Moreover, we say that F (x) is an SOS completion of the partial
symmetric matrix P (x) if F (x) is SOS and fij(x) = pij(x) when (i, j) ∈ E∗. Precisely,
we define the set of SOS completable matrices as

Σr
n,2d(E , ?) =

{
P : Rn → Sr(E , 0) | ∃F ∈ Σr

n,2d such that fij(x) = pij(x) ∀(i, j) ∈ E∗
}
.

For instance, the matrix in (8.4) is a partial symmetric polynomial matrix defined by a
chain of three nodes, and we will show below that it is also SOS completable.

148 8.4. Completion of sparse SOS matrices

Theorem 8.4 (SOS matrix completion). Let G(V, E) be a chordal graph with maximal
cliques C1, . . . , Ct and let C̃1, . . . , C̃t be the hyper-cliques defined in (8.6). Then, P (x) ∈
Σr
n,2d(E , ?) if and only if, for all k = 1, . . . , t,

Pk(x) := ECkP (x)ET
Ck ∈ Σ|Ck|n,2d (8.11)

and the Gram matrix Qk corresponding to each Pk(x) satisfies the following consistency
condition:

C̃i ∩ C̃j 6= ∅ =⇒ EC̃i∩C̃j

(
ET
C̃i
QiEC̃i

− ET
C̃j
QjEC̃j

)
ET
C̃i∩C̃j

= 0. (8.12)

Remark 8.5. Condition (8.12) states that elements of Qi and Qj , i 6= j, must be identical
if they map to the same entries of the global Gram matrix Q, which represents the original
polynomial matrix P (x).

Proof. Similar to the proof of Theorem 8.2, we rely on the hyper-graph G̃(Ṽ, Ẽ), which is
chordal with a set of maximal cliques C̃1, . . . , C̃t.
⇐: If P (x) ∈ Σr

n,2d(E , ?), then there exists an SOS matrix F (x) with a Gram matrix
Q ∈ SrN+ such that

Pk(x) = ECkP (x)ET
Ck = ECkF (x)ET

Ck , k = 1, . . . t.

Also, using a property similar to (8.10), we have

ECkF (x)ET
Ck = ECk

(
(Ir ⊗ vd(x))TQ(Ir ⊗ vd(x))

)
ET
Ck

= (I|Ck| ⊗ vd(x))TQk(I|Ck| ⊗ vd(x)),

where

Qk = EC̃k
QET
C̃k
∈ S|Ck|N+ . (8.13)

Therefore, Pk(x) ∈ Σ|Ck|n,2d and the Gram matrices Qk in (8.13) satisfy the consistency
condition (8.12).
⇒: When (8.11) and (8.12) hold we can form a partial symmetric matrix Q with

Qk = EC̃k
QET
C̃k
, k = 1, . . . , t. Since Qk � 0 and they hyper-graph G̃(Ṽ, Ẽ) is chordal,

Theorem 2.13 ensures that Q ∈ SrN+ (Ẽ , ?). Then we can find a PSD completion Q̂ � 0 for
Q and hence an SOS completion F (x) for P (x), given by

F (x) = (Ir ⊗ vd(x))TQ̂(Ir ⊗ vd(x)) ∈ Σr
n,2d. (8.14)

Therefore, we have P (x) ∈ Σr
n,2d(E , ?). �

8. Decomposition and completion of sum-of-squares matrices 149

The proof of Theorem 8.4 is similar to that of Theorem 8.2, both of which utilize
hyper-graphs and then apply the normal results of chordal decomposition and comple-
tion. Moreover, as before, given P (x) ∈ Σr

n,2d(E , ?) we can find an SOS completion
using the following steps:

1. Find a PSD completable Gram matrix, Q ∈ SrN+ (Ẽ , ?);

2. Find a PSD completion Q̂ using any PSD completion algorithm (e.g., [15, Chapter
10] and [23, Section 2]);

3. Construct the SOS completion as in (8.14).

Using this procedure, we are able to find an SOS completion for the matrix in (8.4),
namely  x2 + 1 x 0.3x2 + 0.6x+ 0.3

x x2 − 2x+ 2.5 x+ 1
0.3x2 + 0.6x+ 0.3 x+ 1 x2 + 2

.

8.5 Application to matrix-valued SOS programs

The SOS decomposition can be readily applied to exploit sparsity in matrix-valued SOS
programs, which arise, for example, in robust semidefinite programming [142] and control
theory [147]. Consider the matrix-valued SOS program

minimize
u

wTu

subject to P (x) = P0(x)−
h∑
i=1

uiPi(x),

P (x) ∈ Σr
n,2d,

(8.15)

where u ∈ Rh is the decision variable, w ∈ Rh defines a linear objective function, and
P0(x), . . . , Pt(x) are r×r symmetric polynomial matrices with a common sparsity pattern
characterized by a graph G(V, E). It is assumed that G(V, E) is chordal with maximal
cliques C1, . . . , Ct, or that a chordal extension can be found [15]. Clearly, (8.15) is equivalent
to

minimize
u

wTu

subject to P (x) = P0(x)−
h∑
i=1

uiPi(x),

P ∈ Σr
n,2d(E , 0).

(8.16)

To exploit sparsity we replace the sparse SOS constraint P ∈ Σr
n,2d(E , 0) by the

stronger condition P ∈ Σ̃r
n,2d(E , 0) and solve

minimize
u

wTu

subject to P (x) = P0(x)−
h∑
i=1

uiPi(x),

P ∈ Σ̃r
n,2d(E , 0).

(8.17)

150 8.5. Application to matrix-valued SOS programs

Table 8.1: CPU time (in seconds) required to solve (8.18) using different formulations.

Dimension r 10 20 30 40 50
Using (8.16) 0.25 4.1 72.6 425.2 1 773.1
Using (8.17) 0.11 0.13 0.23 0.25 0.38

Table 8.2: Objective value γ for (8.18) using different formulations.

Dimension r 10 20 30 40 50
Using (8.16) −0.8516 −0.8403 −0.8364 −0.8344 −0.8332
Using (8.17) −0.8516 −0.8403 −0.8364 −0.8344 −0.8332

Then, Theorem 8.2 enables us to decompose the single large SOS constraint P ∈ Σ̃r
n,2d(E , 0)

with a set of coupled matrix SOS constraints with smaller dimensions. This can reduce
the computational cost of (8.17) significantly if the size of maximal cliques C1, . . . , Ct is
small. To demonstrate this, we consider the special matrix-valued SOS program

minimize
γ

γ

subject to P (x) + γI is SOS,
(8.18)

where P (x) is an r × r polynomial matrix with an “arrow” sparsity pattern defined as

P (x) =


p1(x) p2(x) . . . p2(x)
p2(x) p3(x)

... . . .
p2(x) p3(x)

 (8.19)

with
p1(x) = r(x2

1 + x2
2 + 1), p2(x) = x1 + x2, p3(x) = x2

1 + x2
2 + 1.

Problem (8.18) provides a lower bound −γ for the minimum eigenvalue of P (x) uniformly
in x. Theorem 8.2 applies because the graph representing the sparsity pattern of P (x)
in (8.19) is chordal with its maximal cliques Ck = {1, k}, k = 2, . . . , r.

We used YALMIP [79] and SeDuMi [71] to solve the SDP relaxations of problem (8.18)
corresponding to both the usual SOS problem (8.16) and the decomposed version of (8.17).
SeDuMi was called with its default parameters on a PC with a 2.8 GHz Intel® Core™ i7
CPU and 8GB of RAM. Table 8.1 lists the CPU time required. Clearly, the computational
time was reduced significantly when using Theorem 8.2 to decompose (8.17). This is
not surprising because a single large SOS constraint of dimension r has been replaced
by r − 1 smaller SOS constraints on 2 × 2 polynomial matrices. Table 8.2 shows that
using the stronger condition P ∈ Σ̃r

n,2d(E , 0) brings no conservatism compared to the
usual SOS methods for this particular example.

8. Decomposition and completion of sum-of-squares matrices 151

However, the inclusion Σ̃r
n,2d(E , 0) ⊂ Σr

n,2d(E , 0) is strict, so replacing (8.16) by (8.17)
introduces a degree of conservatism in general. This is the case, for instance, when solv-
ing (8.18) for

P (x) =

p1(x) p2(x) p3(x)
p2(x) p4(x) 0
p3(x) 0 p5(x)

 ,
with

p1(x) = 0.8x2
1 + 0.9x1x2 + 0.3x2

2 + 1.4x1 + 0.9x2 + 0.8,

p2(x) = 0.3x1 + 0.91x2 + 0.2,

p3(x) = 0.1x1 + x2 + 0.8,

p4(x) = 0.4x2
1 + 1.3x1x2 + 1.1x2

2 + 1.4x1 + 2.3x2 + 1.3,

p5(x) = 0.7x2
1 + 1.3x1x2 + 0.9x2

2 + x1 + 1.1x2 + 0.4.

Solving the original SOS program (8.16) returns an objective value γ1 = 2.007, while
the optimal value of (8.17) is γ2 = 2.041. The conservatism comes from the fact that
we enforce Q23 = 0 when p23(x) = 0. Nonetheless, the formulation (8.17) provides a
highly scalable way to deal with large sparse matrix-valued SOS programs, as confirmed
by the wall times reported in Table 8.1.

8.6 Conclusion

In this chapter, we introduced two theorems for the decomposition and completion of sparse
SOS matrices. Specifically, we proved that a subset of SOS matrices with chordal sparsity
patterns can be decomposed into a sum of multiple SOS matrices of smaller dimensions.
This property can be easily applied to exploit sparsity in matrix-valued SOS programs.

It should be noted that a notion of correlative sparsity techniques has been proposed
to exploit chordal sparsity in scalar polynomials [31]. Checking whether a polynomial
matrix P (x) is SOS can be reduced to a scalar problem by requiring that the polynomial
yTP (x)y is SOS in [x; y] [131]. In fact, it is not difficult to show that our decomposition
result in Theorem 8.2 corresponds to applying the correlative sparsity technique [31]
to the scalar polynomial yTP (x)y (more details are given in Section 9.5.2 of the next
chapter). Instead, the scalar interpretation of the SOS completion result (Theorem 8.4)
is not clear and requires further investigation.

Finally, our preliminary numerical experiments on a simple test problem demonstrate
that exploiting chordal sparsity in matrix-valued SOS programs can bring dramatic
computational savings at the cost of mild conservatism.

9
Chordal decomposition in sparse SOS optimization

In this chapter, we reveal the relationship between chordal decomposition in SOS
polynomials and two other recent techniques. Specifically, we investigate the relation
between three tractable relaxations for optimizing over sparse non-negative polynomials:
sparse sum-of-squares (SSOS) optimization, diagonally dominant sum-of-squares (DSOS)
optimization, and scaled diagonally dominant sum-of-squares (SDSOS) optimization.
We prove that the set of SSOS polynomials, an inner approximation of the cone of
SOS polynomials, strictly contains the spaces of sparse DSOS/SDSOS polynomials. For
problems with sparse polynomials, therefore, SSOS optimization is less conservative
than its DSOS/SDSOS counterparts. Numerical results for large-scale sparse polynomial
optimization problems demonstrate this fact, and also that SSOS optimization can be
faster than DSOS/SDSOS methods despite requiring the solution of semidefinite programs
instead of less expensive linear/second-order cone programs.

9.1 Introduction

Optimization over non-negative polynomials plays a fundamental role in analysis and
control of systems with polynomial dynamics. For instance, the construction of polynomial
Lyapunov or Lyapunov-type functions subject to suitable polynomial inequalities can prove
nonlinear stability of equilibrium solutions [140], approximate basins of attraction [148,
149], stability analysis of partial differential equations [150, 151] and provide bounds
on infinite-time averages [152–154].

As already seen in Chapter 7 and Chapter 8, since deciding whether a given poly-
nomial p(x) is non-negative is NP-hard in general, a popular alternative is to look
for a decomposition of p(x) as a sum-of-squares (SOS) of polynomials with lower
degree. Checking this sufficient condition for non-negativity is attractive because it
amounts to solving a semidefinite program (SDP) [52, 127], a well-known type of convex
optimization problem for which polynomial-time algorithms exist. However, the dimension

153

154 9.1. Introduction

of this SDP typically grows in a combinatorial fashion as the number of variables and
the polynomial degree increase [52], and very large SDPs are required to solve even
when one employs well-known dimension reduction techniques, such as the Newton
polytope [129], diagonal inconsistency [130], and symmetry [131] or facial reduction [128].
Consequently, SOS-based analysis is only practical for polynomial dynamical systems
with few states and/or low degree.

In order to improve scalability, it has been proposed by many authors to replace
positivity certificates based on SOS representations with other sufficient conditions for
non-negativity, which are stronger but have a lower computational complexity. For
correlatively sparse polynomials, characterized by sparse couplings between different
independent variables, Waki et al. [31] proposed to look for a decomposition as a sum of
SOS polynomials, each involving only small subsets of the independent variables. While
being more restrictive, the search for such a sparse sum-of-squares (SSOS) decomposition
can be carried out at a fraction of the computational cost required for a standard
SOS decomposition, because an SDP with one large matrix variable is replaced with
an SDP with multiple much smaller matrix variables. The latter can be solved more
efficiently, a fact that also underpins the more recent sparse-BSOS [155] and multi-ordered
Lasserre relaxation hierarchies [156] for sparse polynomial optimization. Two other
alternatives to SOS optimization, applicable also to polynomials without correlative
sparsity, were put forward by Ahmadi and Majumdar [124], who observed that the cones
of diagonally dominant sum-of-squares (DSOS) polynomials and of scaled diagonally
dominant sum-of-squares (SDSOS) polynomials are strict subsets of the cone of SOS
polynomials. Optimization problems over DSOS and SDSOS polynomials can be recast
as linear programs (LPs) and second-order cone programs (SOCP), respectively, and
both of these can be solved with algorithms that scale more favourably than those for
SDPs [124]. On the other hand, DSOS/SDSOS optimization might be very conservative
(although the conservatism may be reduced using iterative methods based on basis
pursuit [132] or column generation [157]).

The availability of such a variety of approaches poses a simple but important dilemma:
when more than one method can be applied, which one should be used? To answer this
question, theoretical results comparing the degree of conservatism and computational
complexity for each of the aforementioned approaches would be desirable. In this chapter,
therefore, we study the relation between DSOS/SDSOS/SSOS positivity certificates for
polynomials with correlative sparsity. Specifically, we prove that if a DSOS/SDSOS
decomposition exists and the correlative sparsity is chordal (meaning that it can be
represented by a chordal graph), then an SSOS decomposition is also available. In other
words, the cones of DSOS/SDSOS polynomials with chordal correlative sparsity are strictly

9. Chordal decomposition in sparse SOS optimization 155

contained within the cone of polynomials that admit an SSOS decomposition in the sense
of Waki et al. [31]. Thus, for polynomials with chordal correlative sparsity, DSOS/SDSOS
optimization is provably more conservative than SSOS optimization (at least when the
iterative improvement techniques for DSOS/SDSOS optimization mentioned above are
not utilised). Also, SSOS optimization promises better scalability compared to standard
SOS optimization. Therefore, we argue that SSOS optimization is a suitable candidate
to bridge the gap between DSOS/SDSOS and SOS optimization.

The rest of this chapter is organized as follows. Section 9.2 reviews some basic facts
about SOS/DSOS/SDSOS polynomials, useful notions from graph theory, and correlatively
sparse polynomials. We give a new interpretation of the positivity certificates of Waki
et al [31] in Section 9.3, which enables the connection to DSOS/SDSOS conditions for
correlatively sparse polynomials in Section 9.4. In Section 9.5, we extend our analysis
to the cones of sparse DSOS/SDSOS/SSOS polynomial matrices. Section 9.6 presents
numerical results. Finally, Section 9.7 concludes this chapter.

9.2 Preliminaries

9.2.1 SOS, DSOS, and SDSOS polynomials

For completeness, we briefly review some sum-of-squares notion again1. Given a vector of
variables x ∈ Rn and a multi-index α ∈ Nn, the quantity xα := ∏n

i=1 x
αi
i is a monomial

of degree |α| := ∑n
i=1 αi. For d ∈ N, we let Nnd = {α ∈ Nn : |α| ≤ d}. An n-variate

polynomial of degree 2d can be written as p(x) = ∑
α∈Nn2d

cαx
α. We denote the set of

polynomials in n variables with real coefficients of degree no more than 2d by R[x]n,2d,
and the subset of nonnegative polynomials in R[x]n,2d by PSDn,2d.

Checking if p(x) ∈ PSDn,2d is NP-hard already for polynomials of degree 4, but it is
computationally tractable to test membership to the following subsets of PSDn,2d.

• SOS polynomials: A polynomial p(x) ∈ R[x]n,2d is an SOS polynomial if there
exist fi ∈ R[x]n,d, i = 1, . . . , s such that p(x) = ∑s

i=1 f
2
i (x). We denote the set of

n-variate SOS polynomials of degree no larger than 2d by SOSn,2d. It is known [52]
that p(x) ∈ SOSn,2d if and only if there exists a PSD matrix Q (denoted Q � 0),
such that

p(x) = vd(x)TQvd(x), (9.1)

where vd(x) = [1, x1, x2, . . . , xn, x2
1, x1x2, . . . , xdn]T is the vector of monomials of x of

degree d or less. Following [52], we refer to (9.1) as the Gram matrix representation
of the polynomial p(x). Note that the size of the Gram matrix Q is

(n+d
d

)
×
(n+d
d

)
in general.

1Unlike Chapter 7 and Chapter 8, we use SOSn,2d to denote the set of sum-of-squares polynomials
throughout this chapter, to be consistent with the upcoming notation for DSOS/SDSOS polynomials.

156 9.2. Preliminaries

• DSOS polynomials: Recall that a symmetric matrix A ∈ Sr is diagonally dominant
(DD) if Aii ≥

∑r
j=1 |Aij | for all i = 1, . . . , r, and that DD matrices are positive

semidefinite (this directly follows, for example, from Gershgorin’s circle theorem).
Following [124], we say that polynomial p(x) ∈ R[x]n,2d is a diagonally dominant
sum-of-squares (DSOS) if it admits a Gram matrix representation (9.1) with a DD
Gram matrix Q. We denote the set of DSOS polynomials in n variables and degree
no larger than 2d by DSOSn,2d.

• SDSOS polynomials: Recall that a symmetric matrix A ∈ Sr is scaled diagonally
dominant (SDD) if there exists a positive definite r × r diagonal matrix D such
that DAD is diagonally dominant. Following [124], we say that polynomial p(x) ∈
R[x]n,2d is a scaled diagonally dominant sum-of-squares (SDSOS) if it admits a
Gram matrix representation (9.1) with an SDD Gram matrix Q. We denote the set
of SDSOS polynomials in n variables and degree no larger than 2d by SDSOSn,2d.

Let p0, . . . , pt ∈ R[x]n,2d be given polynomials. An SOS optimization problem
takes the standard form

min
u

wTu

subject to p0(x) +
t∑
i=1

uipi(x) ∈ SOSn,2d,
(9.2)

where u ∈ Rt is the decision variable. It is not difficult to see that (9.1) enables one
to recast (9.2) as an SDP [52]. It has also been proved that if SOSn,2d is replaced with
DSOSn,2d in (9.2) (resp. SDSOSn,2d), then one obtains an LP (resp. SOCP) [124]. In
principle, when one moves from SOS optimization to SDSOS/DSOS optimization, the
ability of scalability increases and the quality of solutions decreases. Thus, DSOS/SDSOS
optimization are more scalable alternatives to SOS optimization, but are typically more
conservative since the strict inclusion DSOSn,2d ⊂ SDSOSn,2d ⊂ SOSn,2d holds.

9.2.2 Correlatively sparse polynomials

The notion of correlative sparsity was introduced by Waki et al. [31] to describe couplings
between the variables x1, . . . , xn of a polynomial p(x) = ∑

|α|≤2d cαx
α. Key to this

description is the so-called correlative sparsity matrix (CSP matrix), a symmetric
matrix csp(p) ∈ Sn where

[csp(p)]ij =
{

1, if i = j or ∃α | αi, αj ≥ 1 and cα 6= 0,
0, otherwise.

For example, we have

csp(x2
1 + x2x

3
3) =

1 0 0
0 1 1
0 1 1

 .

9. Chordal decomposition in sparse SOS optimization 157

A polynomial p(x) ∈ R[x]n,2d is said to have a correlative sparsity pattern characterized
by an undirected graph G(V, E) if csp(p) ∈ Sn(E , 0). It is then natural to define the vector
space of polynomials with the same correlative sparsity as

R[x]n,2d(E) := {p ∈ R[x]n,2d | csp(p) ∈ Sn(E , 0)},

and its subset of sparse SOS polynomials as

SOSn,2d(E) := R[x]n,2d(E) ∩ SOSn,2d.

Throughout this chapter, we assume that the correlative sparsity pattern E is chordal,
or that a suitable chordal extension has been found.

9.3 Revisiting sparse SOS decompositions

Suppose we wish to determine whether a correlatively sparse polynomial p(x) ∈ R[x]n,2d(E)
is non-negative using an SOS certificate, meaning that we seek a Gram matrix rep-
resentation of the form

p(x) = vd(x)TQvd(x), Q � 0. (9.3)

Using multi-indices β ∈ Nnd and γ ∈ Nnd to index the entries of Q, the equality constraints
in (9.3) can be rewritten as

p(x) =
∑

β,γ∈Nn
d

Qβ,γx
β+γ =

∑
α∈Nn2d

 ∑
β+γ=α

Qβ,γ

xα.
It is clear that, even if p(x) is correlatively sparse, its Gram matrix Q need not be
sparse: the only requirement is that ∑β+γ=αQβ,γ = 0 if p(x) does not contain the
monomial xα. Nonetheless, in order to exploit correlative sparsity and reduce the cost
of searching for a suitable PSD Gram matrix, we insist that Q should be sparse by
imposing that Qβ,γ = 0 if the monomial xβ+γ does not appear in any polynomial of
R[x]n,2d(E). More precisely, we define

SSOSn,2d(E) = {p ∈ R[x]n,2d | (9.3) holds and Qβ,γ = 0

if ∃(i, j) /∈ E s.t. βi + γi 6= 0 and βj + γj 6= 0}. (9.4)

Another method to exploit sparsity, proposed by Waki et al. [31], is to search for
a sparse SOS (SSOS) decomposition: let C1, . . . , Ct be the maximal cliques of G(V, E),
let ECk be as in (2.14) (see Section 2.3) for all k = 1, . . . , t, and try to find PSD
matrices Q1, . . . , Qt such that

p(x) =
t∑

k=1
vd(ECkx)TQk vd(ECkx). (9.5)

158 9.3. Revisiting sparse SOS decompositions

In other words, one can try to write p as a sum of SOS polynomials pk(ECkx) :=
vd(ECkx)TQk vd(ECkx), each of which depends only on the corresponding subset of
variables ECkx. Our first main result is to show that these two strategies—imposing that Q
is sparse according to (9.4) and looking for the SSOS decomposition (9.5)—are equivalent.

Theorem 9.1. Let G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Ct}.
Then,

p(x) ∈ SSOSn,2d(E)⇔ p(x) =
t∑

k=1
pk(ECkx), (9.6)

where pk(ECkx) is an SOS polynomial in the subset of variables ECkx.

Proof. To prove the ⇒ part, we show that the Gram matrix Q has a chordal pattern
when (9.4) holds, so the chordal decomposition (Theorem 2.10) can be applied to
recover (9.5). The ⇐ part will also follows from this.

⇒ If β and γ are such that an entry Qβ,γ is not required to vanish due to (9.4), then
(i, j) ∈ E for all i, j such that βi + γi 6= 0 or βj + γj 6= 0. Consequently, the set
Cβ,γ = {i ∈ V | βi + γi 6= 0} is a clique of the graph G(V, E) and is therefore contained in
one of its maximal cliques C1, . . . , Ct. In other words, Cβ,γ ⊆ Ck for some k ∈ {1, . . . , t}.
Clearly, this also implies that

{i ∈ V | βi 6= 0} ⊆ Ck, {i ∈ V | γi 6= 0} ⊆ Ck.

Thus, if β and γ do not satisfy the condition in (9.4), then there exists a value k ∈ {1, . . . , t}
such that

β, γ ∈ Cdk := {α ∈ Nnd | αi 6= 0 =⇒ i ∈ Ck}. (9.7)

At this stage, define a hyper-graph Gd(Vd, Ed) with the multi-indices Vd = {α ∈ Nnd |
xα ∈ vd(x)} as nodes and

Ed =
t⋃

k=1
Cdk × Cdk (9.8)

as edges. Since C1, . . . , Ct are the maximal cliques of the chordal graph G(V, E), it can be
shown [41] that Gd(Vd, Ed) is also chordal, and that Cd1 , . . . , Cdt are its maximal cliques.
Moreover, given that condition (9.7) holds for some k ∈ {1, . . . , t} for each pair (β, γ) such
that Qβ,γ is not required to vanish by (9.4), the hyper-graph Gd(Vd, Ed) characterizes the
sparsity pattern of the PSD matrix Q in (9.3), i.e., Q ∈ SN+ (Ed, 0) with N =

(n+d
d

)
. Thus,

according to Theorem 2.10, Q in (9.3) can be decomposed as

Q =
t∑

k=1
ET
Cd
k
QkECd

k
, (9.9)

9. Chordal decomposition in sparse SOS optimization 159

x1 x2 x3

(a)

1

x1 x2 x3

(b)

Figure 9.1: Graph patterns for polynomial (9.10): (a) the correlative sparsity pattern G(V, E)
of (9.10) is a line graph; (b) the corresponding hyper-graph Gd(Vd, Ed) is chordal with maximal
cliques Cd1 = {1, x1, x2}, Cd2 = {1, x2, x3}.

where Qk ∈ S|C
d
k |

+ for all k = 1, . . . , t. Upon noticing that ECd
k
vd(x) = vd(ECkx) by virtue

of the definition of Cdk in (9.7), we then obtain from (9.3) that

p(x) = vd(x)T
(

t∑
k=1

ET
Cd
k
QkECd

k

)
vd(x)

=
t∑

k=1
(ECd

k
vd(x))TQk(ECd

k
vd(x)),

= vd(ECkx)TQk vd(ECkx),

which is exactly (9.5) as claimed.

⇐ This follows after rearranging the last set of equalities in a suitable way. �

Note that, in fact, we have shown that p(x) ∈ SSOSn,2d if and only if it admits a sparse
Gram matrix Q ∈ SN+ (Ed, 0), so searching for an SSOS decomposition (9.5) amounts to
imposing a sparsity constraint on the Gram matrix.

Example 9.2. Consider the quadratic polynomial

p(x) = 2(2 + x1 + x2 + x3 + x2
1 + x1x2 + 2x2

2 + x2x3 + x2
3)

=


1
x1
x2
x3


T 

4 1 1 1
1 2 1 0
1 1 4 1
1 0 1 2


︸ ︷︷ ︸

Q�0


1
x1
x2
x3

 , (9.10)

where csp(p) is the line graph with maximal cliques C1 = {1, 2} and C2 = {2, 3} shown in
Figure 9.1. The Gram matrix Q (unique in this case) is PSD and its sparsity pattern,
represented by the chordal graph in Figure 9.1(b) with maximal cliques K1 = {1, x1, x2}
and K2 = {1, x2, x3}, satisfies the condition in (9.4). According to Theorem 2.10, Q can
be written as the sum of two PSD matrices supported on C1 and C2, respectively, for
instance

Q =


2 1 1 0
1 2 1 0
1 1 3 0
0 0 0 0


︸ ︷︷ ︸

�0

+


2 0 0 1
0 0 0 0
0 0 1 1
1 0 1 2


︸ ︷︷ ︸

�0

.

160 9.4. Relating SSOS to sparse DSOS/SDSOS

Thus, the 3-variate polynomial p(x) can clearly be written as the sum of the two bi-variate
SOS polynomials

p1(x1, x2) = (1 + x1)2 + (x1 + x2)2 + (1 + x2)2 + x2
2,

p2(x2, x3) = (1 + x3)2 + (x2 + x3)2 + 1.

9.4 Relating SSOS to sparse DSOS/SDSOS

We have seen that finding an SSOS decomposition of a correlatively sparse polynomial
p ∈ R[x]n,2d(E) amounts to constraining the sparsity of its Gram matrix. This fact
makes it possible to draw a connection between the space SSOSn,2d(E) of sparse SOS
polynomials and those of sparse DSOS/SDSOS polynomials, defined as

DSOSn,2d(E) := DSOSn,2d ∩ R[x]n,2d(E),

SDSOSn,2d(E) := SDSOSn,2d ∩ R[x]n,2d(E).

Specifically, we have the following result.

Proposition 9.3. For any sparsity pattern E

DSOSn,2d(E) ⊂ SDSOSn,2d(E) ⊂ SSOSn,2d(E) ⊆ SOSn,2d(E), (9.11)

and the first two inclusions are strict. The third inclusion is strict unless E is full or d = 1,
in which cases SSOSn,2d(E) ≡ SOSn,2d(E).

Proof. We only need to prove that SDSOSn,2d(E) ⊂ SSOSn,2d(E); the rest is true by
definition, and the identity SSOSn,2(E) ≡ SOSn,2(E) holds because the Gram matrix
representation of correlatively sparse quadratic polynomials is unique and must be sparse.
Recall that any p ∈ SDSOSn,2d(E) can be represented by an SDD Gram matrix Q, not
necessarily sparse. We then construct a sparse Gram matrix Q̂ according to

Q̂β,γ =
{

0 if ∃(i, j) /∈ E , βi + γi 6= 0, βj + γj 6= 0,
Qβ,γ otherwise.

It is not difficult to see that p(x) = vd(x)Q̂vd(x), and that Q̂ is also SDD. Indeed, replacing
any off-diagonal entries with zeros does not affect the scaled diagonal dominance of a
matrix, while if a diagonal entry Qβ,β is replaced by zero, then there exists (i, j) /∈ E such
that βi 6= 0 and βj 6= 0, and so the entire row Qβ,• and column Q•,β are also replaced
with zeros. Thus, Q̂ satisfies the condition (9.4) and p(x) ∈ SSOSn,2d(E). Finally, the
inclusion SDSOSn,2d(E) ⊂ SSOSn,2d(E) is strict because there exist SSOS polynomials
whose Gram matrix is not SDD. �

9. Chordal decomposition in sparse SOS optimization 161

Table 9.1: Details of problem types for SOS, SSOS, SDSOS, and SOS optimization with degree
2d polynomials in n variables. The value m is the size of the largest clique of the underlying
correlative sparsity graph G(V, E); for many problem instances, m� n.

Problem Cone Program Maximum PSD cone size

Psos SOSn,2d(E) SDP
(n+d
d

)
Pssos SSOSn,2d(E) SDP

(m+d
d

)
Psdsos SDSOSn,2d(E) SOCP 2
Pdsos DSOSn,2d(E) LP 1

The implication of Proposition 9.3 is simple but important: SSOSn,2d(E) is a strictly

better inner approximation of SOSn,2d(E), compared to the DSOS/SDSOS counterparts.

Consequently, given correlatively sparse polynomials p0, . . . , pt ∈ R[x]n,2d(E) and an

optimization variable u ∈ Rt, the SOS optimization problem

f∗sos := minimize
u

wTu

subject to p0(x) +
t∑
i=1

uipi(x) ∈ SOSn,2d(E),
(Psos)

is better approximated if the cone SOSn,2d(E) is replaced by SSOSn,2d(E) instead of

SDSOSn,2d(E) or DSOSn,2d(E). Specifically, if we denote the optimization problems

arising in each of these cases by Pssos, Psdsos, and Pdsos, and let f∗ssos, f∗sdsos, and f∗dsos

be their respective optimal values2, Proposition 9.3 implies that

f∗dsos ≥ f∗sdsos ≥ f∗ssos ≥ f∗sos. (9.12)

Additionally, it should be clear from Theorem 9.1 that the SSOS optimization problem

Pssos can be recast as an SDP with multiple PSD matrix variables whose size is bounded

by
(m+d

d

)
, where m is the size of the largest clique of the underlying correlative sparsity

graph G(V, E). Therefore, even though problems Pdsos and Psdsos can be solved as LPs

and SOCPs [124], the added representation power offered by SSOS constraints need

not add much computational cost when m � n. Table 9.1 summarizes the problem

types for SOS, SSOS, SDSOS, and SOS optimization. In fact, as will be demonstrated

by the numerical examples in Section 9.6, SSOS optimization can be much faster than

DSOS/SDSOS optimization provided by the package SPOTless [158]. Seen in this light,

SSOS optimization bridges the gap between DSOS/SDSOS and SOS optimization for

problems with correlatively sparse polynomials.
2For an infeasible problem, we denote the optimal cost value as infinity.

162 9.5. Extension to sparse matrix-valued polynomials

9.5 Extension to sparse matrix-valued polynomials

The results of the previous sections can be extended to sparse matrix-valued polynomials,
which arise naturally in some applications [142, 147]. Let R[x]r×sn,2d be the space of r × s
matrices whose entries are polynomials in R[x]n,2d, and S[x]rn,2d be the space of r × r
symmetric polynomial matrices. A symmetric polynomial matrix P (x) ∈ S[x]rn,2d is PSD
if P (x) � 0, ∀x ∈ Rn, and it belongs to the space SOSrn,2d of SOS matrices if there exists
M ∈ R[x]s×rn,d such that P (x) = MT(x)M(x) [131, 142, 143].

Clearly, SOS matrices are PSD. As stated in Lemma 7.5, it is well-known that
P (x) ∈ SOSrn,2d if and only if there exists a Gram matrix Q � 0 such that

P (x) = (Ir ⊗ vd(x))TQ (Ir ⊗ vd(x)) , (9.13)

where Ir is the r × r identity matrix and ⊗ is the usual Kronecker product. Similarly to
DSOS/SDSOS polynomials, we can define DSOS/SDSOS matrices as follows.

Definition 9.4. A polynomial matrix P ∈ S[x]rn,2d is

• DSOS, denoted P ∈ DSOS rn,2d, if it admits a Gram matrix representation (9.13)
with a DD matrix Q.

• SDSOS, denoted P ∈ SDSOS rn,2d, if it admits a Gram matrix representation (9.13)
with an SDD matrix Q.

An alternative characterization of SOS/DSOS/SDSOS matrices can be given as fol-
lows [131].

Proposition 9.5. A polynomial matrix P ∈ S[x]rn,2d is SOS (resp., DSOS or SDSOS) if
and only if, given y ∈ Rr, the polynomial yTP (x)y is SOS (resp. DSOS or SDSOS) in
[x; y] ∈ Rm+n.

Proof. Using (9.13),

yTP (x)y = yT (Ir ⊗ vd(x))TQ (Ir ⊗ vd(x)) y

= (Ir ⊗ vd(x) · y ⊗ 1)TQ (Ir ⊗ vd(x) · y ⊗ 1)

= (y ⊗ vd(x))TQ (y ⊗ vd(x))

= z(x, y)TQz(x, y),

where z(x, y) = y ⊗ vd(x) is a subset of the vector of monomials in x and y. Therefore,
P (x) ∈ SSOSrn,2d (resp. P (x) ∈ DSOSrn,2d and P (x) ∈ SDSOSrn,2d) if and only if Q is
PSD (resp., DD and SDD). �

9. Chordal decomposition in sparse SOS optimization 163

9.5.1 Sparse SOS, SDSOS, and DSOS matrices

Similar to the spaces of sparse matrices mentioned in Section 9.2, we can define the
space of sparse symmetric polynomial matrices whose sparsity pattern is characterized
by an undirected graph G(V, E) as

Srn,2d(E , 0) :=
{
P ∈ S[x]rn,2d | (i, j) /∈ E∗ ⇒ Pij(x) = Pji(x) = 0

}
.

We can also introduce the subspaces of sparse SOS/SDSOS/DSOS matrices,

SOS rn,2d(E) := SOS rn,2d ∩ Sr×rn,2d(E , 0),

DSOS rn,2d(E) := DSOS rn,2d ∩ Sr×rn,2d(E , 0),

SDSOS rn,2d(E) := SDSOS rn,2d ∩ Sr×rn,2d(E , 0).

(9.14)

The Gram matrix representation (9.13) of a sparse SOS matrix P ∈ SOSrn,2d(E) can be
rewritten as

P (x) =

vd(x)TQ11vd(x) . . . vd(x)TQ1rvd(x)
...

vd(x)TQr1vd(x) . . . vd(x)TQrrvd(x)

 ,
where the (i, j)-th block Qij ∈ SN of the Gram matrix is to be chosen such that Q � 0 and

vd(x)TQijvd(x) = pij(x) = 0 if (i, j) /∈ E∗. (9.15)

Note that Qij need not be a zero matrix to satisfy (9.15), so the Gram matrix Q for
a sparse SOS matrix is dense in general and checking that P ∈ SOS rn,2d(E) can be
computationally expensive. For this reason, in Chapter 8, we proposed to impose sparsity
in the Gram matrix Q and test if P belongs to the space of polynomial matrices that
admit a sparse SOS decomposition, defined as

SSOS rn,2d(E) :=
{
P ∈ SOS rn,2d(E) | P (x) admits a Gram

matrix Q � 0 with Qij = 0 when pij(x) = 0} . (9.16)

The following proposition shows that this space is larger than both DSOS rn,2d(E) and
SDSOS rn,2d(E), and is the matrix-valued analogue of Proposition 9.3.

Proposition 9.6. For any pattern E , we have

DSOS rn,2d(E) ⊂ SDSOS rn,2d(E) ⊂ SSOS rn,2d(E) ⊆ SOS rn,2d(E). (9.17)

and the first two inclusions are strict. The third inclusion is strict unless E is full in which
SSOS rn,2d(E) ≡ SOS rn,2d(E).

164 9.5. Extension to sparse matrix-valued polynomials

Proof. We only need to prove that

SDSOS rn,2d(E , 0) ⊂ SSOS rn,2d(E , 0), (9.18)

since the other inclusions follow directly from the definition of each space. To this end,

note that any P ∈ SDSOS rn,2d(E) admits a Gram matrix representation (9.13) with an

SDD matrix Q. Then, consider the matrix

Q̂ij =
{
Qij , if (i, j) ∈ E∗,
0 if (i, j) /∈ E∗,

obtained by setting to zero blocks of Q corresponding to zero entries of P . The matrix Q̂

is still SDD, and hence PSD, and satisfies

P (x) = (Ir ⊗ vd(x))T Q̂ (Ir ⊗ vd(x)) .

Hence, P (x) ∈ SSOSrn,2d(E) and (9.18) is true; the inclusion is strict because there clearly

exist polynomial matrices in SSOSn,2d(E) whose Gram matrix is not SDD. Finally, the

identity SSOS rn,2d(E) ≡ SOS rn,2d(E) holds obviously when E contains all edges. �

As in the scalar case, sparse matrix SOS certificates are expected to be less conservative

than their DSOS/SDSOS counterparts. Additionally, if the sparsity pattern of a sparse

polynomial matrix is chordal, then working with SSOSn,2d(E) can be computationally

efficient because—similar to the SSOS decomposition for scalar polynomials—it requires

solving SDPs with small PSD cones. This follows from the next theorem, originally

proven in [46] (see, also, Chapter 8 of this thesis), which extends Theorem 2.10 to

sparse polynomial matrices.

Theorem 9.7. Let G(V, E) be a chordal graph with maximal cliques {C1, C2, . . . , Ct}.

Then,

P ∈ SSOS rn,2d(E)⇔ P (x) =
t∑

k=1
ET
CkPk(x)ECk (9.19)

with Pk ∈ SOS|Ck|n,2d for each k = 1, . . . , t.

Proof. A detailed proof can be found in Theorem 8.2 (Section 8.3 of this thesis). Briefly,

the “if” part is obvious, while the “only if” part relies on the fact that, when G(V, E) is

chordal, the sparse Gram matrix Q of P has a chordal sparsity pattern also, and can be

decomposed using Theorem 2.10 to obtain (9.19). �

9. Chordal decomposition in sparse SOS optimization 165

Consequently, one can use the cones DSOS rn,2d(E), SDSOS rn,2d(E), and SSOS rn,2d(E) to

formulate increasingly better and computationally tractable approximations of large-scale

matrix-valued SOS optimization problems of the form

minimize
u

wTu

subject to P0(x) +
t∑
i=1

uiPi(x) ∈ SOS rn,2d(E),
(9.20)

where P0, . . . , Pt ∈ Srn,2d(E , 0) are given sparse symmetric polynomial matrices and u ∈ Rt

is the decision variable. All comments given at the end of Section 9.4 on the relation be-

tween scalar SSOS/SDSOS/DSOS optimization are also valid for matrix-valued problems.

9.5.2 Reduction to the scalar analysis

Proposition 9.5 states that a matrix-valued polynomial P (x) is SOS (resp., DSOS or

SDSOS) if the associated scalar polynomial p(x, y) = yTP (x)y is so, and it is natural to

ask if the same is true for the SSOS condition. Here we show that applying Theorem 9.7

to P ∈ SSOSrn,2d(E) is indeed equivalent to applying Theorem 9.1 to p(x, y), but only

if any correlative sparsity with respect to the variable x is ignored.

Indeed, p(x, y) has correlative sparsity pattern E with respect to y since the monomial

yiyj appears if and only if Pij(x) 6= 0, meaning that (i, j) ∈ E . It is then not difficult

to verify that, if any correlative sparsity with respect to the variable x is ignored,

Theorem 9.1 guarantees that p(x, y) can be decomposed as

p(x, y) =
t∑

k=1
pk(x,ECky) (9.21)

for some SOS polynomials pk, k = 1, . . . , t. In particular, each pk is quadratic in y and

has degree d in x, so it admits the Gram matrix representation

pk(x,ECky) = [ECky ⊗ vd(x)]TQk[ECky ⊗ vd(x)]

with Qk � 0. But then, upon defining

Vd,k := I|Ck| ⊗ vd(x)

and using the properties of the Kronecker product to rewrite ECky⊗ vd(x) = Vd,kECky, we

166 9.5. Extension to sparse matrix-valued polynomials

y1 y2 y3

x1 x2

Figure 9.2: Graph pattern for polynomial yTPy in (9.24).

see that

p(x, y) =
t∑

k=1
pk(x,ECky)

=
t∑

k=1
[ECky ⊗ vd(x)]TQk[ECky ⊗ vd(x)]

=
t∑

k=1
(ECky)T V T

d,kQkVd,k︸ ︷︷ ︸
=:Pk(x)

ECky

= yT
(

t∑
k=1

ET
CkPk(x)ECk

)
y. (9.22)

Since p(x, y) = yTP (x)y we conclude that

P (x) =
t∑

k=1
ET
CkPk(x)ECk , (9.23)

which is exactly the statement of Theorem 9.7. The argument can easily be reversed to
show that Theorem 9.7 implies the existence of an SSOS decomposition of p(x, y).

Remark 9.8. It is important to note that the equivalence outlined above holds only
when any correlative sparsity of the entries of the polynomial matrix P with respect to
x is disregarded, because we do not take it into account in our analysis of polynomial
matrices. However, it may be possible to exploit correlative sparsity in x when applying
Theorem 9.1 to yTP (x)y. In this case, working at the scalar level will not be equivalent
to applying Theorem 9.7 to P directly, and will instead result in a stronger (but possibly
computationally cheaper) constraint. Therefore, our results for matrix-valued polynomials
remain of independent interest. Consider the following example,

P (x) =

x2
1 + 1 x1 0
x1 x2

1 + x2
2 + 2 x2

0 x2 x2
2 + 1

 . (9.24)

Applying Theorem 9.7 leads to a decomposition of the from yTP (x)y = p1(y1, y2, x1, x2) +
p2(y2, y3, x1, x2), where the correlative sparsity in x1, x2 is ignored. Instead, the correlative
sparsity pattern of yTP (x)y is shown in Figure 9.2, and applying Theorem 9.1 would lead
to a decomposition of the form yTP (x)y = p̂1(y1, y2, x1) + p̂2(y2, y3, x2).

9. Chordal decomposition in sparse SOS optimization 167

Table 9.2: Optimal γ for the SOS/SSOS/SDSOS/DSOS relaxations of problem (9.25), as a
function of the number of variables n.

Dimension n 10 15 20 30 40 50
Psos 0.00 0.00 0.00 * * *
Pssos 0.00 0.00 0.00 0.00 0.00 0.00
Psdsos 44.7 46.0 46.6 47.2 44.4 47.5
Pdsos ** ** ** ** ** **

*: Out of memory. **: Infeasible program.

9.6 Numerical examples

To demonstrate that DSOS/SDSOS constraints are indeed more conservative than sparse
SOS conditions in practice, we report the results of numerical experiments on sparse
versions of the examples considered in [124]. We implemented sparse SOS conditions in
YALMIP [79], adapting the undocumented option sos.csp to exploit correlative sparsity
using the chordal extension methods described in [31]. For the DSOS/SDSOS constraints,
instead, we used SPOTless [158]. The solver MOSEK [139] was used to solve the LPs,
SOCPs, and SDPs arising, respectively, from DSOS, SDSOS and SSOS constraints. All
computations were carried out on a PC with a 2.8 GHz Intel Core i7 CPU and 8GB of RAM.

9.6.1 Lower bounds on scalar polynomials

Given the Broyden tridiagonal polynomial

p(x) = ((3− 2x1)x1 − 2x2 + 1)2 +
n−1∑
i=2

((3− 2xi)xi − xi−1 − 2xi+1 + 1)2

+ ((3− 2xn)xn − xn−1 + 1)2,

consider the best lower bound problem

minimize
γ

γ

subject to p(x) + γxTx ≥ 0 ∀x ∈ Rn.
(9.25)

Upon replacing the non-negativity constraint with an SOS/SSOS/SDSOS/DSOS con-
ditions, this problem can be reformulated as an SDP/SDP/SOCP/LP, respectively.
The optimal γ obtained in each case for different values of n is reported in Table 9.2,
and MOSEK’s runtime is reported in Table 9.3. For all values of n the cone of DSOS
polynomials is too restrictive and the DSOS constraint is infeasible. Moreover, as expected
from Proposition 9.3, the SDSOS condition is more conservative that the SSOS one3.
For this example, SSOS conditions appear not to introduce any conservativeness: they

3For this and all other problems solved in this chapter, the methods of [132, 157] are likely to improve
the optimal objective value compared to the basic SDSOS method used here, but add computational cost.

168 9.6. Numerical examples

Table 9.3: CPU time, in seconds, required by MOSEK to solve the SOS/SSOS/SDSOS/DSOS
relaxations of problem (9.25), as a function of the number of variables n.

Dimension n 10 15 20 30 40 50
Psos 1.26 22.21 326.8 * * *
Pssos 0.48 0.47 0.48 0.63 0.54 0.53
Psdsos 0.69 1.80 4.96 25.47 88.50 232.78
Pdsos ** ** ** ** ** **

*: Out of memory. **: Infeasible program.

Table 9.4: Optimal γ for the SOS/SSOS/SDSOS/DSOS relaxations of problem (9.26), as a
function of the matrix size r.

r 30 40 50 60 70 80
Psos 5.917 4.154 21.61 10.09 7.364 10.19
Pssos 5.917 4.498 21.64 12.71 7.558 11.39
Psdsos 1 254.4 145.5 762.8 1 521.1 1 217.3 598.0
Pdsos ** ** ** ** ** **
**: Infeasible program.

yield the same optimal value as the classical SOS relaxation, and at a fraction of the
computational cost. Interestingly, solving the SSOS conditions was also faster than solving
SDSOS conditions. This is likely due to the fact that the SSOS condition translates to an
SDP with n−1 PSD matrix variables of size 6×6 for this particular problem (9.25), while,
the number of second-order cones required for an SDSOS constraint is O(n2). Whether
sparsity can be exploited in SPOTless to formulate a smaller SOCP for sparse SDSOS
constraints remains an interesting open question for future work.

9.6.2 Eigenvalue bounds on matrix polynomials

Let G(V, E) be the 5-node star graph, and let P ∈ Sr×r2,2 (E , 0) be a sparse polynomial
matrix whose entries are randomly generated quadratic polynomials in 2 variables. The
best lower bound on the smallest eigenvalue of P (x) valid for all x ∈ R5 is given by
the solution of the optimization problem

minimize
γ

γ

subject to P (x) + γI � 0 ∀x ∈ R5.
(9.26)

We solved this problem for P (x) of increasing size r after replacing the PSD constraint
with SOS, SSOS, DSOS and SDSOS conditions. The optimal γ for each case is reported
in Table 9.4, while the CPU time is shown in Table 9.5. As in the previous example, SSOS
conditions exhibit the best trade-off between conservativeness and computational cost.

9. Chordal decomposition in sparse SOS optimization 169

Table 9.5: CPU time, in seconds, required by MOSEK to solve the SOS/SSOS/SDSOS/DSOS
relaxations of problem (9.26), as a function of the matrix size r.

r 30 40 50 60 70 80
Psos 6.64 27.3 108.1 308.7 541.3 1 018.6
Pssos 0.35 0.35 0.33 0.32 0.32 0.33
Psdsos 1.09 1.29 2.67 3.70 4.40 6.02
Pdsos ** ** ** ** ** **
**: Infeasible program.

l blocks

e

e

h

h

Figure 9.3: Block-arrow sparsity pattern (dots indicate repeating diagonal blocks). The
parameters are: the number of blocks, l; block size, e; the width of the arrow head, h.

9.6.3 Co-positive programming

Our next experiment is an optimization problem over the cone CPn of co-positive n× n
matrices, which has recently attracted attention since it can model several combinatorial
optimization problems exactly [159]. A symmetric matrix Z ∈ Sn is co-positive if
yTZy ≥ 0 for all y ≥ 0, or [52]

Z ∈ CPn ⇔
n∑

i,j=1
Zijx

2
ix

2
j ≥ 0 ∀x ∈ Rn.

Replacing the non-negativity constraint with SOS, SSOS, SDSOS and DSOS conditions
yields tractable inner approximations of CPn. Here, we solve such approximations for
optimization problems of the form

minimize
γ

γ

subject to Z + γI ∈ CPn,
(9.27)

where Z is a randomly generated symmetric matrix with a block-arrow sparsity pattern
with l blocks of size e× e, and arrow head h; see Figure 9.3 for an illustration. Such a
sparsity pattern is chordal, with lmaximal cliques of size e+h. We fixed the block size e = 3,
arrow head size h = 2, and varied the number of blocks l. Table 9.6 shows that the upper
bound on the optimal solution of (9.27) obtained with SSOS constraints is always strictly
better than that obtained with SDSOS and DSOS optimization, and gives the same result
as the classical SOS relaxation in all cases for which this could be implemented. Again,
SSOS constraints are also extremely competitive in terms of CPU time, cf. Table 9.7.

170 9.6. Numerical examples

Table 9.6: Optimal γ for the SOS/SSOS/SDSOS/DSOS relaxations of problem (9.27) with block
size e = 3 and arrow head size h = 2, as a function of the number of blocks, l.

l 2 4 6 8 10
Psos 1.137 4.197 2.836 * *
Pssos 1.137 4.197 2.836 4.043 4.718
Psdsos 1.184 4.500 3.282 4.562 5.146
Pdsos 2.551 7.775 6.452 12.057 15.203

*: Out of memory.

Table 9.7: CPU time, in seconds, required by MOSEK to solve the SOS/SSOS/SDSOS/DSOS
relaxations of problem (9.27). Results are given as a function of the number of blocks, l, for block
size e = 3 and arrow head size h = 2.

l 2 4 6 8 10
Psos 0.45 7.34 248.9 * *
Pssos 0.39 0.41 0.38 0.49 0.40
Psdsos 0.54 1.22 4.99 11.07 32.18
Pdsos 0.59 0.76 2.19 5.72 17.11

*: Out of memory.

9.6.4 Lyapunov stability analysis

As our final example, we considered randomly generated n-dimensional, degree-3 poly-
nomial dynamical systems of the form

ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2, x3),
...
ẋn−1 = fn−1(xn−2, xn−1, xn)
ẋn = fn(xn−1, xn),

(9.28)

with an asymptotically stable equilibrium at the origin. In the simulation, we first
generated a random n×n matrix A with a banded sparsity pattern, whose nonzero entries
are drawn from the uniform distribution on the open interval (0; 1) and then imposed
it to be stable by setting A := A − αI with a proper α > 0. The linear terms of each
function fi are chosen as A(i, :)x, and the coefficients of high-order (i.e., degree two and
degree three) terms of each function fi is randomly generated from the open interval
(−5, 5). In this way, the dynamical system f(x) is guaranteed to have an asymptotically
stable equilibrium since the matrix A is stable.

We searched for quadratic Lyapunov functions of the form

V (x) = V1(x1, x2) + V2(x1, x2, x3) + . . .+ Vn(xn−1, xn)

9. Chordal decomposition in sparse SOS optimization 171

Table 9.8: CPU time, in seconds, required by MOSEK to construct a quadratic Lyapunov
function for a locally stable, degree-3 polynomial system of the form (9.28).

n 10 15 20 30 40 50
Psos 1.36 21.26 262.08 * * *
Pssos 0.57 0.69 0.76 1.02 1.22 1.41
Psdsos 1.21 6.78 5.20 28.61 104.36 292.05
Pdsos 0.74 1.33 2.89 14.61 61.52 275.95

*: Out of memory.

that certify the local stability of the origin in the box D = [−0.1, 0.1]n. Specifically,
we looked for V (x) that satisfies

V (0) = 0,

V (x) ≥ εxTx ∀x ∈ D,

−f(x)T∇V (x) ≥ 0 ∀x ∈ D,

(where we used ε = 10−6 in the simulation) after replacing the non-negativity conditions
with SOS, SSOS, SDSOS, and DSOS constraints in turn. Table 9.8 lists the CPU time
required by MOSEK to construct suitable Lyapunov functions in each case. The classical
SOS constraints could not be implemented for n > 20 on our PC due to RAM limitations,
while all other constraints could be implemented successfully. Although in this case all
of SSOS, SDSOS and DSOS conditions are feasible, the results clearly demonstrate that
SSOS are the fastest, with an approximately 200× speed improvement compared to the
DSOS/SDSOS formulations set up by SPOTless when n = 50.

9.7 Conclusion

In this chapter, we demonstrated that, for correlatively sparse polynomials, sparse SOS
positivity certificates are more general and typically less conservative than those based
on DSOS and SDSOS methods. Key to this result is a new interpretation of the sparse
SOS conditions proposed by Waki et al. [31] in terms of a sparsity constraint of the
Gram matrix Q used to represent sparse SOS polynomials, to which a well known chordal
decomposition theorem can be applied. Numerical examples have confirmed our theoretical
findings, and also demonstrated that SSOS conditions can be dramatically more efficient
than the DSOS/SDSOS conditions formulated by the dedicated package SPOTless [158].
Thus, although DSOS/SDSOS methods remain one of the few methods to implement
non-negativity constraints for dense polynomials with many variables and/or high degree,
one should try to utilize SSOS constraints when possible.

10
Conclusion and outlook

Many large-scale problems have inherent structures that can be exploited to facilitate
their solutions. This thesis has focused on taking advantage of chordal sparsity to develop
scalable methods for solving three classes of problems: large-scale sparse SDPs, distributed
control of networked systems, and large-scale SOS programs. We now conclude the thesis
by summarizing the main findings and discussing some future research directions.

10.1 Summary

As discussed in Section 2.2, chordal graphs possess many useful properties. In the context
of sparse PSD matrices, chordal sparsity allows one to derive an equivalent decomposition
of sparse PSD matrix cone (i.e., Theorem 2.10 and Theorem 2.17) and a dual result
on the decomposition of sparse PSD completable matrix cone (i.e., Theorem 2.13 and
Theorem 2.18). Overall, the main theme of this thesis has focused on exploiting the
chordal decomposition idea to decompose PSD constraints that appear in some large-scale
control and optimization problems, thus improving the solution efficiency.

Large-scale sparse SDPs

Part I of this thesis focused on general large-scale SDPs with chordal sparsity. Chapter 3
presented a conversion framework for this type of SDPs, which is analogous to the
conversion techniques for interior-point methods of [23, 24] and is more suitable for
the application of first-order methods. We then developed efficient ADMM algorithms
for sparse SDPs in either primal or dual standard form, and for their homogeneous
self-dual embedding. A single iteration of our ADMM algorithms only required parallel
projections onto small PSD cones and a projection onto an affine subspace. When
fixing the number of constraints, the complexity of each iteration is determined by the
size of the largest maximal clique, rather than the size of the original problem. All
our algorithms have been implemented in the open-source MATLAB package CDCS,

173

174 10.1. Summary

which has solved large sparse instances that are beyond the reach of standard interior-
point and/or other first-order methods.

In Chapter 4, we demonstrated the performance of CDCS in solving standard
systems analysis problems, including stability, H2, and H∞ norms, where block-diagonal
Lyapunov functions were used to maintain the sparsity pattern of the systems in
the analysis problems.

Distributed control of networked systems

In Chapters 5 and 6, we applied chordal decomposition in sparse Lyapunov-type LMIs
arising from structured stabilization and optimal decentralized control of networked
systems, respectively. By assuming the existence of block-diagonal Lyapunov functions
for the closed-loop systems, these two controller synthesis problems were converted into
certain LMIs which inherited the sparsity of networked systems. Accordingly, chordal
decomposition (Theorem 2.17) was used to decompose a single big LMI constraint
into multiple smaller and coupled LMI constraints according to maximal cliques of an
undirected graph. We discussed two different strategies to deal with the overlapping
elements among different maximal cliques in Chapters 5 and 6.

Chapter 5 introduced an equal-splitting strategy to divide the coupling effects between
the coupled LMI constraints, and proposed a sequential strategy to solve structured
feedback gains clique-by-clique over a clique tree. In this strategy, each maximal clique
solved a subproblem once and passed information along the clique tree. Consequently, this
sequential strategy greatly improved the computational efficiency of solving structured
feedback gains for large-scale sparse systems. Chapter 6 applied a “negotiating” process
based on the framework of ADMM, where each maximal clique solved subproblems
iteratively to reach consensus among overlapping variables. Only the existence of block-
diagonal Lyapunov functions was required for the feasibility of the ADMM algorithm.

Large-scale SOS programs

In Part III, we focused on exploiting structures and sparsity in large-scale SOS programs.
Chapter 7 revealed the structural property of partial orthogonality in the SDPs arising
from general SOS programs. We used this property to develop a fast ADMM algorithm
for the solution of SDPs describing SOS programs. This algorithm was implemented
as a new package in the solver CDCS.

Chapters 8 and 9 considered the role of chordal sparsity patterns in SOS problems.
In particular, in Chapter 8, we introduced the notion of decomposition and completion
of SOS matrices with chordal sparsity, and proved that 1) a subset of sparse SOS
matrices can be decomposed into a sum of SOS matrices that are nonzero only on a

10. Conclusion and outlook 175

principal submatrix (Theorem 8.2), and 2) a sparse polynomial matrix can be completed
into an SOS matrix if certain nonzero principal submatrices satisfy suitable SOS and
consistency conditions (Theorem 8.4). These two theorems provided an extension of the
well-established decomposition/completion results (Theorem 2.10 and Theorem 2.13) for
sparse positive semidefinite matrices to a subset of polynomial matrices.

The results in Chapter 8 motivated the topic of Chapter 9, where we built a unified
viewpoint to study SSOS, DSOS and SDSOS polynomials with sparsity based on a novel
graph-theoretic interpretation of their Gram matrix representation. We showed that
SSOS optimization is provably less conservative than its DSOS/SDSOS counterparts,
and that for polynomials with correlative sparsity patterns, SSOS optimization relies
on SDPs with multiple smaller positive semidefinite cones. Our results suggested that
SSOS optimization bridges the existing theoretical and computational gaps between
DSOS/SDSOS and SOS optimization for sparse instances.

10.2 Future research directions

In this final section, we outline some possible directions for future research related
to the work in this thesis.

Large-scale SDPs: Parallelization, accelerations, and rank constraints

In Chapter 3, we introduced efficient ADMM algorithms for SDPs with chordal sparsity.
The current implementation of our algorithms is sequential, but many steps can be
carried out in parallel, so further computational gains may be achieved by taking full
advantage of parallel computing architectures. Besides, it would be interesting to integrate
some acceleration techniques (e.g., [160, 161]) that promise to improve the convergence
performance of ADMM in practice.

Another interesting topic is to investigate decomposition methods for sparse SDPs
with rank constraints, which have many applications [162, 163]. Indeed, the chordal
decomposition and completion results (Theorem 2.10 and Theorem 2.13) can incorporate
certain rank constraints. Precisely, given a chordal sparsity pattern E with maximal
cliques C1, . . . , Ct, we have 1) Z ∈ Sn+(E , 0) if and only if there exist matrices Zk ∈ S|Ck|+ for
k = 1, . . . , t such that Z = ∑t

k=1E
T
CkZkECk and rank(Z) = ∑t

k=1 rank(Zk) [22, Theorem
1]; 2) ∀X ∈ Sn+(E , ?), there exists a minimum PSD completion X̂ such that rank(X̂) =
maxk rank(ECkXET

Ck) [164, Theorem 1.9]. Further work is required to investigate the
applications of these decomposition results with rank constraints in SDPs (e.g., when
combining them with the nuclear norm approximation [163]).

176 10.2. Future research directions

Distributed control: Beyond block-diagonal Lyapunov functions

The methods developed in Chapters 4, 5, and 6 and of this thesis rely on the existence
of block-diagonal Lyapunov functions (see also Appendix A for more discussions). An
interesting question is to look for certain classes of networked systems where block-
diagonal Lyapunov functions are necessary and sufficient for stability verification or
H2/H∞ performance analysis. It is known that the stability of positive systems is
equivalent to the existence of diagonal Lyapunov functions [89]. One interesting question
is whether one can build a “block” version of positive systems.

Another natural research topic is to investigate Lyapunov functions that are beyond
block-diagonal for the distributed control of networked systems. Two important issues for
this direction are: how to guarantee the structures of distributed controllers, and how
to maintain the sparsity pattern of the system to facilitate chordal decomposition (i.e.,
sparsity invariance within both controllers and optimization problems). It would be also
interesting to investigate possible connections between the idea of sparsity invariance
with other synthesis methods, e.g., the quadratic invariance framework [5], and the
system level approach [123].

SOS problems: Sparsity structure, rational polynomials, Positivstellensatz, moment
interpretation

The results in Chapter 9 motivate the development of robust methods that exploit sparsity
in the system’s governing equations and result in sparse polynomial non-negativity
conditions. In the examples of Section 9.6.4, we have done this by choosing a Lyapunov
function with a structure such that the correlative sparsity of the governing equations
is inherited in the eventual non-negativity constraints, but this construction was made
possible by the simplicity of our example. One interesting future topic is to identify
a general procedure to formulate sparse SOS conditions that is essential to enable the
analysis of large-scale sparse nonlinear systems.

One main theme of this thesis is the investigation of chordal decomposition/completion
results in large-scale systems. A simple case is the following decomposition (∗ denotes
a scalar or a block with suitable dimension)∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

=

∗ ∗ 0
∗ ∗ 0
0 0 0


︸ ︷︷ ︸

�0

+

0 0 0
0 ∗ ∗
0 ∗ ∗


︸ ︷︷ ︸

�0

. (10.1)

Chapter 8 extended this decomposition to a subset of SOS matrices. One can show
that the decomposition (10.1) does not hold for PSD polynomial matrices in general1.

1Indeed, counterexamples can be found via convex optimization using the fact a univariate polynomial
matrix is PSD if and only if it is an SOS matrix [165].

10. Conclusion and outlook 177

Still, the induction proof in [22, 56] suggests that this decomposition may hold when
each addend is allowed to have rational polynomials.

The SOS condition in Chapter 8 is a global certificate of positive semidefiniteness of a
polynomial matrix in Rn. A very interesting topic is to restrict our attention to compact
basic semi-algebraic sets K ∈ Rn. Recall that a basic semi-algebraic set is defined by a finite
number of polynomial inequalities: K := {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}. Then, we can
investigate certificates of positive semidefiniteness on K. This leads to the representation
theory of Positivstellensatz (see, e.g, [125, Chapter 2] and [166] for excellent surveys). In
particular, a sparse version of Putinar’s Positivstellensatz [167] was proven in [32] and a
matrix version of Putinar’s Positivstellensatz was proven in [142]. An interesting question
is whether one can establish a sparse-matrix version of Putinar’s Positivstellensatz. We
can also investigate positive semidefiniteness certificates over spectrahedra (a set defined
by finitely many LMIs), especially when the LMIs have chordal sparsity.

As a final remark of this thesis, it is known that the SOS theory has a dual facet
corresponding to the moment theory [125]. It would be very interesting to look into the
moment interpretation of the decomposition results in Chapters 8 and 9.

Appendices

179

A
On block-diagonal Lyapunov functions

This appendix provides some discussions on block-diagonal Lyapunov functions and
strongly decentralized stabilization.

A.1 Block-diagonal Lyapunov functions

A linear system ẋ(t) = Ax(t) is asymptotically stable if and only if there exists a
symmetric matrix P � 0 satisfying the Lyapunov LMI [10]

ATP + PA ≺ 0. (A.1)

In general, the solution P is a dense matrix, which defines a Lyapunov function of the form

V (x) = xT(t)Px(t).

In some applications, we are interested in a diagonal or block-diagonal solution, leading
to the notion of diagonal stability or block-diagonal stability [168].

Definition A.1. A linear system is called block-diagonally stable if there exists a block-
diagonal P satisfying (A.1), where the block sizes of P are compatible with those of the
subsystems. Further, if the subsystem size is scalar, then P is diagonal and the system is
called diagonally stable.

There exist necessary and sufficient conditions for diagonal stability of systems of
dimension three or four [168]. For higher dimensional systems, conditions have been
established under certain assumptions on the dynamical systems: it is known that
for positive systems, the stability is equivalent to the existence of diagonal Lyapunov
functions [89]; necessary and sufficient conditions were also derived for diagonal stability
of special classes of interconnected systems that are widespread in biological networks,
such as the secant criterion in cyclic structures [169] and its generalization on cactus
graphs [170]. The conditions for block-diagonal stability were discussed in [49, 171–173].

181

182 A.2. Strongly decentralized stabilization

A.2 Strongly decentralized stabilization

Here, we consider a linear system with control input, as considered in (5.1). For
convenience, we restate the dynamics as

ẋ(t) = Ax(t) +Bu(t), (A.2)

where x(t) = [x1(t)T, . . . , xN (t)T]T and similarly for u(t).

Definition A.2 (Stabilization). System (A.2) is called stabilizable, if there exists a
centralized controller u = −Kx such that the closed-loop system ẋ = (A − BK)x is
asymptotically stable.

Definition A.3 (Decentralized stabilization [115]). System (A.2) is called decentralized
stabilizable, if there exists a decentralized controller ui = −Kiixi, i ∈ V such that the
closed-loop system ẋ = (A−BK)x is asymptotically stable.

Definition A.4 (Strongly decentralized stabilization [110]). System (A.2) is called
strongly decentralized stabilizable if there exists a decentralized ui = −Kiixi, i ∈ V
such that the closed-loop system ẋ = (A − BK)x admits a block-diagonal Lyapunov
function V (x) = ∑N

i=1 x
T
i Pixi.

Then, we define three classes of complex systems:

Σ0 = {(A,B) | System (A.2) is stabilizable},

Σ1 = {(A,B) | System (A.2) is decentralized stabilizable},

Σ2 = {(A,B) | System (A.2) is strongly decentralized stabilizable}.

It is easy to see Σ2 ⊆ Σ1 ⊆ Σ0. In fact, simple counterexamples can show the inclusion
relationship is strict Σ2 ⊂ Σ1 ⊂ Σ0. The sets Σ0 and Σ1 can be algebraically characterized
by centralized fixed modes and decentralized fixed modes [115, 174]. Some results are
available to characterize the decentralized fixed modes of a complex system [174, 175].
In this section, we discuss two classes of systems: 1) fully actuated systems, and 2)
weakly coupled systems.

A.2.1 Fully actuated systems

Definition A.5 (Fully actuated systems). System (A.2) is called fully actuated, if each
input matrix Bi has full row rank, i ∈ V.

Proposition A.6. If system (6.2) is fully actuated, then we have (A,B) ∈ Σ2.

A. On block-diagonal Lyapunov functions 183

Proof. Consider the singular value decomposition of the input matrix Bi,

Bi = Ui
[
Γi 0

]
V T
i , (A.3)

where 0 is a zero block of appropriate size, and Γi ∈ Rni×ni is invertible since Bi has full
row rank. We then consider a decentralized feedback controller

Kii = Vi

[
Γ−1
i

0

]
UT
i (Aii + αiIni), i ∈ V, (A.4)

where αi ∈ R. This choice leads to

Aii −BiKii = −αiIni , i ∈ V.

Using the decentralized controller (A.4), the closed-loop system matrix becomes

A−BK =


−α1In1 A12 . . . A1N
A21 −α2In2 . . . A2N
...

...
AN1 AN2 . . . −αNInN

 . (A.5)

By choosing an appropriate αi > 0, we can always make A−BK diagonally dominant
with negative diagonal elements. Therefore, A − BK is diagonally stable, i.e., there
exists a diagonal Lyapunov function to certify the stability of (A.5). Therefore, we have
(A,B) ∈ Σ2. �

In essence, a fully actuated system is able to actuate each individual state directly. If the
dimension of each subsystem is scalar, i.e., ni = 1, then the condition in Proposition A.6
means that the system pair of (Ai, Bi) is controllable. For general subsystems, the
condition that Bi has full rank is stronger than the controllability of (Ai, Bi).

A.2.2 Weakly coupled systems

Here, we discuss two types of weakly coupled systems: topologically weakly coupled
systems and dynamically weakly coupled systems. A directed graph G is called acyclic
if there exist no directed cycles in G. A complex system with an acyclic Gp means that
the dynamical influence among subsystems is unidirectional.

Definition A.7 (Topologically weakly coupled system). System (A.2) is called weakly
coupled in terms of topological connections, if the plant graph Gp is acyclic.

Proposition A.8. For the class of topologically weakly coupled systems, we have

Σ1 = Σ2 = {(A,B) | (Aii, Bi) is stabilizable, i ∈ V}.

184 A.2. Strongly decentralized stabilization

Proof. This result is a simple consequence of [49, 171]. If Gp is acyclic, then there exists
an ordering of the nodes such that for every edge (v1, v2), node v1 comes before node v2

in the ordering. For this ordering, the resulting system matrix A is block lower triangular.
Thus, without loss of generality, for a topologically weakly coupled system (6.2), the
closed-loop system with a decentralized controller remains block lower triangular. It is
known that a block triangular matrix is stable if and only if it is block-diagonally stable [49,
171], i.e., there exists a block-diagonal Lyapunov function to certify the stability of the
closed-loop system. Therefore, for the class of topologically weakly coupled systems, we
have (A,B) ∈ Σ1 ⇔ (A,B) ∈ Σ2. Meanwhile, considering the block triangular structure,
the overall closed-loop system is stable if and only if each isolated closed-loop subsystem
Aii −BiKii is stable, i ∈ V. This completes the proof. �

Next, we consider dynamically weakly coupled systems. If each pair (Aii, Bi) is
stabilizable, then there exists a local feedback Kii such that Aii − BiKii is stable.
Consequently, given any Qi � 0, there exists a Pi � 0, such that

(Aii −BiKii)TPi + Pi(Aii −BiKii) +Qi ≺ 0.

If the coupling term Aij is element-wise small (i.e., low magnitude interactions), there
may still exist a solution Pi � 0 for the following inequality

(Aii −BiKii)TPi + Pi(Aii −BiKii) + Pi

(∑
j∈Ni

AijA
T
ij

)
Pi +Qi ≺ 0. (A.6)

This observation leads to a concept of dynamically weakly coupled systems.

Definition A.9 (Dynamically weakly coupled systems). System (A.2) is weakly coupled
in terms of dynamical interactions, if there exists a local feedback Kii such that the
following inequality holds

(Aii −BiKii)TPi + Pi(Aii −BiKii) + Pi

∑
j∈Ni

AijW
−1
ij A

T
ij

Pi +
∑
j∈N̂i

Wji ≺ 0, (A.7)

for some Wij � 0, j ∈ Ni, Pi � 0, i ∈ V, where N̂i denotes the set of nodes coming out of
node i in Gp.

Definition A.9 is more general than condition (A.6), since inequality (A.7) is reduced
to (A.6) when setting Wij = Inj , j ∈ Ni, and Qi = σiIni , where σi denotes the
number of nodes in N̂i.

Lemma A.10. Given two matrices X,Y of appropriate dimensions, we have XTWX +
Y TW−1Y � XTY + Y TX for any W � 0 of appropriate dimension.

A. On block-diagonal Lyapunov functions 185

Proposition A.11. For a dynamically weakly coupled system (A.2), i.e., (A.7) holds,
we have (A,B) ∈ Σ2.

Proof. Consider a decentralized controller K = diag(K11, . . . ,KNN). Upon defining
Âii = Aii − BiKii and ignoring the disturbance, the closed-loop dynamics for each
subsystem become

ẋi(t) = Âiixi(t) +
∑
j∈Ni

Aijxj(t), ∀ i ∈ V. (A.8)

Next, we consider a block-diagonal Lyapunov function V (x) = ∑N
i=1 x

T
i (t)Pixi(t). The

derivative of V (x) along the closed-loop trajectory (A.8) is

V̇ (x) =
N∑
i=1

(
ẋT
i Pixi + xT

i Piẋi
)

=
N∑
i=1

(
xT
i

(
ÂT
iiPi + PiÂii

)
xi +

(∑
j∈Ni

Aijxj
)T
Pixi + xT

i Pi
(∑
j∈Ni

Aijxj
)

︸ ︷︷ ︸
coupling term

)
.

(A.9)

For the coupling term in (A.9), according to Lemma 1, we have(∑
j∈Ni

Aijxj
)T
Pixi + xT

i Pi
(∑
j∈Ni

Aijxj
)

=
∑
j∈Ni

(
xT
j A

T
ijPixi + xT

i PiAijxj
)

≤
∑
j∈Ni

(
xT
i PiAijW

−1
ij A

T
ijPixi + xT

jWijxj
)
,

(A.10)
for any Wij � 0, j ∈ Ni. Substituting (A.10) into (A.9), we get

V̇ (x) ≤
N∑
i=1

(
xT
i

(
ÂT
iiPi + PiÂii + Pi(

∑
j∈Ni

AijW
−1
ij A

T
ij)Pi

)
xi +

∑
j∈Ni

xTj Wijxj

)

=
N∑
i=1

xT
i

(
ÂTiiPi + PiÂii + Pi

(∑
j∈Ni

AijW
−1
ij A

T
ij

)
Pi +

∑
j∈N̂i

Wji

)
xi.

If condition (A.7) holds for some Wij � 0, j ∈ Ni, Pi � 0, i ∈ V, then, V̇ (x) is negative
definite. Thus, V (s) is a block-diagonal Lyapunov function for the closed-loop system. �

References

[1] D. D. Siljak. Decentralized control of complex systems. Courier Corporation, 2011.
[2] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási. “Controllability of complex networks”. In:

Nature 473.7346 (2011), p. 167.
[3] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
[4] D. P. Bertsekas. Convex optimization theory. Athena Scientific Belmont, 2009.
[5] M. Rotkowitz and S. Lall. “A Characterization of Convex Problems in Decentralized

Control”. In: IEEE Transactions on Automatic Control 51.2 (2006), pp. 274–286.
[6] J. Lavaei and S. H. Low. “Zero duality gap in optimal power flow problem”. In: IEEE

Transactions on Power Systems 27.1 (2012), p. 92.
[7] P. A. Parrilo. “Structured semidefinite programs and semialgebraic geometry methods in

robustness and optimization”. PhD thesis. California Institute of Technology, 2000.
[8] J.-B. Lasserre.Moments, positive polynomials and their applications. Vol. 1. World Scientific,

2010.
[9] A. Papachristodoulou and S. Prajna. “A tutorial on sum of squares techniques for systems

analysis”. In: Proceedings of the American Control Conference. IEEE. 2005, pp. 2686–2700.
[10] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system

and control theory. Vol. 15. SIAM, 1994.
[11] G. Blekherman, P. A. Parrilo, and R. R. Thomas. Semidefinite optimization and convex

algebraic geometry. SIAM, 2012.
[12] S. Kim, M. Kojima, and H. Waki. “Exploiting sparsity in SDP relaxation for sensor network

localization”. In: SIAM Journal on Optimization 20.1 (2009), pp. 192–215.
[13] R. P. Mason and A. Papachristodoulou. “Chordal sparsity, decomposing SDPs and the

Lyapunov equation”. In: American Control Conference (ACC). IEEE. 2014, pp. 531–537.
[14] J. R. Blair and B. Peyton. “An introduction to chordal graphs and clique trees”. In: Graph

theory and sparse matrix computation. Springer, 1993, pp. 1–29.
[15] L. Vandenberghe and M. S. Andersen. “Chordal graphs and semidefinite optimization”. In:

Foundations and Trends® in Optimization 1.4 (2015), pp. 241–433.
[16] F. Gavril. “Algorithms for minimum coloring, maximum clique, minimum covering by

cliques, and maximum independent set of a chordal graph”. In: SIAM Journal on Computing
1.2 (1972), pp. 180–187.

[17] D. J. Rose. “Triangulated graphs and the elimination process”. In: Journal of Mathematical
Analysis and Applications 32.3 (1970), pp. 597–609.

[18] J. Dahl, L. Vandenberghe, and V. Roychowdhury. “Covariance selection for nonchordal
graphs via chordal embedding”. In: Optimization Methods & Software 23.4 (2008), pp. 501–
520.

[19] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz. “Positive definite completions of
partial Hermitian matrices”. In: Linear Algebra and its Applications 58 (1984), pp. 109–124.

187

188 References

[20] J. Agler, W. Helton, S. McCullough, and L. Rodman. “Positive semidefinite matrices with
a given sparsity pattern”. In: Linear Algebra and its Applications 107 (1988), pp. 101–149.

[21] A. Griewank and P. L. Toint. “On the existence of convex decompositions of partially
separable functions”. In: Mathematical Programming 28.1 (1984), pp. 25–49.

[22] N. Kakimura. “A direct proof for the matrix decomposition of chordal-structured positive
semidefinite matrices”. In: Linear Algebra and its Applications 433.4 (2010), pp. 819–823.

[23] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. “Exploiting sparsity in semidefi-
nite programming via matrix completion I: General framework”. In: SIAM Journal on
Optimization 11.3 (2001), pp. 647–674.

[24] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. “Exploiting sparsity in linear and
nonlinear matrix inequalities via positive semidefinite matrix completion”. In: Mathematical
Programming 129.1 (2011), pp. 33–68.

[25] M. S. Andersen, J. Dahl, and L. Vandenberghe. “Implementation of nonsymmetric interior-
point methods for linear optimization over sparse matrix cones”. In: Mathematical Pro-
gramming Computation 2.3-4 (2010), pp. 167–201.

[26] Y. Sun, M. S. Andersen, and L. Vandenberghe. “Decomposition in conic optimization with
partially separable structure”. In: SIAM Journal on Optimization 24.2 (2014), pp. 873–897.

[27] A. Kalbat and J. Lavaei. “A fast distributed algorithm for decomposable semidefinite
programs”. In: Decision and Control (CDC), IEEE 54th Annual Conference on. IEEE.
2015, pp. 1742–1749.

[28] R. Madani, A. Kalbat, and J. Lavaei. “ADMM for sparse semidefinite programming with
applications to optimal power flow problem”. In: Decision and Control (CDC), IEEE 54th
Annual Conference on. IEEE. 2015, pp. 5932–5939.

[29] M. S. Andersen, A. Hansson, and L. Vandenberghe. “Reduced-complexity semidefinite
relaxations of optimal power flow problems”. In: IEEE Transactions on Power Systems
29.4 (2014), pp. 1855–1863.

[30] R. A. Jabr. “Exploiting sparsity in SDP relaxations of the OPF problem”. In: IEEE
Transactions on Power Systems 27.2 (2012), pp. 1138–1139.

[31] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. “Sums of squares and semidefinite
program relaxations for polynomial optimization problems with structured sparsity”. In:
SIAM Journal on Optimization 17.1 (2006), pp. 218–242.

[32] J. B. Lasserre. “Convergent SDP-relaxations in polynomial optimization with sparsity”. In:
SIAM Journal on Optimization 17.3 (2006), pp. 822–843.

[33] R. Mason. “A chordal sparsity approach to scalable linear and nonlinear systems analysis”.
PhD thesis. University of Oxford, 2015.

[34] M. Andersen, S. Pakazad, A. Hansson, and A. Rantzer. “Robust stability analysis of
sparsely interconnected uncertain systems”. In: IEEE Transactions on Automatic Control
59.8 (2014), pp. 2151–2156.

[35] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. CDCS: Cone
Decomposition Conic Solver. https://github.com/oxfordcontrol/CDCS. Sept. 2016.

[36] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. “Chordal decom-
position in operator-splitting methods for sparse semidefinite programs”. In: Mathematical
Programming, series A., accepted (2019).

[37] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. “Fast ADMM for
homogeneous self-dual embedding of sparse SDPs”. In: IFAC-PapersOnLine 50.1 (2017),
pp. 8411–8416.

[38] Y. Zheng, G. Fantuzzi, A. Papachristodoulou, P. Goulart, and A. Wynn. “Fast ADMM for
semidefinite programs with chordal sparsity”. In: American Control Conference (ACC).
IEEE. 2017, pp. 3335–3340.

https://github.com/oxfordcontrol/CDCS

References 189

[39] Y. Zheng, M. Kamgarpour, A. Sootla, and A. Papachristodoulou. “Scalable analysis of
linear networked systems via chordal decomposition”. In: 2018 European Control Conference
(ECC). 2018, pp. 2260–2265.

[40] Y. Zheng, R. P. Mason, and A. Papachristodoulou. “A chordal decomposition approach
to scalable design of structured feedback gains over directed graphs”. In: IEEE 55th
Conference on Decision and Control (CDC). IEEE. 2016, pp. 6909–6914.

[41] Y. Zheng, R. P. Mason, and A. Papachristodoulou. “Scalable design of structured controllers
using chordal decomposition”. In: IEEE Transactions on Automatic Control 63.3 (2018),
pp. 752–767.

[42] Y. Zheng, M. Kamgarpour, A. Sootla, and A. Papachristodoulou. “Distributed design
of decentralized controllers using chordal decomposition and ADMM”. In: In submission
(2018).

[43] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Fast ADMM for sum-of-squares
programs using partial orthogonality”. In: IEEE Transactions on Automatic Control PP.99
(2018).

[44] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Decomposition and completion of
sum-of-squares matrices”. In: 2018 IEEE Conference on Decision and Control (CDC).
2018, pp. 4026–4031.

[45] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Sparse sum-of-squares (SOS) optimiza-
tion: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials”. In:
arXiv preprint arXiv:1807.05463 (2018).

[46] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Decomposition methods for large-
scale semidefinite programs with chordal aggregate sparsity and partial orthogonality”. In:
Large-Scale and Distributed Optimization. Ed. by P. Giselsson and A. Rantzer. Springer
International Publishing, 2018. Chap. 3.

[47] A. A. Ahmadi, G. Hall, A. Papachristodoulou, J. Saunderson, and Y. Zheng. “Improving
efficiency and scalability of sum of squares optimization: Recent advances and limitations”.
In: Decision and Control (CDC), IEEE 56th Annual Conference on. IEEE. 2017, pp. 453–
462.

[48] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou. “Exploiting sparsity in the coefficient
matching conditions in sum-of-squares programming using ADMM”. In: IEEE Control
System Letter 1.1 (2017), pp. 80–85.

[49] A. Sootla, Y. Zheng, and A. Papachristodoulou. “Block-diagonal solutions to Lyapunov
inequalities and generalisations of diagonal dominance”. In: Decision and Control (CDC),
IEEE 56th Annual Conference on. IEEE. 2017, pp. 6561–6566.

[50] A. Sootla, Y. Zheng, and A. Papachristodoulou. “Block factor-width-two matrices in
semidefinite programming”. In: European Control Conference (ECC), accepted (2019).

[51] L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour. “On separable quadratic
Lyapunov functions for convex design of distributed controllers”. In: European Control
Conference (ECC), accepted (2019).

[52] P. A. Parrilo. “Semidefinite programming relaxations for semialgebraic problems”. In:
Mathematical programming 96.2 (2003), pp. 293–320.

[53] R. E. Tarjan and M. Yannakakis. “Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs”. In:
SIAM Journal on computing 13.3 (1984), pp. 566–579.

[54] M. Yannakakis. “Computing the minimum fill-in is NP-complete”. In: SIAM Journal on
Algebraic Discrete Methods 2.1 (1981), pp. 77–79.

[55] K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota. “Exploiting sparsity
in semidefinite programming via matrix completion II: Implementation and numerical
results”. In: Mathematical Programming 95.2 (2003), pp. 303–327.

190 References

[56] A. Rantzer. “Distributed performance analysis of heterogeneous systems”. In: 49th IEEE
Conference on Decision and Control (CDC). IEEE. 2010, pp. 2682–2685.

[57] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.
[58] L. Vandenberghe and S. Boyd. “Semidefinite programming”. In: SIAM review 38.1 (1996),

pp. 49–95.
[59] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. “Primal-dual interior-point methods for

semidefinite programming: convergence rates, stability and numerical results”. In: SIAM
Journal on Optimization 8.3 (1998), pp. 746–768.

[60] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. “An interior-point method for
semidefinite programming”. In: SIAM Journal on Optimization 6.2 (1996), pp. 342–361.

[61] J. Malick, J. Povh, F. Rendl, and A. Wiegele. “Regularization methods for semidefinite
programming”. In: SIAM Journal on Optimization 20.1 (2009), pp. 336–356.

[62] Z. Wen, D. Goldfarb, and W. Yin. “Alternating direction augmented Lagrangian methods
for semidefinite programming”. In: Mathematical Programming Computation 2.3-4 (2010),
pp. 203–230.

[63] X.-Y. Zhao, D. Sun, and K.-C. Toh. “A Newton-CG augmented Lagrangian method for
semidefinite programming”. In: SIAM Journal on Optimization 20.4 (2010), pp. 1737–1765.

[64] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. “Conic optimization via operator
splitting and homogeneous self-dual embedding”. In: Journal of Optimization Theory and
Applications 169.3 (2016), pp. 1042–1068.

[65] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. SCS: Splitting Conic Solver, version
1.2.6. https://github.com/cvxgrp/scs. Apr. 2016.

[66] M. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe. “Interior-point methods for large-scale
cone programming”. In: Optimization for Machine Learning 5583 (2011).

[67] K Fujisawa, S Kim, M Kojima, Y Okamoto, and M Yamashita. “User’s manual for
SparseCoLO: Conversion methods for sparse conic-form linear optimization problems”.
In: Research Report B-453, Dept. of Math. and Comp. Sci. Japan, Tech. Rep. (2009),
pp. 152–8552.

[68] S. Burer. “Semidefinite programming in the space of partial positive semidefinite matrices”.
In: SIAM Journal on Optimization 14.1 (2003), pp. 139–172.

[69] E. Dall’Anese, H. Zhu, and G. B. Giannakis. “Distributed optimal power flow for smart
microgrids”. In: IEEE Transactions on Smart Grid 4.3 (2013), pp. 1464–1475.

[70] B. Borchers. “SDPLIB 1.2, a library of semidefinite programming test problems”. In:
Optimization Methods and Software 11.1-4 (1999), pp. 683–690.

[71] J. F. Sturm. “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones”. In: Optimization Methods and Software 11.1-4 (1999), pp. 625–653.

[72] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. “Distributed optimization and
statistical learning via the alternating direction method of multipliers”. In: Foundations
and Trends® in Machine learning 3.1 (2011), pp. 1–122.

[73] Y. Saad. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.
[74] M. Yan and W. Yin. “Self equivalence of the alternating direction method of multipliers”.

In: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer,
2016, pp. 165–194.

[75] G. Banjac, P. Goulart, B. Stellato, and S. Boyd. “Infeasibility detection in the alternating
direction method of multipliers for convex optimization”. In: optimization-online.org (June
2017). url: http://www.optimization-online.org/DB_HTML/2017/06/6058.html.

https://github.com/cvxgrp/scs
http://www.optimization-online.org/DB_HTML/2017/06/6058.html

References 191

[76] Y. Liu, E. K. Ryu, and W. Yin. “A New Use of Douglas-Rachford Splitting and ADMM for
Identifying Infeasible, Unbounded, and Pathological Conic Programs”. In: arXiv preprint
arXiv:1706.02374 (2017).

[77] Y. Ye, M. J. Todd, and S. Mizuno. “An O
√
nL-iteration homogeneous and self-dual linear

programming algorithm”. In: Mathematics of Operations Research 19.1 (1994), pp. 53–67.
[78] Y. Ye. Interior point algorithms: theory and analysis. John Wiley & Sons, 2011.
[79] J. Lofberg. “YALMIP: A toolbox for modeling and optimization in MATLAB”. In: Computer

Aided Control Systems Design, IEEE International Symposium on. IEEE. 2004, pp. 284–289.
[80] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. Parrilo.

“SOSTOOLS version 3.00 sum of squares optimization toolbox for MATLAB”. In: arXiv
preprint arXiv:1310.4716 (2013).

[81] T. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.
[82] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson. “Optimal parameter selection for

the alternating direction method of multipliers (ADMM): quadratic problems”. In: IEEE
Transactions on Automatic Control 60.3 (2015), pp. 644–658.

[83] T. A. Davis and Y. Hu. “The University of Florida sparse matrix collection”. In: ACM
Transactions on Mathematical Software (TOMS) 38.1 (2011), p. 1.

[84] P Moylan and D Hill. “Stability criteria for large-scale systems”. In: IEEE Transactions
on Automatic Control 23.2 (1978), pp. 143–149.

[85] M Vidyasagar. “New passivity-type criteria for large-scale interconnected systems”. In:
IEEE Transactions on Automatic Control 24.4 (1979), pp. 575–579.

[86] C. Meissen, L. Lessard, M. Arcak, and A. K. Packard. “Compositional performance
certification of interconnected systems using ADMM”. In: Automatica 61 (2015), pp. 55–63.

[87] J. Anderson and A. Papachristodoulou. “A decomposition technique for nonlinear dynamical
system analysis”. In: IEEE Transactions on Automatic Control 57.6 (2012), pp. 1516–1521.

[88] L. Farina and S. Rinaldi. Positive linear systems: theory and applications. Vol. 50. John
Wiley & Sons, 2011.

[89] A. Rantzer. “Scalable control of positive systems”. In: European Journal of Control 24
(2015), pp. 72–80.

[90] T. Tanaka and C. Langbort. “The bounded real lemma for internally positive systems and
H-infinity structured static state feedback”. In: IEEE Transactions on Automatic Control
56.9 (2011), pp. 2218–2223.

[91] A. Sootla and A. Rantzer. “Scalable positivity preserving model reduction using linear
energy functions”. In: Decision and Control (CDC), IEEE 51st Annual Conference on.
IEEE. 2012, pp. 4285–4290.

[92] R. Albert and A.-L. Barabási. “Statistical mechanics of complex networks”. In: Reviews of
Modern Physics 74.1 (2002), p. 47.

[93] A. Zečević and D. Šiljak. “Control design with arbitrary information structure constraints”.
In: Automatica 44.10 (2008), pp. 2642–2647.

[94] J. Swigart and S. Lall. “Optimal controller synthesis for decentralized systems over graphs
via spectral factorization”. In: IEEE Transactions on Automatic Control 59.9 (2014),
pp. 2311–2323.

[95] Y. Zheng, S. Eben Li, J. Wang, D. Cao, and K. Li. “Stability and scalability of homogeneous
vehicular platoon: Study on the influence of information flow topologies”. In: IEEE
Transactions on Intelligent Transportation Systems 17.1 (2016), pp. 14–26.

[96] F. DorIer, M. R. Jovanovic, M. Chertkov, and F. Bullo. “Sparsity-promoting optimal
wide-area control of power networks”. In: IEEE Transactions on Power System 29.5 (2014),
pp. 2281–2291.

192 References

[97] D. M. Stipanović, G. Inalhan, R. Teo, and C. J. Tomlin. “Decentralized overlapping control
of a formation of unmanned aerial vehicles”. In: Automatica 40.8 (2004), pp. 1285–1296.

[98] Y. Zheng, S. E. Li, K. Li, and L.-Y. Wang. “Stability margin improvement of vehicular
platoon considering undirected topology and asymmetric control”. In: IEEE Transactions
on Control Systems Technology 24.4 (2016), pp. 1253–1265.

[99] V. Blondel and J. N. Tsitsiklis. “NP-hardness of some linear control design problems”. In:
SIAM Journal on Control and Optimization 35.6 (1997), pp. 2118–2127.

[100] P. Shah and P. Parrilo. “H2-Optimal decentralized control over posets: A state-space
solution for state-feedback”. In: IEEE Transactions on Automatic Control 58.12 (2013),
pp. 3084–3096.

[101] J.-H. Kim and S. Lall. “Explicit solutions to separable problems in optimal cooperative
control”. In: IEEE Transactions on Automatic Control 60.5 (2015), pp. 1304–1319.

[102] G. Fazelnia, R. Madani, A. Kalbat, and J. Lavaei. “Convex relaxation for optimal distributed
control problems”. In: IEEE Transactions on Automatic Control 62.1 (2017), pp. 206–221.

[103] K. Dvijotham, E. Todorov, and M. Fazel. “Convex structured controller design in finite
horizon”. In: IEEE Transactions on Control of Network Systems 2.1 (2015), pp. 1–10.

[104] F. Lin, M. Fardad, and M. R. Jovanovic. “Augmented Lagrangian approach to design of
structured optimal state feedback gains”. In: IEEE Transactions on Automatic Control
56.12 (2011), pp. 2923–2929.

[105] F. Lin, M. Fardad, and M. R. Jovanovic. “Design of optimal sparse feedback gains via the
alternating direction method of multipliers”. In: IEEE Transactions on Automatic Control
58.9 (2013), pp. 2426–2431.

[106] A. Satya Mohan Vamsi and N. Elia. “Optimal distributed controllers realizable over arbitrary
networks”. In: IEEE Transactions on Automatic Control 61.1 (2016), pp. 129–144.

[107] W. Su, H. Eichi, W. Zeng, and M.-Y. Chow. “A survey on the electrification of transportation
in a smart grid environment”. In: IEEE Transactions on Industrial Informatics 8.1 (2012),
pp. 1–10.

[108] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen. “Data-driven intelligent
transportation systems: A survey”. In: IEEE Transactions on Intelligent Transportation
Systems 12.4 (2011), pp. 1624–1639.

[109] M. J. Wainwright and M. I. Jordan. “Graphical models, exponential families, and variational
inference”. In: Foundations and Trends® in Machine Learning 1.1-2 (2008), pp. 1–305.

[110] J. C. Geromel, J. Bernussou, and P. L. D. Peres. “Decentralized control through parameter
space optimization”. In: Automatica 30.10 (1994), pp. 1565–1578.

[111] S. E. Li, Y. Zheng, K. Li, and J. Wang. “An overview of vehicular platoon control under
the four-component framework”. In: Intelligent Vehicles Symposium (IV). IEEE. 2015,
pp. 286–291.

[112] M. Yamashita, K. Fujisawa, and M. Kojima. “Implementation and evaluation of SDPA 6.0
(semidefinite programming algorithm 6.0)”. In: Optimization Methods and Software 18.4
(2003), pp. 491–505.

[113] S. K. Pakazad, A. Hansson, M. S. Andersen, and A. Rantzer. “Distributed semidefinite
programming with application to large-scale system analysis”. In: IEEE Transactions on
Automatic Control 63.4 (2018), pp. 1045–1058.

[114] M. Razeghi-Jahromi and A. Seyedi. “Stabilization of networked control systems with Sparse
observer-controller networks”. In: IEEE Transactions on Automatic Control 60.6 (2015),
pp. 1686–1691.

[115] S.-H. Wang and E. Davison. “On the stabilization of decentralized control systems”. In:
IEEE Transactions on Automatic Control 18.5 (1973), pp. 473–478.

References 193

[116] M. R. Jovanović and N. K. Dhingra. “Controller architectures: Tradeoffs between perfor-
mance and structure”. In: European Journal of Control 30 (2016), pp. 76–91.

[117] C. Langbort and J.-C. Delvenne. “Distributed design methods for linear quadratic control
and their limitations”. In: IEEE Transactions on Automatic Control 55.9 (2010), pp. 2085–
2093.

[118] J. Lunze. Feedback control of large scale systems. Prentice Hall PTR, 1992.
[119] F. Farokhi, C. Langbort, and K. H. Johansson. “Optimal structured static state-feedback

control design with limited model information for fully-actuated systems”. In: Automatica
49.2 (2013), pp. 326–337.

[120] P. Giselsson, M. D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer. “Accelerated
gradient methods and dual decomposition in distributed model predictive control”. In:
Automatica 49.3 (2013), pp. 829–833.

[121] F. Deroo, M. Meinel, M. Ulbrich, and S. Hirche. “Distributed control design with local model
information and guaranteed stability”. In: 19th IFAC World Congress. 2014, pp. 4010–4017.

[122] M. Ahmadi, M. Cubuktepe, U. Topcu, and T. Tanaka. “Distributed synthesis using
accelerated ADMM”. In: 2018 Annual American Control Conference (ACC). IEEE. 2018,
pp. 6206–6211.

[123] Y.-S. Wang, N. Matni, and J. C. Doyle. “Separable and localized system level synthesis for
large-scale systems”. In: IEEE Transactions on Automatic Control (2018).

[124] A. A. Ahmadi and A. Majumdar. “DSOS and SDSOS optimization: more tractable alterna-
tives to sum of squares and semidefinite optimization”. In: arXiv preprint arXiv:1706.02586
(2017).

[125] J. B. Lasserre. “Moments and sums of squares for polynomial optimization and related
problems”. In: Journal of Global Optimization 45.1 (2009), pp. 39–61.

[126] J. Anderson and A. Papachristodoulou. “Advances in computational Lyapunov analysis
using sum-of-squares programming”. In: Discrete & Continuous Dynamical Systems-Series
B 20.8 (2015).

[127] J. B. Lasserre. “Global optimization with polynomials and the problem of moments”. In:
SIAM Journal on Optimization 11.3 (2001), pp. 796–817.

[128] F. Permenter and P. A. Parrilo. “Basis selection for SOS programs via facial reduction
and polyhedral approximations”. In: Decision and Control (CDC), IEEE 53rd Annual
Conference on. IEEE. 2014, pp. 6615–6620.

[129] B. Reznick et al. “Extremal PSD forms with few terms”. In: Duke mathematical journal
45.2 (1978), pp. 363–374.

[130] J. Lofberg. “Pre-and post-processing sum-of-squares programs in practice”. In: IEEE
Transactions on Automatic Control 54.5 (2009), pp. 1007–1011.

[131] K. Gatermann and P. A. Parrilo. “Symmetry groups, semidefinite programs, and sums of
squares”. In: Journal of Pure and Applied Algebra 192.1-3 (2004), pp. 95–128.

[132] A. A. Ahmadi and G. Hall. Sum of Squares Basis Pursuit with Linear and Second Order
Cone Programming. arXiv:1510.01597. 2015.

[133] D. Henrion and J. Malick. “Projection methods in conic optimization”. In: Handbook on
Semidefinite, Conic and Polynomial Optimization. Springer, 2012, pp. 565–600.

[134] D. Bertsimas, R. M. Freund, and X. A. Sun. “An accelerated first-order method for solving
SOS relaxations of unconstrained polynomial optimization problems”. In: Optimization
Methods and Software 28.3 (2013), pp. 424–441.

[135] J. Nie and L. Wang. “Regularization methods for SDP relaxations in large-scale polynomial
optimization”. In: SIAM Journal on Optimization 22.2 (2012), pp. 408–428.

194 References

[136] D. Henrion, J.-B. Lasserre, and J. Löfberg. “GloptiPoly 3: moments, optimization and
semidefinite programming”. In: Optimization Methods & Software 24.4-5 (2009), pp. 761–
779.

[137] K.-C. Toh, M. J. Todd, and R. H. Tutuncu. “SDPT3—a MATLAB software package for
semidefinite programming, version 1.3”. In: Optimization Methods and Software 11.1-4
(1999), pp. 545–581.

[138] B. Borchers. “CSDP, A C library for semidefinite programming”. In: Optimization Methods
and Software 11.1-4 (1999), pp. 613–623.

[139] A. Mosek. “The MOSEK optimization software”. In: Online at http: // www. mosek. com
54.2-1 (2010), p. 5.

[140] A. Papachristodoulou and S. Prajna. “On the construction of Lyapunov functions using
the sum of squares decomposition”. In: Decision and Control, 2002, Proceedings of the 41st
IEEE Conference on. Vol. 3. IEEE. 2002, pp. 3482–3487.

[141] V. Powers and T. Wormann. “An algorithm for sums of squares of real polynomials”. In:
Journal of Pure and Applied Algebra 127.1 (1998), pp. 99–104.

[142] C. W. Scherer and C. W. Hol. “Matrix sum-of-squares relaxations for robust semi-definite
programs”. In: Mathematical Programming 107.1-2 (2006), pp. 189–211.

[143] M. Kojima. “Sums of squares relaxations of polynomial semidefinite programs”. In: (2003).
[144] S. H. A. Khoshnaw. “Model reductions in biochemical reaction networks”. PhD thesis.

Department of Mathematics, University of Leicester, 2015.
[145] E. J. Candès and B. Recht. “Exact matrix completion via convex optimization”. In:

Foundations of Computational Mathematics 9.6 (2009), p. 717.
[146] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky. “Rank-sparsity in-

coherence for matrix decomposition”. In: SIAM Journal on Optimization 21.2 (2011),
pp. 572–596.

[147] M. M. Peet, A. Papachristodoulou, and S. Lall. “Positive forms and stability of linear time-
delay systems”. In: SIAM Journal on Control and Optimization 47.6 (2009), pp. 3237–3258.

[148] W. Tan, A. Packard, et al. “Stability region analysis using polynomial and composite
polynomial Lyapunov functions and sum-of-squares programming”. In: IEEE Transactions
on Automatic Control 53.2 (2008), p. 565.

[149] U. Topcu, A. Packard, and P. Seiler. “Local stability analysis using simulations and
sum-of-squares programming”. In: Automatica 44.10 (2008), pp. 2669–2675.

[150] G. Valmorbida, M. Ahmadi, and A. Papachristodoulou. “Stability analysis for a class of
partial differential equations via semidefinite programming”. In: IEEE Transactions on
Automatic Control 61.6 (2016), pp. 1649–1654.

[151] M. Ahmadi, G. Valmorbida, and A. Papachristodoulou. “Dissipation inequalities for the
analysis of a class of PDEs”. In: Automatica 66 (2016), pp. 163–171.

[152] S. I. Chernyshenko, P Goulart, D Huang, and A. Papachristodoulou. “Polynomial sum of
squares in fluid dynamics: a review with a look ahead”. In: Phil. Trans. R. Soc. A 372.2020
(2014), p. 20130350.

[153] D. Goluskin. “Bounding averages rigorously using semidefinite programming: mean moments
of the Lorenz system”. In: Journal of Nonlinear Science 28.2 (2018), pp. 621–651.

[154] G. Fantuzzi, D. Goluskin, D. Huang, and S. I. Chernyshenko. “Bounds for deterministic
and stochastic dynamical systems using sum-of-squares optimization”. In: SIAM Journal
on Applied Dynamical Systems 15.4 (2016), pp. 1962–1988.

[155] T. Weisser, J. B. Lasserre, and K.-C. Toh. “Sparse-BSOS: a bounded degree SOS hierarchy
for large scale polynomial optimization with sparsity”. In: Mathematical Programming
Computation 10.1 (2018), pp. 1–32.

http://www.mosek.com

References 195

[156] C. Josz and D. K. Molzahn. “Lasserre hierarchy for large scale polynomial optimization in
real and complex variables”. In: SIAM Journal on Optimization 28.2 (2018), pp. 1017–1048.

[157] A. A. Ahmadi, S. Dash, and G. Hall. “Optimization over structured subsets of positive
semidefinite matrices via column generation”. In: Discrete Optimization 24 (2017), pp. 129–
151.

[158] M. M. Tobenkin, F. Permenter, and A. Megretski. Spotless polynomial and conic optimiza-
tion. 2013.

[159] M. Dür. “Copositive programming–a survey”. In: Recent advances in optimization and its
applications in engineering. Springer, 2010, pp. 3–20.

[160] A. Themelis and P. Patrinos. “SuperMann: a superlinearly convergent algorithm for finding
fixed points of nonexpansive operators”. In: arXiv preprint arXiv:1609.06955 (2016).

[161] H. F. Walker and P. Ni. “Anderson acceleration for fixed-point iterations”. In: SIAM
Journal on Numerical Analysis 49.4 (2011), pp. 1715–1735.

[162] M. Journée, F. Bach, P.-A. Absil, and R. Sepulchre. “Low-rank optimization on the
cone of positive semidefinite matrices”. In: SIAM Journal on Optimization 20.5 (2010),
pp. 2327–2351.

[163] B. Recht, M. Fazel, and P. A. Parrilo. “Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization”. In: SIAM Review 52.3 (2010), pp. 471–501.

[164] J. Dancis. “Positive semidefinite completions of partial hermitian matrices”. In: Linear
Algebra and its Applications 175 (1992), pp. 97–114.

[165] E. M. Aylward, S. M. Itani, and P. A. Parrilo. “Explicit SOS decompositions of univariate
polynomial matrices and the Kalman-Yakubovich-Popov lemma”. In: Decision and Control,
46th IEEE Conference on. IEEE. 2007, pp. 5660–5665.

[166] M. Laurent. “Sums of squares, moment matrices and optimization over polynomials”. In:
Emerging Applications of Algebraic Geometry. Springer, 2009, pp. 157–270.

[167] M. Putinar. “Positive polynomials on compact semi-algebraic sets”. In: Indiana University
Mathematics Journal 42.3 (1993), pp. 969–984.

[168] E. Kaszkurewicz and A. Bhaya. Matrix diagonal stability in systems and computation.
Springer Science & Business Media, 2012.

[169] M. Arcak and E. D. Sontag. “Diagonal stability of a class of cyclic systems and its connection
with the secant criterion”. In: Automatica 42.9 (2006), pp. 1531–1537.

[170] M. Arcak. “Diagonal stability on cactus graphs and application to network stability
analysis”. In: IEEE Transactions on Automatic Control 56.12 (2011), pp. 2766–2777.

[171] D. Carlson, D. Hershkowitz, and D. Shasha. “Block diagonal semistability factors and
Lyapunov semistability of block triangular matrices”. In: Linear Algebra and its Applications
172 (1992), pp. 1–25.

[172] A. Sootla and J. Anderson. “On existence of solutions to structured lyapunov inequalities”.
In: American Control Conference (ACC). IEEE. 2016, pp. 7013–7018.

[173] A. Berman, F. Goldberg, and R. Shorten. “Comments on Lyapunov α-stability with some
extensions”. In: Variational and Optimal Control Problems on Unbounded Domains (2014).

[174] A. Alavian and M. Rotkowitz. “Stabilizing decentralized systems with arbitrary information
structure”. In: Decision and Control (CDC), IEEE 53rd Annual Conference on. IEEE.
2014, pp. 4032–4038.

[175] B. D. Anderson and D. J. Clements. “Algebraic characterization of fixed modes in
decentralized control”. In: Automatica 17.5 (1981), pp. 703–712.

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Outline and contributions

	Preliminaries: convex optimization, chordal graphs, and sparse matrix decomposition
	Convex optimization
	Convex sets and convex functions
	Lagrangian duality
	Linear matrix inequalities
	Semidefinite programs

	Chordal graphs
	Chordal graph
	Perfect elimination orderings
	Maximal cliques and clique trees

	Sparse matrix decomposition
	Sparse symmetric matrices
	Sparse positive semidefinite matrix cone
	Positive semidefinite completable matrix cone

	Block matrices and chordal decomposition
	Sparse block matrices
	Extension of chordal decomposition theorems
	Proofs of Theorems 2.17 and 2.18

	I Large-scale Sparse Semidefinite Programs (SDPs)
	Chordal decomposition in sparse semidefinite programs
	Introduction
	Statement of results
	Outline

	Chordal decomposition of sparse SDPs
	Domain-space decomposition
	Range-space decomposition

	ADMM for domain- and range-space decompositions of sparse SDPs
	Vectorized forms
	ADMM for the domain-space decomposition
	ADMM for the range-space decomposition
	Equivalence between the primal and dual ADMM algorithms

	Homogeneous self-dual embedding of domain- and range-space decomposed SDPs
	Homogeneous self-dual embedding
	A simplified ADMM algorithm

	Complexity analysis via flop count
	Implementation and numerical experiments
	CDCS
	Sparse SDPs from SDPLIB
	Nonchordal SDPs
	Random SDPs with block-arrow patterns
	Comparison with SparseCoLO

	Conclusion
	Proofs of Chapter 3
	Proof of Proposition 3.6
	Proof of Proposition 3.7
	Proof of Proposition 3.8

	Scalable systems analysis using CDCS
	Introduction
	Problem statement
	Chordal decomposition in sparse SDPs
	Scalable performance analysis of sparse systems
	Stability verification
	H2 performance
	H performance

	Numerical simulations
	A chain of subsystems
	Networked systems over a scale-free graph

	Conclusion

	II Distributed Control of Networked Systems
	Scalable design using chordal decomposition
	Introduction
	Problem statement
	Design of structured feedback gains using convex restriction
	Scalable solution via chordal decomposition
	Chordal characterization of system data
	Decomposition of positive semidefinite constraints
	Sequential design over a clique tree
	Guaranteed minimum decay rate

	Illustrative examples
	Hierarchical systems
	A practical example: coupled inverted pendula
	General networked systems

	Conclusion

	Distributed design of decentralized controllers
	Introduction
	Problem statement
	Chordal decomposition in optimal decentralized control
	Convex restriction of the optimal decentralized control problem
	Chordal decomposition of the restriction problem

	A distributed solution via ADMM
	A simple example
	The general case

	Numerical examples
	First-order systems with acyclic directed graphs
	Coupled inverted pendula
	A chain of unstable second-order coupled systems

	Conclusion

	III Large-scale Sum-of-squares (SOS) Programs
	Partial orthogonality in general SOS programs
	Introduction
	Related work
	Main contributions
	Outline

	Preliminaries
	General SOS programs
	SDP formulation

	Partial orthogonality in SOS programs
	A fast ADMM-based algorithm
	The ADMM algorithm
	Application to SOS programming

	Matrix-valued SOS programs
	Weighted SOS constraints
	Numerical experiments
	Constrained polynomial optimization
	Finding Lyapunov functions
	A practical example: Nuclear receptor signalling

	Conclusion

	Decomposition and completion of sum-of-squares matrices
	Introduction
	Nonnegativity and sum-of-squares
	Decomposition of sparse SOS matrices
	Completion of sparse SOS matrices
	Application to matrix-valued SOS programs
	Conclusion

	Chordal decomposition in sparse SOS optimization
	Introduction
	Preliminaries
	SOS, DSOS, and SDSOS polynomials
	Correlatively sparse polynomials

	Revisiting sparse SOS decompositions
	Relating SSOS to sparse DSOS/SDSOS
	Extension to sparse matrix-valued polynomials
	Sparse SOS, SDSOS, and DSOS matrices
	Reduction to the scalar analysis

	Numerical examples
	Lower bounds on scalar polynomials
	Eigenvalue bounds on matrix polynomials
	Co-positive programming
	Lyapunov stability analysis

	Conclusion

	Conclusion and outlook
	Summary
	Future research directions

	On block-diagonal Lyapunov functions
	Block-diagonal Lyapunov functions
	Strongly decentralized stabilization
	Fully actuated systems
	Weakly coupled systems

	References

